European Research Council

Antoine Marie (PhD)
Marie \& Loos, JCTC DOI:10.1021/acs.jctc.3c00281
See also our work on the connections between CC and Green's function methods Quintero-Monsebaiz, Monino, Marie \& Loos, JCP 157 (2022) 231102
\hookrightarrow Scuseria et al. JCP 129 (2008) 231101
\hookrightarrow Berkelbach, JCP 149 (2018) 041103; Lange \& Berkelbach, JCTC 14 (2018) 4224
\hookrightarrow Tölle \& Chan, JCP 158 (2023) 124123

The GW approximation allows us to access charged excitations (IPs \& EAs) Hedin, Phys. Rev. 139 (1965) A796It yields accurate fundamental gaps at an affordable price for solids and molecules Bruneval et al. Front. Chem. 9 (2021) 749779
(3) GW corresponds to an elegant resummation of the direct ring diagrams

Hence, it is adequate for weak correlation or in the high-density regime Gell-Mann \& Brueckner, Phys. Rev. 106 (1957) 364Self-consistent GW calculations can be tricky to converge due to intruder states Monino \& Loos JCP 156 (2022) 231101Going beyond GW is, let's say, difficult...
Romaniello, Reining, Godby, Yang, Bruneval, Kresse, etc.

Hedin, Phys Rev 139 (1965) A796

The wonderful equations of Hedin

$$
\underbrace{G(12)}_{\text {Green's function }}=G_{0}(12)+\int G_{0}(13) \Sigma(34) G(42) d(34)
$$

$\underbrace{\Gamma(123)}_{\text {vertex }}=\delta(12) \delta(13)+\int \frac{\delta \Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(673) d(4567)$

$$
\underbrace{P(12)}_{\text {polarizability }}=-i \int G(13) \Gamma(342) G(41) d(34)
$$

$\underbrace{W(12)}=v(12)+\int v(13) P(34) W(42) d(34)$
screening

$$
\underbrace{\Sigma(12)}_{\text {self-energy }}=i \int G(14) W(13) \Gamma(423) d(34)
$$

Hedin, Phys Rev 139 (1965) A796

The GW approximation

$$
\underbrace{G(12)}_{\text {Green's function }}=G_{0}(12)+\int G_{0}(13) \Sigma(34) G(42) d(34)
$$

$\underbrace{\Gamma(123)}_{\text {vertex }}=\delta(12) \delta(13)+\int \frac{\delta \Sigma(12)}{\overline{\delta G(45)}} \backsim(40) ज(75) \Gamma(673) d(4567)$
$\underbrace{P(12)}_{\text {polarizability }}=-i f G(12) \mp(342) G(21) d(34)=-i G(12) G(21)$
$\underbrace{W(12)}_{\text {screening }}=v(12)+\int v(13) P(34) W(42) d(34)$

$$
\underbrace{\Sigma(12)}_{\text {self-energy }}=i f G(12) W(12) \mp(423) d(34)=i G(12) W(12)
$$

Quasiparticle equation (in a general setting)

Practical issues

\rightarrow dynamic

- highly non-linear
- non-Hermitian

GW self-energy

$$
\Sigma_{p q}^{G W}(\omega)=\sum_{i \nu} \frac{W_{p i}^{\nu} W_{q i}^{\nu}}{\omega-\epsilon_{i}^{G W}+\Omega_{\nu}-\underbrace{\mathrm{i} \eta}_{\text {regularizer }}}+\sum_{a \nu} \frac{W_{p a}^{\nu} W_{q a}^{\nu}}{\omega-\epsilon_{a}^{G W}-\underbrace{\Omega_{\nu}}_{\text {RPA excitation }}+\mathrm{i} \eta}
$$

Screened two-electron integrals

$$
W_{p q}^{\nu}=\sum_{i a}\langle p i \mid q a\rangle \underbrace{(X+Y)_{i a}^{\nu}}_{\text {RPA eigenvectors }}
$$

