	Spherium 0000	Ringium 00000000000	

Lessons from electron(s) on a (hyper)sphere

Pierre-François Loos

Research School of Chemistry, Australian National University, Canberra, Australia

Physics colloquium, School of Physics, University of Melbourne June 4th 2013

Introduction		Ringium	
0000			
Acknowledgements			

My collaborator

Prof. Peter Gill

- Professor at the RSC (ANU) since 2004
- Pople Medal (2005)
- Schrödinger Medal (2011)
- Fukui Medal (2013)

Introduction					
0000	00	0000	00	00000000000	
Selfish slide					

About myself

Dr. Pierre-François (Titou) Loos

2005-2008:

PhD (Nancy, France) funded by the French government

2009-2012:

Postdoc at the RSC (ANU) funded by the ARC (DP)

2013-2016:

Early Career Researcher at the RSC funded by the ARC (DECRA)

Introduction		Ringium	
0000			
Electron correlation			

Why bother with electron correlation?

Definition: $E_{corr} = E_{exact} - E_{Hartree-Fock}$

- $\odot\,$ HF theory ignores correlation and gives 99% of the energy
- © It is often accurate for the prediction of molecular structures
- © It is computationally cheap and can be applied to large systems
- © Unfortunately, the final 1% can have important chemical effects
- © This is particularly true when bonds are broken and/or formed
- © Thus, realistic chemistry requires a good treatment of correlation

Introduction			
0000			
Electron correlation			

Some random thoughts on electron correlation

- The concept was introduced at the dawn of quantum chemistry Wigner Phys Rev 46 (1934) 1002
- Its definition was agreed somewhat later Löwdin Adv Chem Phys 2 (1959) 207
- One Nobel Laureate used to refer to it as "the stupidity energy" Feynmann (1972)
- There have been recent heroic calculations on the helium atom Nakashima & Nakatsuji J Chem Phys 127 (2007) 224104
- "We conclude that theoretical understanding here lags well behind the power of available computing machinery" Schwartz Int J Mod Phys E 15 (2006) 877

	Helium	Spherium		Ringium 000000000000	
0000	00	0000	00	00000000000	
Hamiltonian					

<u>The helium-like ions</u>: One nucleus of charge Z and Two electrons

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) - Z \left(\frac{1}{r_1} + \frac{1}{r_2} \right) + \frac{1}{r_{12}}, \quad \text{where } r_{12} = |\mathbf{r}_1 - \mathbf{r}_2|.$$

- Z = 1 gives the H⁻ anion
- Z = 2 gives the He atom
- Z = 3 gives the Li⁺ cation
- Z = 4 gives the Be²⁺ cation
- etc.

	Helium				
0000	00	0000	00	00000000000	
Pursuit of $E_{ m He}$					

History of accurate calculation on the He atom

"For thousands of years mathematicians have enjoyed competing with one other to compute ever more digits of the number π . Among modern physicists, a close analogy is computation of the ground state energy of the helium atom, begun 75 years ago by E. A. Hylleraas." Schwartz Int J Mod Phys E 15 (2006) 877

Year	Authors	Energy (a.u.)
1929	Hylleraas	-2.902 43
1957	Kinoshita	-2.903 722 5
1966	Frankowski & Pekeris	-2.903 724 377 032 6
1994	Thakkar & Koga	-2.903 724 377 034 114 4
1998	Goldman	-2.903 724 377 034 119 594
1999	Drake	-2.903 724 377 034 119 596
2002	Sims & Hagstrom	-2.903 724 377 034 119 598 299
2002	Drake et al.	-2.903 724 377 034 119 598 305
2002	Korobov	-2.903 724 377 034 119 598 311 158 7
2006	Schwartz	-2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
2007	Nakashima & Nakatsuji	-2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37

Nakashima & Nakatsuji J Chem Phys 127 (2007) 224104

Introduction	Spherium	Ringium 00000000000	
Motivations	0000	0000000000000	

Why bother with electron(s) on a sphere?

Arguments for high-impact journals

It can be experimentally realized:

- Multielectron bubbles in liquid helium
- Arrangements of protein subunits on spherical viruses
- Colloid particles in colloidosomes
- Fullerene-like molecules: C₆₀, C₂₄₀, C₅₄₀, ...

Our arguments...

