Pierre-François Loos and Peter M. W. Gill

Research School of Chemistry, Australian National University, Canberra, Australia

QMC in the Apuan Alps VIII, Vallico Sotto, Tuscany 1st August 2013

Introduction

My collaborator (and former boss)

Prof. Peter Gill

- Professor at the RSC (ANU) since 2004
- Pople Medal (2005)
- Schrödinger Medal (2011)
- Fukui Medal (2013)

Introduction

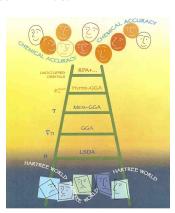
The Local Density Approximation (LDA) in DFT

- Find the properties of the uniform electron gas (UEG)
- Treat a molecular density as a collection of tiny bits of UEG
- The LDA is an ab initio model with no adjustable parameters
- This is an attractive approach to molecular electronic structure
- © It also forms a foundation for more accurate approximations
- Not very accurate for correlation energy (overestimated by roughly 200%)

Introduction 000

Jacob's ladder vs Generalized LDA idea

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!
- We propose to follow an alternative route to heaven!
- We add a new two-electron parameter η



Generalized LDA

Hole curvature (Part 1)

- Suppose that an electron is at the point r.
- \blacksquare The probability that another electron lies at a distance u is

$$P(u|\mathbf{r}) = \frac{\int \rho_2(\mathbf{r}, \mathbf{r} + \mathbf{u}) d\Omega_u}{\rho(\mathbf{r})}$$

where Ω_u is the angular part of u and $\rho_2(\mathbf{r}_1, \mathbf{r}_2)$ is the reduced second-order density matrix.

Generalized LDA

Hole curvature (Part 2)

■ $P(u|\mathbf{r})$ depends on \mathbf{r} but, at a given \mathbf{r} , it is easy to show that

$$\int_0^\infty P(u|\mathbf{r})du = n-1$$

- $P''(0|\mathbf{r})$ indicates the width of the hole around the electron at \mathbf{r} .
- Therefore, the dimensionless curvature

$$\eta(\mathbf{r}) = r_s(\mathbf{r})^3 P''(0|\mathbf{r})$$

measures of the proximity of other electrons to an electron at \mathbf{r} .

Uniform electron gases

Infinite UEGs

- One of the most popular models in condensed matter physics
- The recipe:
 - 1 Put n electrons into a \mathcal{D} -dimensional cube of volume V
 - 2 Add a background positive charge to achieve neutrality
 - 3 Increase both n and V so that $\rho = n/V$ remains constant
 - In the limit as $n \to \infty$ and $V \to \infty$, one obtains an infinite UEG

Ceperley & Alder, Phys Rev Lett 45 (1980) 566

Uniform electron gases

Finite UEGs

- One can also construct UEGs using a finite number of electrons
- The recipe:
 - 1 Put n electrons onto a \mathcal{D} -dimensional sphere
 - 2 Add a background positive charge to achieve neutrality if you wish
- That's all

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

Uniform electron gases

A Few Finite UEGs

\mathcal{D}	System	Name
1	n electrons on a ring	<i>n</i> -ringium
2	n electrons on a sphere	<i>n</i> -spherium
3	n electrons on a glome	<i>n</i> -glomium
:	÷	÷

Electrons on a Ring

Wavefunctions & Energies

$$\hat{H} = -\frac{1}{2R^2} \sum_{i=1}^{n} \frac{\partial^2}{\partial \theta_i^2} + \sum_{i < j}^{n} \frac{1}{r_{ij}}$$

$$\varepsilon = ? \qquad \Psi = ?$$

$$r_s = \frac{1}{2\rho} = \frac{\pi R}{n}$$

Hartree-Fock approximation for *n*-ringium

■ The HF wave function and the η parameter are

$$\Phi_{\mathsf{HF}} = \prod_{i < j}^{n} \hat{r}_{ij} \qquad \qquad \frac{\eta}{\theta} = \left(1 - \frac{1}{n^2}\right) \frac{\pi^2}{6}$$

where \hat{r}_{ii} is the signed interelectronic distance.

The HF energy is

$$\varepsilon_{\mathsf{HF}} = \frac{n^2 - 1}{n^2} \frac{\pi^2}{24 \, r_s^2} + \frac{1}{4 \, r_s} \left(\sum_{k=1}^n \frac{4 - 1/n^2}{2k - 1} - 3 \right)$$

Loos & Gill, J Chem Phys 138 (2013) 164124

Perturbation expansions

• We can find the small- r_s expansion coefficients (valid for $r_s \ll 1$)

$$\varepsilon = \frac{\varepsilon_{-2}}{r_s^2} + \frac{\varepsilon_{-1}}{r_s} + \varepsilon_0 + \varepsilon_1 \, r_s + \dots$$

• We can also find the large- r_s expansion coefficients (valid for $r_s \gg 1$)

$$\varepsilon = \frac{\eta_2}{r_s} + \frac{\eta_3}{r_s^{3/2}} + \frac{\eta_4}{r_s^2} + \dots$$

Loos, J Chem Phys 138 (2013) 064108 Loos & Gill, J Chem Phys 138 (2013) 164124

2nd weapon: Hylleraas calculations

- © Hylleraas-type calculations can be done for few electrons
- \odot It works well for intermediate r_s .
- However, the many-electron integrals are too numerous and too difficult for larger number of electrons
- So how can we calculate accurate energies for intermediate r_s ?