$G_{0} W_{0}$ features

- Diagonal approximation
- A single loop of Hedin's equations

Quasiparticle equation (assuming a HF starting point)

$$
\underline{\text { Dynamic version: }} \omega=\epsilon_{p}^{\mathrm{HF}}+\underbrace{\sum_{p p}^{G W}(\omega)}_{\text {built with HF quantities }}
$$

$$
\text { Linearized (static) version: } \epsilon_{p}^{G W}=\epsilon_{p}^{\mathrm{HF}}+Z_{p} \Sigma_{p p}^{G W}\left(\omega=\epsilon_{p}^{\mathrm{HF}}\right) \text { with } Z_{p}=\underbrace{\left[1-\left.\frac{\partial \Sigma_{p p}^{G W}(\omega)}{\partial \omega}\right|_{\omega=\epsilon_{p}^{\mathrm{HF}}}\right]^{-1}}_{\text {renormalization factor }}
$$

Go Wo issues

- Highly starting point dependent

evGW features

- Diagonal approximation
- Self-consistency on the quasiparticle energies only

Quasiparticle equation (assuming a HF starting point)

$$
\omega=\epsilon_{p}^{\mathrm{HF}}+\underbrace{\sum_{p p}^{G W}(\omega)}_{\text {built with } G W \text { quantities }}
$$

evGW issues

- Lack of self-consistency on the orbitals
- Challenging to converge (even with DIIS)

qSGW features

- Static approximation of the self-energy
- Brute-force symmetrization

Quasiparticle equation

$$
[F+\underbrace{\Sigma^{\mathrm{GGGW}}}_{\text {static self-energy }}] \psi_{p}^{G W}=\epsilon_{p}^{G W} \psi_{p}^{G W} \quad \text { with } \quad \Sigma_{p q}^{\mathrm{GSGW}}=\underbrace{\frac{\sum_{p q}^{G W}\left(\epsilon_{p}^{G W}\right)+\sum_{p q}^{G W}\left(\epsilon_{q}^{G W}\right)}{2}}_{\text {symmetrization }}
$$

Faleev et al. PRL 93 (2004) 126406

qsGW issues

- "Empirical" symmetrization [Ismail-Beigi, JPCM 29 (2017) 385501]
- Very challenging to converge (even with DIIS)

Intruder-state problem \Leftrightarrow a determinant in Q becomes near-degenerate with a determinant in P
\Rightarrow appearance of small denominators
\Rightarrow convergence issues!

How to avoid intruder states? \Rightarrow do not enforce $Q H^{\text {eff }} \mathbf{P}=\mathbf{0}$
\Leftrightarrow near-degenerate determinants are not decoupled

$$
Q H^{\mathrm{eff}} P=P H^{\mathrm{eff}} Q=0
$$

\Leftarrow Continuous (unitary) SRG transformation

SRG decouples the Hamiltonian starting from states that have the largest energy separation and progressing to states with smaller energy separation

- Introduced independently by
- Glazek and Wilson in quantum field theory [PRD 48 (1993) 5863, ibid 49 (1994) 4214]
- Wegner in condensed matter systems [Ann. Phys. 506 (1994) 77]
- (In-Medium) SRG is used a lot in nuclear physics [Hergert et al. Phys. Rep. 621 (2016) 165]
- First introduced in chemistry by Steven White [JCP 117 (2002) 7472]
- More recently developed by the group of Francesco Evangelista (SR/MR-DSRG) [JCP 141 (2014) 054109; Annu. Rev. Phys. Chem. 70 (2019) 275]

Unitary transformation of the Hamiltonian

$$
H \rightarrow H(s)=U(s) H U^{\dagger}(s), \quad s \in[0, \infty)
$$

- For $s>0, H(s)$ has a more (block) diagonal form than H
- The flow variable s is a time-like parameter that controls the extent of the transformation
- If $s=0$, then $U(s)=\mathbf{1}$, i.e., $H(s=0)=H$
- In the limit $s \rightarrow \infty, H(s)$ becomes (block) diagonal

$$
H(s)=\underbrace{H_{\mathrm{d}}(s)}_{\text {diagonal }}+\underbrace{H_{\text {od }}(s)}_{\text {off-diagonal }} \Rightarrow \lim _{s \rightarrow \infty} H_{o d}(s)=0
$$