- It yielded a number of unexpected discoveries
- This is actually related to "real" Quantum Chemistry

	Spherium		
	0000		
The spherium atom			

The spherium atom: electron(s) on a sphere of radius R

One electron on a sphere

$$\hat{H} = -\frac{1}{2}\nabla^2$$

Solution: $Y_{\ell m}(\theta, \phi) \Rightarrow \text{Boring}!!!$

Loos & Gill Phys Rev A 79 (2009) 062517

PF Loos — http://rsc.anu.edu.au/~loos/ —

Two electrons on a sphere

$$\hat{H}=-rac{1}{2}\left(
abla_{1}^{2}+
abla_{2}^{2}
ight)+rac{1}{r_{12}}$$

$$\frac{\text{Solution}}{??} \Rightarrow \frac{\text{Exciting}}{!!}$$

Introduction	Helium	Spherium	Glomium	Ringium	
0000	00	○○○○	00	00000000000	
Pursuit of $E_{ m Sp}$					

Let's play the game: numerical calculations

First, we solved the Schrödinger equation numerically, e.g.

 $\begin{array}{ll} R=1, & E_{\rm Sp}=0.852\ 781\ 065\ 056\ 462\ 665\ 400\ 437\ 966\ 038\ 710\ 264\ \ldots \\ R=100, & E_{\rm Sp}=0.005\ 487\ 412\ 426\ 784\ 081\ 726\ 642\ 485\ 484\ 213\ 968\ \ldots \end{array}$

Observation:

— With a small expansion $\psi = \sum_k c_k r_{12}^k$, one can get many digits! —

Is it trying to tell us something?

Loos & Gill Phys Rev A 79 (2009) 062517

		Spherium		Ringium			
		0000					
Hamiltonian and exact solutions							

Hamiltonian of the ground state

$$\hat{H} = \left(\frac{r_{12}^2}{4R^2} - 1\right)\frac{d^2}{dr_{12}^2} + \left(\frac{3r_{12}}{4R^2} - \frac{1}{r_{12}}\right)\frac{d}{dr_{12}} + \frac{1}{r_{12}}$$

 ∞

Frobenius method

We seek polynomial solutions:
$$\Psi({f r}_1,{f r}_2)=\sum_{\ell=0}^\infty c_\ell r_{12}^\ell$$

Analytical solutions

$$R = \sqrt{3/2} \quad E = 1 \qquad \Psi(\mathbf{r}_1, \mathbf{r}_2) = 1 + r_{12}$$

$$R = \sqrt{7} \quad E = 2/7 \quad \Psi(\mathbf{r}_1, \mathbf{r}_2) = 1 + r_{12} + \frac{5}{28}r_{12}^2$$

$$\vdots \qquad \vdots \qquad \vdots$$

Loos & Gill Phys Rev Lett 103 (2009) 123008

 $\mathsf{PF} \; \mathsf{Loos} - \mathsf{http://rsc.anu.edu.au/}{\sim}\mathsf{loos/} -$

Lessons from electron(s) on a (hyper)sphere

イロト イポト イヨト イヨト

	Spherium 0000	Glomium ●○	Ringium 00000000000	
The glomium atom				

The glomium atom: electron(s) on a glome

What is a "glome"?

A glome is a 3-sphere, i.e. the surface of a 4-dimensional ball

$$\hat{H} = \left(\frac{r_{12}^2}{4R^2} - 1\right)\frac{d^2}{dr_{12}^2} + \left(\frac{5r_{12}}{4R^2} - \frac{2}{r_{12}}\right)\frac{d}{dr_{12}} + \frac{1}{r_{12}}$$

Analytical solutions

$$\begin{array}{ll} R = \sqrt{10}/2 & E = 1/2 & \Psi(\mathbf{r}_1, \mathbf{r}_2) = 1 + \frac{1}{2}r_{12} \\ R = \sqrt{66}/2 & E = 2/11 & \Psi(\mathbf{r}_1, \mathbf{r}_2) = 1 + \frac{1}{2}r_{12} + \frac{7}{132}r_{12}^2 \end{array}$$

		Glomium	Ringium	
		00		
Exact solutions in D dimensio	ns			

Generalization to a D-dimensional space

Simplest exact solutions for a *D*-sphere

State	D	$4R^{2}$	E	$\Psi(\mathbf{r}_1,\mathbf{r}_2)$
	1	6	2/3	$r_{12}(1+r_{12}/2)$
	2	3	1	$1 + r_{12}$
	3	10	1/2	$1 + r_{12}/2$
^{1}S	4	21	1/3	$1 + r_{12}/3$
	÷	:	:	÷
	D	(2D-1)(D-1)	1/(D-1)	$1 + r_{12}/(D-1)$
	÷	÷	÷	÷