3rd weapon: Quantum Monte Carlo

- Diffusion Monte Carlo calculations offer a way forward
- These converge poorly in the small- r_s regime
- These converge well in the medium- r_s regime
- These converge very well in the large- r_s regime
 - Weaknesses?
 - 1 DMC energies have some (controllable) statistical noise
 - 2 Accurate DMC energies depend on accurate nodes
- ©©© Fortunately, the HF nodes (i.e. $r_{ii} = 0$) are exact

In passing: Exact solutions for n=2

- The Schrödinger egn is separable in extracule & intracule coordinates
- The extracule equation is trivial to solve
- The intracule equation is a Heun-type differential equation
- For certain "eigenradi" R, both ϵ and Ψ can be obtained in closed form
- There are a countably infinite number of these closed-form solutions

Loos & Gill, Phys Rev Lett 108 (2012) 083002

Some exact solutions

State	R	ε	$\Psi(r_{12}) \qquad x = r_{12}/(2R)$
Ground	1/2	9/4	$\hat{r}_{12}\sqrt{1+x}$
	$\sqrt{3/2}$	2/3	$\hat{r}_{12}\left[1+rac{1}{2}r_{12} ight]$
	$\frac{1}{4}(\sqrt{33}+3)$	$\frac{25}{96}(7-\sqrt{33})$	$\hat{r}_{12}\sqrt{1+x}\left[1+(R-rac{1}{2})x ight]$
	$\sqrt{23/2}$	9/46	$\hat{r}_{12} \left[1 + \frac{1}{2} r_{12} + \frac{5}{2} x^2 \right]$
:	:	:	:
1st excited	$\frac{1}{4}(\sqrt{33}-3)$	$\frac{25}{96}(7+\sqrt{33})$	$\hat{r}_{12}\sqrt{1-x}\left[1+(R+\tfrac{1}{2})x\right]$
	$\sqrt{5/2}$	9/10	$\hat{r}_{12}\sqrt{1-x}\sqrt{1+x}\left[1+\tfrac{1}{2}r_{12}\right]$
	$\sqrt{33/2}$	8/33	$\hat{r}_{12}\sqrt{1-x}\sqrt{1+x}\left[1+\frac{1}{2}r_{12}+\frac{7}{2}x^2\right]$
<u>:</u>	:	•	:

Loos & Gill Phys Rev Lett 108 (2012) 083002

Reduced correlation energies (mE_h) for *n*-ringium

Combining perturbation expansions, Hylleraas and DMC calculations leads to

		r_{S}								
n	$6\eta/\pi^2$	0	0.1	0.2	0.5	1	2	5	10	20
2	3/4	13.212	12.985	12.766	12.152	11.250	9.802	7.111	4.938	3.122
3	8/9	18.484	18.107	17.747	16.755	15.346	13.179	9.369	6.427	4.030
4	15/16	21.174	20.698	20.249	19.027	17.324	13.179	10.390	7.085	4.425
5	24/25	22.756	22.213	21.66	20.33	18.439	15.644	10.946	7.439	4.636
6	35/36	23.775	23.184	22.63	21.14	19.137	16.192	11.285	7.653	4.762
7	48/49	24.476	23.850	23.24	21.70	19.607	16.554	11.509	7.795	4.844
8	63/64	24.981	24.328	23.69	22.11	19.940	16.808	11.664	7.890	4.901
9	80/81	25.360	24.686	24.04	22.39	20.186	16.995	11.777	7.960	4.941
10	99/100	25.651	24.960	24.25	22.62	20.373	17.134	11.857	8.013	4.973
:						•				:
∞	1	27.416	26.597	25.91	23.962	21.444	17.922	12.318	8.292	5.133

Lee & Drummond Phys Rev B 83 (2010) 245114

Fitting the results (under progress)

- We know the high-density and low-density expansions
- We should fit our results with functions that behave this way
- But which functions should we choose?
 - "Robust" interpolation Cioslowski, J Chem Phys 136 (2012) 044109
 - Fitting based on hypergeometric functions (related to the ISI functional of Seidl and Perdew) Seidl, Perdew & Kurth, Phys Rev Lett 84 (2000) 5070

Take-home messages

How can we use these new UEG results?

- \blacksquare *n* electrons on a ring gives UEGs of any desired density ρ
- We have calculated their correlation energies very accurately
- Our results permit a generalization of the LDA for finite systems
- This improves the accuracy of the lowest rung of Jacobs Ladder
- Next, we will extend this approach to electrons in 2D and 3D

