Self-Consistent Strictly Localized Bond Orbital with Pierre-Francois Loos and X

upe de Chimie et Biochimie Théoriques, UMR 7565 CNRS re-Francois.Loos@cbt.uhp-nancy.fr,Xa

I. Introduction

To deal with large macromolecular systems one generally takes advantage of the QM/MM philosophy. A small part is treated with the help of Quantum Mechanics (QM) and the remaining by means of classical Molecular Mechanics force fields (MM). Many QM/MM methods exist, differing by the levels of theory (QM and/or MM) and by the way they handle the connection between the two parts[1, 2]. In this poster we focus our attention on the Local Self-Consistent Field (LSCF) method[3, 4] which represents the frontier bond, the one connecting the QM piece to the MM one, by means of a frozen Strictly Localized Bond Orbital (SLBO). Here frozen means that the expansion the SLBO over the basis functions is kept fixed during the wave function optimization. This implies that the QM part must have a significant size to minimize the effect of the SLBO on the total wave function. This is a critical issue when one is willing to perform Molecular Dynamics (MD) calculations. To keep the size of the QM region as small as possible, one has to allow the SLBOs to readjust themselves according to the densi variations of the whole wave function.

We propose a modification of the LSCF method, called Optimized Local Self-Consistent Field (OLSCF), which allows the SLBO to relax by simple linear combination with their corresponding Strictly Localized Anti-Bonding Orbital (SLABO).

- For small basis set : -SLBO and SLABO obtained by localization algorithm (Boys-Foster[5], Pipeck-Mezey[6],...)
- -SLBO obtained from usual localization procedures -SLABO build with the projection of the one obtained with a small basis set on the large basis set [7]
- method

- Co1
- orbitals

 $P_{\mu\nu}^T = I$

• Duals orbitals

SLBO obtained on the ethane molecule at the 6-31G* level of theory

Choice of SLBO and SLABO

• For larger basis set (more than DZ) :

 $|\psi_i^{LB}\rangle = \sum |\mu\rangle (\mathbf{S}^{-1})_{\mu\nu} \langle \nu |\psi_i^{SB}\rangle$

III. Modification of the LSCF

• Projection of the initial basis $\{|\mu\rangle\}_{1 \le \mu \le 1}$

$$\sum_{i,j}^{2L} S_{\mu i} (\mathbf{D}^{-1})_{j i} S_{\mu j} \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |l_i\rangle (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\lambda|^2 (\mathbf{D}^{-1})_{j i} \langle l_j |\mu\rangle \right)^{-1/2} \left(|\mu\rangle - \sum_{i,j}^{2L} |\mu\rangle \right)^{-1/2} \left(|\mu\rangle \right)^{-1/2} \left(|\mu\rangle \right$$

• Mutual orthogonalization : canonical method $\{|\tilde{\mu}\rangle\}_{1 < \mu < N} \Rightarrow \gamma$

n of the two transformation $\{|\mu\rangle\}_{1 \le \mu \le N} \Rightarrow \{|\mu'\rangle\}_{1 \le \mu \le N}$

 $\mathbf{B} = \mathbf{M} \cdot \mathbf{X}$

• Density matrix with non-orthogonal

$$P^{Q}_{\mu\nu} + P^{L}_{\mu\nu} = 2\sum_{i}^{n-L} c_{\mu i} c_{\nu i} + 2\sum_{j}^{L} a_{\mu j} \tilde{a}_{\nu j}$$

$$\tilde{a}_{\mu i} = \sum_{j} a_{\mu j} (\mathbf{D}^{-1})_{ji}$$

• Definition of the Fock operator

$$H^{C}_{\mu\nu} + \sum_{\lambda\sigma} P^{T}_{\lambda\sigma} \left[(\mu\nu|\lambda\sigma) - \frac{1}{2}(\mu\sigma|\lambda\nu) \right]$$

