CIPSI: selected configuration interaction methods for ground and excited states

Abdallah Ammar, Emmanuel Giner,
Pierre-François Loos, Anthony Scemama
18th April 2023
Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse https://lcpq.github.io/pterosor

[^0]"Among the very large number of determinants contained in the FCI space, only a tiny fraction of them significantly contributes to the energy"
$=$ using a erturbative election made teratively
■ Developed in Toulouse many (many) years ago
Huron, Malrieu \& Rancurel, JCP 58 (1973) 5745

- Based on old idea by Bender and Davidson, and Whitten and Hackmeyer

Bender \& Davidson, Phys. Rev. 183 (1969) 23
Whitten \& Hackmeyer, JCP 51 (1969) 5584

- CIPSI (and SCI methods in general) has been recently resurrected!

Giner, Scemama \& Caffarel, CJC 91 (2013) 879
Giner, Scemama \& Caffarel, JCP 142 (2015) 044115

■ CIPSI \approx heat-bath CI (Umrigar) \approx adaptive sampling CI (Evangelista) \approx iterative $\mathrm{Cl}(\mathrm{Liu}) \approx$ incremental Cl (Zimmerman) \approx FCIQMC (Alavi)

- This is the oldest and perhaps the easiest method to understand
- Cl is based on the variational principle [like the Hartree-Fock (HF) approximation]
- The Cl wave function is a linear combination of determinants
- CI methods use excited determinants to "improve" the reference (usually HF) wave function

$$
\left|\Phi_{\mathrm{CI}}\right\rangle=\underbrace{c_{0}\left|\Psi_{0}\right\rangle}_{\text {reference }}+\underbrace{\sum_{\substack{i \\ a}} c_{i}^{a}\left|\Psi_{i}^{a}\right\rangle}_{\text {singles }}+\underbrace{\sum_{\substack{i<j \\ a<b}} c_{i j}^{a b}\left|\Psi_{i j}^{a b}\right\rangle}_{\text {doubles }}+\underbrace{\sum_{\substack{i<j<k \\ a<b<c c}} c_{i j k}^{a b c}\left|\Psi_{i j k}^{a b c}\right\rangle}_{\text {triples }}+\underbrace{\sum_{\text {quadruples }} c_{i j k l}^{a b c d}\left|\Psi_{i j k l}^{a b c d}\right\rangle}_{\substack{i<j<k<1 \\ a<b<c<d}}+\cdots
$$

Excited determinants

Cl wave function

$$
\left|\Phi_{\mathrm{Cl}}\right\rangle=c_{0}|0\rangle+c_{\mathrm{s}}|\mathrm{~S}\rangle+c_{\mathrm{D}}|\mathrm{D}\rangle+c_{\mathrm{T}}|\mathrm{~T}\rangle+c_{\mathrm{Q}}|\mathrm{Q}\rangle+\cdots
$$

- When $|\mathrm{S}\rangle$ (singles) are taken into account: CIS

$$
\left|\Phi_{\mathrm{CIS}}\right\rangle=c_{0}|0\rangle+c_{\mathrm{s}}|\mathrm{~S}\rangle
$$

NB: CIS is an excited state method

- When $|\mathrm{S}\rangle$ and $|\mathrm{D}\rangle$ are taken into account: CISD

$$
\left|\Phi_{\mathrm{CISD}}\right\rangle=c_{0}|0\rangle+c_{\mathrm{S}}|\mathrm{~S}\rangle+c_{\mathrm{D}}|\mathrm{D}\rangle
$$

NB: CISD is the most commonly-used Cl method

- When $|\mathrm{S}\rangle,|\mathrm{D}\rangle$ and $|\mathrm{T}\rangle$ (triples) are taken into account: CISDT

$$
\left|\Phi_{\mathrm{CISDT}}\right\rangle=c_{0}|0\rangle+c_{\mathrm{S}}|\mathrm{~S}\rangle+c_{\mathrm{D}}|\mathrm{D}\rangle+c_{\mathrm{T}}|\mathrm{~T}\rangle
$$