- Kato's cusp conditions are identical to real systems -

Loos & Gill Phys Rev Lett 103 (2009) 123008; Mol Phys 108 (2010) 2527

PF Loos — http://rsc.anu.edu.au/~loos/ —

		Ringium	
		0000000000	
The Ringium Atom			

Ringium: "- One Ring to Rule Them All --"

Two Electrons on a Ring

Wavefunctions & Energies

$$\hat{H} = -\frac{1}{2R^2} \left[\frac{\partial^2}{\partial \theta_1^2} + \frac{\partial^2}{\partial \theta_2^2} \right] + \frac{1}{r_{12}}$$
$$E = ?$$
$$\Psi = ?$$

A (1) > A (2) > A

PF Loos — http://rsc.anu.edu.au/~loos/ — Lessons from electron(s) on a (hyper)sphere

		Ringium	
		0 00 0000000	
Schrödinger equation			

Separating the Hamiltonian

Let's define the extracule $\Theta = (\theta_1 + \theta_2)/2$ and intracule $\theta = \theta_1 - \theta_2$

Using these coordinates, the Hamiltonian is a sum of two independent parts

$$\hat{H} = -rac{1}{4R^2}rac{\partial^2}{\partial\Theta^2} - rac{1}{R^2}rac{\partial^2}{\partial\theta^2} + rac{1}{2R\sin(heta/2)}$$

so we can solve for the extracule and intracule wavefunctions separately.

$$-\frac{1}{4R^2}\frac{d^2}{d\Theta^2}\phi_J = \mathcal{E}_J\phi_J \qquad \left[-\frac{1}{R^2}\frac{d^2}{d\theta^2} + \frac{1}{2R\sin(\theta/2)}\right]\psi_j = \varepsilon_j\psi_j$$

The total wavefunctions and energies are then given by

$$\Psi_{Jj} = \phi_J(\Theta)\psi_j(\theta) \qquad \qquad \mathcal{E}_{Jj} = \mathcal{E}_J + \varepsilon_j$$

PF Loos — http://rsc.anu.edu.au/~loos/ —

	Spherium		Ringium	
0000	0000	00	000000000000000000000000000000000000000	
Schrödinger equation				

Extracule Schrödinger equation

The Schrödinger equation for the extracule $\Theta = (\theta_1 + \theta_2)/2$ is

$$-\frac{1}{4R^2}\frac{d^2}{d\Theta^2}\phi_J = \mathcal{E}_J\phi_J$$

The resulting wavefunctions and energies are

$$\phi_J = \exp(iJ\Theta) \qquad \qquad \mathcal{E}_J = \frac{J^2}{4R^2}$$

J	0	1	2	3	4	
Symmetry	Σ	П	Δ	Φ	Г	

The Σ states (J = 0) are uniform electron gases

		Ringium	
		000000000000	
Schrödinger equation			

Intracule Schrödinger equation

The Schrödinger equation for the intracule $\theta = \theta_1 - \theta_2$ is

$$\left[-\frac{1}{R^2}\frac{d^2}{d\theta^2}+\frac{1}{2R\sin(\theta/2)}\right]\psi=\varepsilon\,\,\psi$$

If we use the distance $u = |\mathbf{r}_1 - \mathbf{r}_2|$, instead of θ , we obtain the Heun-type differential equation

$$\left[\left(\frac{u^2}{4R^2}-1\right)\frac{d^2}{du^2}+\frac{u}{4R^2}\frac{d}{du}+\frac{1}{u}\right]\psi=\varepsilon\;\psi$$

If we define x = u/(2R), the general solution is

$$\psi = x \ (1+x)^{a/2} \ (1-x)^{b/2} \ P(x)$$

where a = 0 or 1, and b = 0 or 1, and P(x) is a regular power series in x.

	Spherium 0000	Ringium ○○○○●○○○○○○	
Closed-form solutions			

The four families of solutions

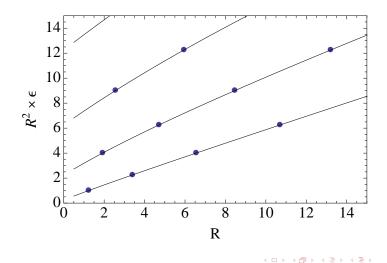
$$\psi = x (1+x)^{a/2} (1-x)^{b/2} P(x)$$

Four families of solutions: (a, b) = (0, 0), (1, 0), (0, 1) or (1, 1)

