A tale of two electrons: correlation at high density

ANU
Pierre-François Loos and Peter M. W. Gill
Research School of Chemistry, Australian National University, Canberra, Australia
email: \{loos,gill\}@rsc.anu.edu.au
website: http://rsc.anu.edu.au/~\{loos,pgill\}

Why bother with electron correlation?

- HF theory ignores correlation and gives 99% of the energy
- It is often accurate for the prediction of molecular structures
- It is computationally cheap and can be applied to large systems
- Unfortunately, the final 1% can have important chemical effects
- This is particularly true when bonds are broken and/or formed
- Realistic chemistry requires a good treatment of correlation

Some thoughts on electron correlation

- The concept was introduced at the dawn of quantum chemistry
Wigner Phys Rev 46 (1934) 1002
- Its definition was agreed somewhat later

Löwdin Adv Chem Phys 2 (1959) 207

- One Nobel Laureate used to refer to it as "the stupidity energy"
Feynmann (1972)
- There have been recent heroic calculations on the helium atom
Nakashima \& Nakatsuji J Chem Phys 127 (2007) 224104
- "We conclude that theoretical understanding here lags well behind the power of available computing machinery" Schwartz Int J Mod Phys E 15 (2006) 877

The helium-like ions [1]

$$
\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-Z\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{1}{r_{12}}
$$

- 1930: During his seminal study of these ions, Hylleraas discovered that

$$
E=-Z^{2}+\frac{5}{8} Z-0.157666+O\left(Z^{-1}\right)
$$

- 1961: Linderberg showed that the analogous HF expansion is

$$
E_{\mathrm{HF}}=-Z^{2}+\frac{5}{8} Z+\left(\frac{9}{32} \ln \frac{3}{4}-\frac{13}{432}\right)+O\left(Z^{-1}\right)
$$

- Subtracting yields the analogous correlation energy expansion

$$
E_{\mathrm{c}}=-0.046663+O\left(Z^{-1}\right)
$$

- Thus, in the high-density (i.e. $Z \rightarrow \infty$),

$$
E_{\mathrm{c}}=-46.7 \mathrm{mE}_{\mathrm{h}}
$$

The Hooke's law atom [1]

$$
\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)+Z^{4}\left(r_{1}^{2}+r_{2}^{2}\right)+\frac{1}{r_{12}}
$$

- 1962: Introduced by Kestner and Sinanoglu
- 1970: White \& Byers Brown found the high-density

$$
E_{\mathrm{c}}=-49.7 \mathrm{mE}_{\mathrm{h}}
$$

- 1989: Kais, Herschbach \& Levine found it to be quasiexactly solvable
- 1993: Taut found an infinite set of solutions
- 2005: Katriel et al. discussed similarities and differences to He atom
- 2009: We found [1]

$$
E_{\mathrm{c}}(D)=-\frac{\Gamma\left(\frac{D-1}{2}\right)^{2}}{4 \Gamma\left(\frac{D}{2}\right)^{2}} \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{2}}{\left(\frac{D}{2}\right)_{n}} \frac{2(1 / 4)^{n}-1}{n!n}
$$

The ballium atom [2]

$\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)+Z^{M+2}\left(r_{1}^{M}+r_{2}^{M}\right)+\frac{1}{r_{12}} \quad(M \approx \infty)$

- 2002: Introduced by Thompson \& Alavi who treated small and large R
- 2003: Jung \& Alvarellos performed more accurate calculations
- 2010: We obtained near-exact energies for $R=1,5$ and 20 bohr
- 2010: We also found that the high-density

$$
E_{\mathrm{c}}=-55.2 \mathrm{mE}_{\mathrm{h}}
$$

The spherium atom [3-7]

$$
\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)+\frac{1}{r_{12}}
$$

- 1982: Introduced by Ezra \& Berry to model excited states of He atom
- 2007: Seidl used it to study the interaction-strengthinterpolation model
- 2009: We used it as a model system for intracule functional theory (IFT) [6]
- 2009: We examined the analytic properties of its Schrödinger equation $[4,7]$
- 2009: We also found that the high-density [1]

$$
E_{\mathrm{c}}=-47.6 \mathrm{mE}_{\mathrm{h}}
$$

- 2009: ... and the more general formula [1]

$$
\begin{aligned}
& E_{\mathrm{c}}(D)=-\frac{\Gamma(D)}{4 \pi} \frac{\Gamma\left(\frac{D-1}{2}\right)^{2}}{\Gamma\left(\frac{D}{2}\right)^{2}} \\
& \times \sum_{n=1}^{\infty} \frac{(n+1)_{D-2}}{\left(n+\frac{1}{2}\right)_{D-1}^{2}}\left[\frac{1}{n}+\frac{1}{n+D-1}\right]
\end{aligned}
$$

- 2010: We also studied the exact solutions in some special cases [5]

Quasi-exact solutions of spherium [4,7]

State	D	R	E	$\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$
	1	$\sqrt{6} / 2$	$2 / 3$	$r_{12}\left(1+r_{12} / 2\right)$
${ }^{1} S$	2	$\sqrt{3} / 2$	1	$1+r_{12}$
	3	$\sqrt{10} / 2$	$1 / 2$	$1+r_{12} / 2$
	4	$\sqrt{21} / 2$	$1 / 3$	$1+r_{12} / 3$
	1	$\sqrt{6} / 2$	$1 / 2$	$1+r_{12} / 2$
	2	$\sqrt{15} / 2$	$1 / 3$	$1+r_{12} / 3$
${ }^{3} P$	3	$\sqrt{28} / 2$	$1 / 4$	$1+r_{12} / 4$
	4	$\sqrt{45} / 2$	$1 / 5$	$1+r_{12} / 5$