The SRG flow equation

$$
\frac{\mathrm{d} \boldsymbol{H}(\mathrm{~s})}{\mathrm{d} s}=[\boldsymbol{\eta}(\mathrm{s}), \boldsymbol{H}(\mathrm{s})], \quad \boldsymbol{H}(0)=\boldsymbol{H}
$$

where the flow generator $\boldsymbol{\eta}(s)=\frac{\mathrm{d} \boldsymbol{U}(\mathrm{s})}{\mathrm{d} s} \boldsymbol{U}^{\dagger}(s)=-\boldsymbol{\eta}^{\dagger}(s)$ is an anti-Hermitian operator
Suitable parametrization of $\hat{\eta}(s)$ allows to integrate the flow equation and find a numerical solution of $\hat{H}(s)$ that satisfies the boundary conditions without having to explicitly construct $\hat{U}(s)$

Wegner's canonical generator

$$
\boldsymbol{\eta}^{\mathrm{w}}(\mathrm{~s})=\left[\boldsymbol{H}_{\mathrm{d}}(\mathrm{~s}), \boldsymbol{H}_{\mathrm{od}}(\mathrm{~s})\right]
$$

As long as $\boldsymbol{\eta}^{\mathrm{w}}(\mathrm{s}) \neq 0, \quad \frac{\mathrm{~d}}{\mathrm{ds}} \operatorname{Tr}\left[\boldsymbol{H}_{\mathrm{od}}(\mathrm{s})^{2}\right] \leq 0 \Rightarrow$ off-diagonal decreases in a monotonic way

Partitionning of the initial problem

$$
H(s=0)=\underbrace{H_{\mathrm{d}}(s=0)}_{\text {zeroth order }}+\lambda \underbrace{H_{0 \mathrm{~d}}(S=0)}_{\text {first order }}
$$

Perturbative analysis of the SRG equations

$$
\begin{aligned}
& \boldsymbol{H}(s)=\boldsymbol{H}^{(0)}(s)+\lambda \boldsymbol{H}^{(1)}(s)+\lambda^{2} \boldsymbol{H}^{(2)}(s)+\cdots \\
& \boldsymbol{\eta}(s)=\boldsymbol{\eta}^{(0)}(s)+\lambda \boldsymbol{\eta}^{(1)}(s)+\lambda^{2} \boldsymbol{\eta}^{(2)}(s)+\cdots
\end{aligned}
$$

How to identify the diagonal and off-diagonal terms in GW?

$$
\begin{aligned}
& {\left[F+\Sigma^{G W}\left(\omega=\epsilon_{p}^{G W}\right)\right] \psi_{p}^{G W}=\epsilon_{p}^{G W} \psi_{p}^{G W}} \\
& \left.\begin{array}{rl}
\Sigma^{G W}(\omega) & =W^{2 h 1 p}\left(\omega \mathbf{1}-C^{2 h 1 p}\right)^{-1}\left(W^{2 h 1 p}\right)^{\dagger} \\
& +W^{2 p 1 h}\left(\omega \mathbf{1}-C^{2 p 1 h}\right)^{-1}\left(W^{2 p 1 h}\right)^{\dagger}
\end{array}\right\} \\
& \xlongequal[\text { upfolding }]{\text { downfolding }}\left\{\begin{array}{l}
H \Psi_{p}^{G W}=\epsilon_{p}^{G W} \Psi_{p}^{G W} \\
H=\left(\begin{array}{ccc}
F & W^{2 h 1 p} & W^{2 p 1 h} \\
\left(W^{2 h 1 p}\right)^{\dagger} & C^{2 h 1 p} & \mathbf{0} \\
\left(W^{2 p 1 h}\right)^{\dagger} & \mathbf{0} & C^{2 p 1 h}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Bintrim \& Berkelbach, JCP 154 (2021) 041101; Monino \& Loos JCP 156 (2022) 231101; Tölle \& Chan, JCP 158 (2023) 124123

Regularized GW equations up to second order

$$
\left[\widetilde{F}(s)+\widetilde{\Sigma}^{S \mathrm{RG}-G W}\left(\omega=\epsilon_{p}^{G W} ; s\right)\right] \psi_{p}^{G W}=\epsilon_{\rho}^{G W} \psi_{p}^{G W}
$$