- **b = 0** yields the ground, 2nd-excited, 4th-excited, etc. states.
- **•** b = 1 yields the 1st-excited, 3rd-excited, 5th-excited, etc. states.
- When R is an "eigenradius", P(x) terminates, becoming a polynomial
- \blacksquare In these cases, both ψ and ε can be obtained in closed form
- There are a countably infinite number of these closed-form solutions

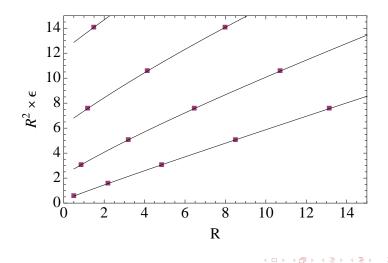
		Ringium	
		0000000000	
Closed-form solutions			

The (a, b) = (0, 0) family



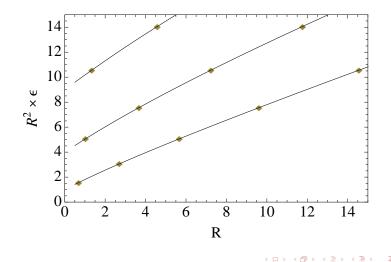
		Ringium	
		00000000000	
Closed-form solutions			

The (a, b) = (1, 0) family



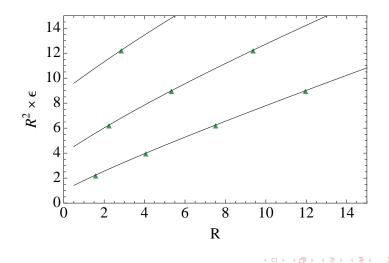
		Ringium	
		00000000000	
Closed-form solutions			

The (a, b) = (0, 1) family



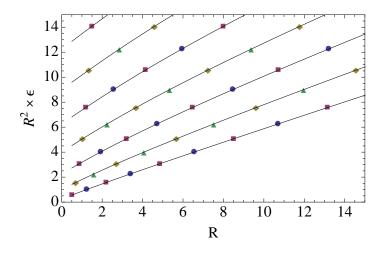
		Ringium	
		00000000000	
Closed-form solutions			

The (a, b) = (1, 1) family



	Spherium 0000	Ringium ○○○○○○○○○○	
Closed-form solutions			

All four families



 $\mathsf{PF} \; \mathsf{Loos} - \mathsf{http://rsc.anu.edu.au/}{\sim}\mathsf{loos/} -$

Lessons from electron(s) on a (hyper)sphere

Э

・ロト ・聞ト ・ヨト ・ヨト

		Ringium	
		0000000000	
Closed-form solutions			

Some exact closed-form wavefunctions

State	R	ε	$\psi(u) \qquad x = u/(2R)$
Ground	1/2	9/4	$u\sqrt{1+x}$
	$\sqrt{3/2}$	2/3	$u\left[1+rac{1}{2}u ight]$
	$\frac{1}{4}(\sqrt{33}+3)$	$\frac{25}{96}(7-\sqrt{33})$	$u\sqrt{1+x}\left[1+(R-rac{1}{2})x ight]$
	$\sqrt{23/2}$	9/46	$u\left[1+\frac{1}{2}u+\frac{5}{2}x^2\right]$
	•	:	:
1st excited	$\frac{1}{4}(\sqrt{33}-3)$	$\frac{25}{96}(7+\sqrt{33})$	$u\sqrt{1-x}\left[1+(R+rac{1}{2})x ight]$
	$\sqrt{5/2}$	9/10	$u\sqrt{1-x}\sqrt{1+x}\left[1+\frac{1}{2}u\right]$
	$\sqrt{33/2}$	8/33	$u\sqrt{1-x}\sqrt{1+x}\left[1+\frac{1}{2}u+\frac{7}{2}x^2\right]$
	•		:

Loos & Gill Phys Rev Lett 108 (2012) 083002

PF Loos - http://rsc.anu.edu.au/~loos/ -

		Ringium	Conclusion
			•
Final remarks			

Take-home messages

- Ringium, Spherium and Glomium are exactly solvable two-electron systems
- They shed new light on electron correlation in real systems
- The present method can be generalized to other systems Loos Phys Lett A 376 (2012) 1997 Loos & Gill arXiv:1301.0649
- These systems are uniform electron gases and can be used to develop new exchange-correlation functionals within density-functional theory Gill & Loos Theor Chem Acc 131 (2012) 1069 Loos & Gill J Chem Phys 138 (2013) 164124