- CISDTQ, etc.
- When all possible excitations are taken into account, this is called a Full CI calculation (FCI)

$$
\left|\Phi_{\mathrm{FC} \mid}\right\rangle=c_{0}|0\rangle+c_{\mathrm{s}}|\mathrm{~S}\rangle+c_{\mathrm{D}}|\mathrm{D}\rangle+c_{\mathrm{T}}|\mathrm{~T}\rangle+\mathrm{c}_{\mathrm{Q}}|\mathrm{Q}\rangle+\ldots
$$

- FCI gives the exact solution of the Schrödinger equation within a given basis
- FCI is becoming more and more fashionable these days (e.g. FCIQMC and CIPSI methods)
- So, why do we care about other methods?
- Because FCl is super computationally expensive!
"Assume we have 10 electrons in 38 spin MOs: 10 are occupied and 28 are empty"
- There is C_{10}^{k} possible ways of selecting k electrons out of the 10 occupied orbitals

$$
C_{n}^{k}=\frac{n!}{k!(n-k)!}
$$

- There is C_{28}^{k} ways of distributing them out in the 28 virtual orbitals
- For a given excitation level k, there is $C_{10}^{k} C_{28}^{k}$ excited determinants
- The total number of possible excited determinant is

$$
\sum_{k=0}^{10} C_{10}^{k} C_{28}^{k}=C_{38}^{10}=472,733,756
$$

$$
\text { For } n=10 \text { and } N=38:
$$

k	Num. of excitations
0	1
1	280
2	17,010
3	393,120
4	$4,299,750$
5	$24,766,560$
6	$79,115,400$
7	$142,084,800$
8	$139,864,725$
9	$69,069,000$
10	$13,123,110$
Tot.	$472,733,756$

- This is a lot...

e	
0	HF
1	
2	
3	

$$
\begin{aligned}
& \bar{Z} \\
& +\ddagger \\
& +\ddagger \\
& 4 \downarrow
\end{aligned}
$$

e	
0	
1	CIS
2	
3	

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

e / s	0	2	4	6	8
0	HF				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		CIS			
2					
3					
4					
5					
6					

e/s	0	2	4	6
0				
1				
2				
3			CISD	
4				
5				
6				

e/s	0	2	4	6	8
0					
1					
2					
3					
4				CISDT	
5					
6					

e／s	0	2	4	6
0				8
1				
2				
3				
4				
5				
6				

e/s	0	2	4	6
0	sCIO			
1				
2				
3				
4				
5				
6				

| e／s | 0 | 2 | 4 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | |
| 1 | | sCl2 | | | |
| 2 | | | | | |
| 3 | | | | | |
| 4 | | | | | |
| 5 | | | | | |
| 6 | | | | | |

e/s	0	2	4	6
0				
1				
2				
3			sCl4	
4				
5				
6				

| e/s | 0 | 2 | 4 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | |
| 1 | | | | | |
| 2 | | | | | |
| 3 | | | | | |
| 4 | | | | | |
| 5 | | | | | |
| 6 | | | | | |

Hierarchy configuration interaction (κ CI)

Excitation degree e Seniority number s Hierarchy parameter $h=\underline{e+s / 2}$				
e/s	0	2	4	6
0	HF			
1		hCl1		
2		hCl1.5	hCl2	
3			hCl2.5	hCl3
4				
5				
6				

Fábris Kossoski

Kossoski, Damour \& Loos, JPCL 13 (2022) 4342

CIPSI is an algorithm, not a method...

■ Green: reference/variational/internal wave function (zeroth-order or model space)

■ Red: perturbers or external wave function (first-order or perturbative space)

1 Define a (zeroth-order) reference wave function:

$$
\left|\Psi^{(0)}\right\rangle=\sum_{l \in \mathcal{D}} c_{l}|I\rangle \quad E^{(0)}=\frac{\left\langle\psi^{(0)}\right| \hat{H}\left|\Psi^{(0)}\right\rangle}{\left\langle\Psi^{(0)} \mid \Psi^{(0)}\right\rangle}
$$