Optimization of the S

V. Algorithm

30	ond Orbital within the	e Local Self-Consisten	t Fie
<u>ier</u> prie	<u>re-Francois Loos</u> and Xavier Ass ques, UMR 7565 CNRS-UHP, Un	iversité Henri Poincaré, Nancy, I	Franc
ck	ot.uhp-nancy.fr,Xavier.As	ssfeld@cbt.uhp-nancy.fr	
Ċ	k centre national de la recherche scientifique $CBTChimie et Biochimie Théoriques NANCY$		
	IV. Optimization of the SLBO	VI. Polarization of the SLBO	VII.
	Optimization by linear combination between the SLBO and its SLABO	Mulliken charge on atom A due to $ l_i angle$	
	$\mathbf{r}_{i} \left(\langle l_{i} \hat{F} l_{i} \rangle \langle l_{i}^{\star} \hat{F} l_{i} \rangle \right)$	$q_i^A = \sum_{\mu \in A} \sum_{\nu} a_{\mu i} S_{\mu \nu} a_{\nu i}$	
	$\mathbf{F}^{*} = \left(\begin{array}{c} \langle l_{i} \hat{F} l_{i}^{*} \rangle & \langle l_{i}^{*} \hat{F} l_{i}^{*} \rangle \end{array} \right)$	Mulliken charge of the SLBO (in electron)	
	$\mathbf{F}^{i}\begin{pmatrix}C_{1}^{i} - C_{2}^{i}\\C_{2}^{i} & C_{1}^{i}\end{pmatrix} = \begin{pmatrix}\kappa_{1}^{i} & 0\\0 & \kappa_{2}^{i}\end{pmatrix}\begin{pmatrix}C_{1}^{i} - C_{2}^{i}\\C_{2}^{i} & C_{1}^{i}\end{pmatrix}$	Pipeck-Mezey HF/6-311G**	
	the new set of localized orbitals is :	$\frac{X q^C(\text{SCF}) q^C(\text{OLSCF}) \Delta}{X q^C(\text{SCF}) q^C(\text{OLSCF}) \Delta}$	
	$\int l_i\rangle_{new} = C_1^i \cdot l_i\rangle_{old} + C_2^i \cdot l_i^*\rangle_{old}$	H 0.50 0.50 0.00 Li 0.54 0.52 -0.02	
	$ \left\{ l_i^{\star}\rangle_{new} = -C_2^i \cdot l_i\rangle_{old} + C_1^i \cdot l_i^{\star}\rangle_{old} \right\}$	BH ₂ 0.46 0.48 0.03	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		OH 0.42 0.42 0.00	VIII
	V. Algorithm	F 0.44 0.41 -0.03 RMSD 0.01	• Imp GA
	1 Determine CLPOs and CLAPOs and		unr
	model molecule	Mulliken charge of the SLBO (in electron) Boys-Foster HE/6-311G**	• Val
	2. Build the M matrix. Orthogonalize the	SLABO projected from HF/6-31G*	sys
$\iota\rangle$	3. Build the X matrix. Transform the	$\frac{\text{on the CH}_3CX_3 \text{ molecules}}{X q^C(SCF) q^C(OLSCF) \Delta}$	Pol cor:
	functions obtained in 2. into an	H 0.50 0.50 0.00	
	orthogonal and linearly independent set 4 Compute $\mathbf{B} = \mathbf{M} \cdot \mathbf{X}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IX. C
	5. Define the Fock matrix F on the original	CH3 0.47 0.48 0.01 NH 0.42 0.46 0.03	QM
	basis set and take into account the density	INIT2 0.43 0.46 0.03 OH 0.43 0.44 0.01	• Firs
	6. Compute $\mathbf{F}' = \mathbf{B}^{\dagger} \cdot \mathbf{F} \cdot \mathbf{B}$	F 0.45 0.43 -0.02 RMSD 0.01	
	7. Diagonalize $\mathbf{F}' : \epsilon = \mathbf{C}'^{\dagger} \cdot \mathbf{F}' \cdot \mathbf{C}'$ where ϵ		
	8. Transform the eigenvectors in the	Solvation of CF ₃ CH ₂ OH	Refe
	original basis set : $\mathbf{C} = \mathbf{B} \cdot \mathbf{C}'$	Pipeck-Mezey HF/6-311++G** and	[1] N
'j	9. Compute PQ 10. Ear arch (SI BO, SI A BO) pair	HF(PCM)/6-311++G**	
	diagonalize the (2×2) Fockian to	Vacuum (a.u.) -450.8013 -450.7679 -450.5887	$\overline{7}$ $\underline{7}$ $\underline{7}$
	determine the new pair	Solvent (a.u.) -450.8174 -450.7826 -450.6039 Solvation 10.10 9.20 9.52) [3] X
	12. Exit test. If not satisfied, go back to 5	(kcal/mol)	- [4] N
		Solvation of CF ₃ CH ₂ OH SLBO (from ethane) on the CC bond	[5]J. 3
		Pipeck-Mezey B3LYP/6-311++G** and	[6] J.
	SLABO obtained on the ethane molecule	SCF LSCF OLSCF	- - - - - - - - - - - - - - - - - - -
	at the 6-31G* level of theory	Vacuum (a.u.) -452.9155 -452.8874 -452.7484 Solvent (a.u.) -452.9313 -452.9018 -452.7648	
		Solvation 9.89 9.08 10.28	(2
		(kcal/mol)	