Energy-dependent regularization

$$
\begin{aligned}
& \widetilde{F}_{p q}(s)=\delta_{p q} \epsilon_{p}^{\mathrm{HF}}+\sum_{r \nu} \frac{\Delta_{p r}^{\nu}+\Delta_{q r}^{\nu}}{\left(\Delta_{p r}^{\nu}\right)^{2}+\left(\Delta_{q r}^{\nu}\right)^{2}}\left[W_{p r}^{\nu} W_{q r}^{\nu}-W_{p r}^{\nu}(s) W_{q r}^{\nu}(s)\right] \quad \text { with } \quad \Delta_{p r}^{\nu}=\epsilon_{p}^{G W}-\epsilon_{r}^{G W} \pm \Omega_{\nu} \\
& \quad \widetilde{\Sigma}_{p q}^{\mathrm{SRG}-G W}(\omega ; s)=\sum_{i \nu} \frac{W_{p i}^{\nu}(s) W_{q i}^{\nu}(s)}{\omega-\epsilon_{i}^{G W}+\Omega_{\nu}}+\sum_{a \nu} \frac{W_{p a}^{\nu}(s) W_{q a}^{\nu}(s)}{\omega-\epsilon_{a}^{G W}-\Omega_{\nu}} \quad \text { with } \quad W_{p r}^{\nu}(s)=W_{p r}^{\nu} e^{-\left(\Delta_{p r}^{\nu}\right)^{2} s}
\end{aligned}
$$

For a fixed value of the energy cut-off $\Lambda=s^{-1 / 2}$,

$$
\begin{array}{llr}
\text { if }\left|\Delta_{p r}^{\nu}\right| \gg \Lambda \text { then } & W_{p r}^{\nu}(s)=W_{p r}^{\nu} e^{-\left(\Delta_{p r}^{\nu}\right)^{2} s} \approx 0 & \text { (decoupled) } \\
\text { if }\left|\Delta_{p r}^{\nu}\right| \ll \Lambda \text { then } & W_{p r}^{\nu}(s) \approx W_{p r}^{\nu} & \text { (remains coupled) }
\end{array}
$$

Limit as $s \rightarrow 0$

$$
\widetilde{F}(s=0)=F \quad \text { and } \quad \widetilde{\Sigma}^{S R G-G W}(\omega ; s=0)=\Sigma^{G W}(\omega)
$$

Limit as $s \rightarrow \infty$

$$
\widetilde{\Sigma}^{\text {SRG-GW }}(\omega ; s \rightarrow \infty)=\mathbf{0} \quad \text { and } \quad \widetilde{F}_{p q}(s \rightarrow \infty)=\delta_{p q} \epsilon_{p}^{H F}+\underbrace{\sum_{r \nu} \frac{\Delta_{p r}^{\nu}+\Delta_{q r}^{\nu}}{\left(\Delta_{p r}^{\nu}\right)^{2}+\left(\Delta_{q r}^{\nu}\right)^{2}} W_{p r}^{\nu} W_{q r}^{\nu}}_{\text {static correction }}
$$

By removing the coupling terms, SRG transforms continuously the dynamic problem into a static one
SRG-qsGW self-energy from first principles

$$
\widetilde{\Sigma}^{\text {SRG-qsGW }}(\omega ; s)=\sum_{r \nu} \frac{\Delta_{p r}^{\nu}+\Delta_{q r}^{\nu}}{\left(\Delta_{p r}^{\nu}\right)^{2}+\left(\Delta_{q r}^{\nu}\right)^{2}}\left[W_{p r}^{\nu} W_{q r}^{\nu}-W_{p r}^{\nu}(s) W_{q r}^{\nu}(s)\right]
$$

- Antoine Marie
- Francesco Evangelista
- Enzo Monino
- Roberto Orlando
- Yann Damour
- Sara Giarrusso
- Raúl Quintero-Monsebaiz
- Fábris Kossoski
- Anthony Scemama
- Michel Caffarel

https:/ / pfloos.github.io/WEB_LOOS
https://lcpq.github.io/PTEROSOR