2 Generate external determinants:

$$
\mathcal{A}=\left\{(\forall \mid \in \mathcal{D})\left(\forall \hat{T} \in \mathcal{T}_{1} \cup \mathcal{T}_{2}\right):|\alpha\rangle=\hat{T}|I\rangle\right\}
$$

3 Second-order perturbative contribution of each $|\alpha\rangle$:

$$
\delta E(\alpha)=\frac{\left.\left|\left\langle\Psi^{(0)}\right| \hat{H}\right| \alpha\right\rangle\left.\right|^{2}}{E^{(0)}-\langle\alpha| \hat{H}|\alpha\rangle}
$$

4 Select $|\alpha\rangle$ with largest $\delta E(\alpha)$ and add them to \mathcal{D}
5 Diagonalize \hat{H} in $\mathcal{D} \Rightarrow$ update $\left|\Psi^{(0)}\right\rangle$ and $E^{(0)}$
6 Iterate

Garniron et al., JCTC 15 (2019) 3591

■ Second-order Epstein-Nesbet correction:

$$
E^{(2)}=\sum_{\alpha} \delta E(\alpha)
$$

- $|\alpha\rangle$'s with largest $\delta E(\alpha)$ have been added to $\psi^{(0)}$ previously \Rightarrow only small contributions remaining
- \mathcal{A} increases with \mathcal{D}
\Rightarrow a very large number of very small contributions
- In practice, we use a semi-stochastic algorithm to compute $E^{(2)}$
\Rightarrow much faster!!
Garniron, Scemama, Loos \& Caffarel, JCP 147 (2017) 034101
- We linearly extrapolate to $E^{(2)}=0$ to reach the FCl limit (exFCI)

At a given CIPSI iteration, the SCI+PT2 energy is given by

$$
E=E^{(0)}+E^{(2)}
$$

Let us introduce the following energy-dependent second-order self-energy

$$
\Sigma^{(2)}[E]=\sum_{\alpha} \frac{\langle\alpha| \hat{H}\left|\psi^{(0)}\right\rangle^{2}}{E-\langle\alpha| \hat{H}|\alpha\rangle} \quad \text { with } \quad \Sigma^{(2)}\left[E^{(0)}\right]=E^{(2)}
$$

Brillouin-Wigner perturbation theory tells us

$$
E=E^{(0)}+\Sigma^{(2)}[E]
$$

Assuming that $\Sigma^{(2)}[E]$ behaves linearly for $E \approx E^{(0)}$

$$
\Sigma^{(2)}[E] \approx \Sigma^{(2)}\left[E^{(0)}\right]+\left.\left(E-E^{(0)}\right) \frac{\partial \Sigma^{(2)}[E]}{\partial E}\right|_{E=E^{(0)}}
$$

This yields

$$
E=E^{(0)}+\Sigma^{(2)}\left[E^{(0)}\right]+\left.\left(E-E^{(0)}\right) \frac{\partial \Sigma^{(2)}[E]}{\partial E}\right|_{E=E^{(0)}}=E^{(0)}+Z E^{(2)} \quad \text { with } \quad Z=\left[1-\left.\frac{\partial \Sigma^{(2)}[E]}{\partial E}\right|_{E=E^{(0)}}\right]^{-1}
$$

The Benzene Blind Challenge

Eriksen et al. JPCL 11 (2020) 8922

Loos, Damour \& Scemama, JCP 153 (2020) 176101

Loos, Damour \& Scemama, JCP 153 (2020) 176101

Damour, Véril, Kossoski, Caffarel, Jacquemin, Scemama \& Loos, JCP 155 (2020) 176101

- Orbital optimization largely accelerates the convergence of selected Cl
- Trust-region Newton-Raphson algorithm

Yann Damour

Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond

Cite as: J. Chem. Phys. 153, 184111 (2020); https://doi.org/10.1063/5.0021036
Submitted: 06 July 2020 . Accepted: 12 October 2020 . Published Online: 11 November 2020
(1) Anouar Benali, (10) Kevin Gasperich, (D) Kenneth D. Jordan, Thomas Applencourt, (1) Ye Luo, (i) M. Chandler Bennett, (i] Jaron T. Krogel, (Duke Shulenburger, (D) Paul R. C. Kent, (i) Pierre-François Loos, (©) Anthony Scemama, and Michel Caffarel

See also Scemama et al. JCP 153 (2021) 174107 for a range-separated approach in molecules
"SCI+PT2 methods provide near full CI (FCI) quality quantities with only a small fraction of the determinants of the FCl space"

Anthony Scemama
"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs",
Garniron et al., JCTC 15 (2019) 3591
"The aim of the QUEST project is to provide to the community a large set of highly-accurate excitation energies for various types of excited states"

Zoo of functionals...