A Conjecture [1]

D	Helium	Spherium		
$m=-1$	$m=0$	Hookium $m=2$	Ballium $m=\infty$	
1	$-\infty$	$-\infty$	$-\infty$	$-\infty$
2	-0.220133	-0.227411	-0.239641	-0.266161
3	-0.046663	-0.047637	-0.049703	-0.055176
4	-0.018933	-0.019181	-0.019860	-0.021913
5	-0.010057	-0.010139	-0.010439	-0.011437
6	-0.006188	-0.006220	-0.006376	-0.006940
7	-0.004176	-0.004189	-0.004280	-0.004631
\vdots	\vdots	\vdots	\vdots	\vdots
∞	$-\frac{\gamma^{2}}{8}-\frac{67}{384} \gamma^{3}$	$-\frac{\gamma^{2}}{8}-\frac{21}{128} \gamma^{3}$	$-\frac{\gamma^{2}}{8}-\frac{47}{256} \gamma^{3}$	$-\frac{\gamma^{2}}{8}-\frac{53}{128} \gamma^{3}$

where $\gamma=1 /(D-1)$ is the Kato cusp factor.

$$
\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)+V\left(r_{1}\right)+V\left(r_{2}\right)+\frac{1}{r_{12}}
$$

Atom	Helium	Spherium	Hookium	Ballium
$V(r)$	$-Z / r$	0	$Z^{4} r^{2}$	$Z^{M+2} r^{M}$
m	-1	0	2	∞

A precise statement of the conjecture

For the ${ }^{1} S$ ground state of two electrons confined by a radial external potential $V(r)=\operatorname{sgn}(m) Z^{m+2} r^{m}$ in D dimension, the high-density correlation energy is

$$
\lim _{Z \rightarrow \infty} E_{\mathrm{c}}(D, m) \sim-\frac{\gamma^{2}}{8}+O\left(\gamma^{3}\right)
$$

where $\gamma=1 /(D-1)$ is the Kato cusp factor

A Proof [8]

- How can one prove such a conjecture?
- We need to examine the limiting behavior for large Z and D
- This requires double perturbation theory
- After transforming both independent and dependent variables

$$
\left(\frac{1}{\Lambda} \hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z} \hat{\mathcal{W}}\right) \Phi=\mathcal{E} \Phi
$$

where $\Lambda=(D-2)(D-4) / 4$

Herschbach J Chem Phys 84 (1986) 838

- In the $D=\infty$ limit, the pure kinetic term $\hat{\mathcal{T}}$ vanishes and we then have a semi-classical electrostatics problem
- The electrons settle into a fixed "Lewis" structure that minimizes $\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z} \hat{\mathcal{W}}$
- In this optimal structure, the angle θ_{∞} between the electrons is slightly greater than 90°
- In the analogous HF calculation, one finds $\theta_{\infty}=90^{\circ}$ exactly
Goodson \& Herschbach J Chem Phys 86 (1987) 4997
- Now, by carefully taking the high- Z limit, one finds

$$
\begin{gathered}
E^{(2)}(D, m)=\left[-\frac{1}{2(m+2)}-\frac{1}{8}\right] \gamma^{2}+O\left(\gamma^{3}\right) \\
E_{\mathrm{HF}}^{(2)}(D, m)=\left[-\frac{1}{2(m+2)}\right] \gamma^{2}+O\left(\gamma^{3}\right)
\end{gathered}
$$

- Both of these depend on the external potential parameter m
- But their difference is independent of m, proving the conjecture!

Conclusions

- The high-density limit sheds light on the normal case
- High-Z:

$$
E_{\mathrm{c}}(\mathrm{He}) \approx E_{\mathrm{c}}(\mathrm{Sp}) \approx E_{\mathrm{c}}(\mathrm{Ho}) \approx E_{\mathrm{c}}(\mathrm{Ba})
$$

- The high-dimension limit sheds light on these cases
- High- Z, Large- D

$$
E_{\mathrm{c}}(\mathrm{He})=E_{\mathrm{c}}(\mathrm{Sp})=E_{\mathrm{c}}(\mathrm{Ho})=E_{\mathrm{c}}(\mathrm{Ba})
$$

- Ultimately, the electron-electron cusp determines every thing
- High- Z, Large- $D: E_{\mathrm{c}} \sim-\gamma^{2} / 8$

References

[1] P.-F. Loos and P. M. W. Gill, J. Chem. Phys. 131 (2009) 241101.
[2] P.-F. Loos and P. M. W. Gill, J. Chem. Phys. 132 (2010) 234111.
[3] P.-F. Loos and P. M. W. Gill, Phys. Rev. A 79 (2009) 062517.
[4] P.-F. Loos and P. M. W. Gill, Phys. Rev. Lett. 103 (2009) 123008.
[5] P.-F. Loos, Phys. Rev. A 81 (2010) 032510.
[6] P.-F. Loos and P. M. W. Gill, Phys. Rev. A 81 (2010) 052510.
[7] P.-F. Loos and P. M. W. Gill, Mol. Phys. (2010) submitted.
[8] P.-F. Loos and P. M. W. Gill, Phys. Rev. Lett. (2010) submitted.