And this is just for excited states...

> CCSDT
> Full CISF-EOM-CCSD(fT) CCSDTQ
> SCS-ADC(2)SF-TDDFT NEVPT3
> SF-ADC(2)-x SC-NEVPT2 CIS (D) ADC (3) $^{\text {CI }}$
> SOS-ADC(2)CR -EOMCC $(2,3) \subset S_{\text {мом }}$
> $\begin{aligned} & \text { CCSDT-3 } \\ & \text { CCSD }\end{aligned} \square$ ए $\triangle \mathrm{ADC}(2)$ TOPPA CC2C ASP 2 CASSCF BSE@GWRASDT2 RASSCF
> $\operatorname{CCSDR}(3)$ (2) SOS-CC2

> SF-ADC(2)-s SF-EOM-CCSD SCS-CC2
> $\operatorname{ccsD}(\mathrm{T})(\mathrm{a}) * \mathrm{PC}-\mathrm{NEVPT} 2$ EOM-MP2
> DMC CC3 SF-EOM-CCSD(dT) CC4 ${ }^{\text {VMC }}$

Garniron et al., JCTC 15 (2019) 3591

Table 1. Zeroth-Order Energy $E^{(0)}$, Second-Order Perturbative Correction $E^{(2)}$, and Its Renormalized Version $Z E^{(2)}$ (in hartree) of CN3 for Increasingly Large Wave Functions ${ }^{a}$

$N_{\text {det }}$	$E^{(0)}$		$E^{(0)}+E^{(2)}$			$E^{(0)}+Z E^{(2)}$		
	GS (a.u.)	ES (a.u.)	GS (a.u.)	ES (a.u.)	$\Delta E(\mathrm{eV})$	GS (a.u.)	ES (a.u.)	$\Delta E(\mathrm{eV})$
28	-149.499574	-149.246268	-150.155(1)	-149.863(1)	7.95(5)	-150.020(1)	-149.743(1)	7.54(5)
58	-149.519908	-149.261390	-150.134(1)	-149.853(1)	7.67(5)	-150.018(1)	-149.744(1)	7.48(5)
131	-149.537424	-149.277496	-150.118(1)	-149.8427(9)	7.52(4)	-150.017(1)	-149.7449(9)	7.39(4)
268	-149.559465	-149.298484	-150.1035(9)	-149.8308(9)	7.42(4)	-150.0158(9)	-149.7457(9)	7.35(4)
541	-149.593434	-149.323302	-150.0845(8)	-149.8186(8)	7.24(4)	-150.0152(8)	-149.7463(8)	7.32(4)
1101	-149.627202	-149.354807	-150.0683(8)	-149.8045(8)	7.18(3)	-150.0137(8)	-149.7460(8)	7.28(3)
2207	-149.663850	-149.399522	-150.0549(7)	-149.7879(7)	7.26(3)	-150.0132(7)	-149.7462(7)	7.27(3)
4417	-149.714222	-149.448133	-150.0409(6)	-149.7762(6)	7.20(3)	-150.0130(6)	-149.7478(6)	7.22(3)
8838	-149.765886	-149.496401	-150.0296(5)	-149.7655(5)	7.19(2)	-150.0124(5)	-149.7473(5)	7.21(2)
17680	-149.817301	-149.545048	-150.0239(4)	-149.7615(4)	7.14(2)	-150.0141(4)	-149.7505(4)	7.17(2)
35380	-149.859737	-149.587668	-150.0216(3)	-149.7582(3)	7.17(1)	-150.0161(3)	-149.7518(3)	7.19(1)
70764	-149.893273	-149.623235	-150.0207(2)	-149.7566(3)	7.18(1)	-150.0174(2)	-149.7530(3)	7.19(1)
141545	-149.919463	-149.650109	-150.0214(2)	-149.7572(2)	7.189(8)	-150.0194(2)	-149.7550(2)	7.196(8)
283108	-149.937839	-149.669735	-150.0224(2)	-149.7576(2)	7.206(7)	-150.0211(2)	-149.7562(2)	7.209(7)
566226	-149.950918	-149.683278	-150.0233(1)	-149.7580(1)	7.217(6)	-150.0223(1)	-149.7570(1)	7.219(6)
1132520	-149.960276	-149.693053	-150.0238(1)	-149.7588(1)	7.212(5)	-150.0231(1)	-149.7580(1)	7.214(5)
2264948	-149.968203	-149.700907	-150.0240(1)	-149.7590(1)	7.211(4)	-150.0235(1)	-149.7584(1)	7.212(4)
4529574	-149.975230	-149.708061	-150.0245(1)	-149.7594(1)	7.215(4)	-150.0241(1)	-149.7589(1)	7.216(4)
9057914	-149.981770	-149.714526	-150.02463(9)	-149.75981(8)	7.206(3)	-150.02434(9)	-149.75948(8)	7.207(3)
18110742	-149.987928	-149.720648	-150.02495(7)	-149.76025(8)	7.203(3)	-150.02474(7)	-149.76000(8)	7.204(3)
36146730	-149.993593	-149.726253	-150.02527(6)	-149.76065(7)	7.198(3)	-150.02502(6)	-149.760 47(7)	7.198(3)

${ }^{a}$ The excitation energy ΔE (in eV) is the energy difference between the ground state (GS) and the excited state (ES). The statistical error, corresponding to one standard deviation, is reported in parentheses.

A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks

Pierre-François Loos, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ Anthony Scemama, ${ }^{\dagger}$ Aymeric Blondel, ${ }^{\ddagger}$ Yann Garniron, ${ }^{\dagger}$ Michel Caffarel, ${ }^{\dagger}$ and Denis Jacquemin ${ }^{*+\mp}$ ©
${ }^{\dagger}$ Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31013 Toulouse Cedex 6, France ${ }^{*}$ Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

- 110 vertical excitation energies (VTEs) and oscillator strengths
- 18 small molecules with 1 to 3 non-H atoms
- CC3/aug-cc-pVTZ geometries
- mostly singly-excited states and very few doubly-excited states
- rely on FCl to define "theoretical best estimates" (TBEs)
- aug-cc-pVTZ and CBS vertical energies
- benchmark popular excited-state methods accounting for double and triple excitations

Reference Energies for Double Excitations

Pierre-François Loos, ${ }^{*}{ }^{\dagger \oplus}$ Martial Boggio-Pasqua, ${ }^{\dagger \oplus}$ Anthony Scemama, ${ }^{\dagger}$ Michel Caffarel, ${ }^{\dagger}$ and Denis Jacquemin ${ }^{\ddagger}$ ©
${ }^{\dagger}$ Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France ${ }^{\ddagger}$ Laboratoire CEISAM (UMR 6230), CNRS, Université de Nantes, 44399 Cedex 3 Nantes, France

■ 20 VTEs for doubly-excited states

- 14 small- and medium-sized molecules
- mostly rely on FCl to define TBEs (except for the largest molecules)
- aug-cc-pVTZ and CBS vertical energies

■ benchmark excited-state methods including at least triple excitations

- additional benchmarks of multi-configurational methods

A Mountaineering Strategy to Excited States: Highly Accurate

 Energies and Benchmarks for Medium Sized MoleculesPierre-François Loos,* Filippo Lipparini,* Martial Boggio-Pasqua, Anthony Scemama, and Denis Jacquemin*

Medium-size molecules

- 238 VTEs (and oscillator strengths) with mostly singly-excited states and aug-cc-pVTZ basis
- 27 small- and medium-sized molecules with 4 to 6 non- H atoms
- rely mostly on CCSDT or CCSDTQ to define TBEs
- benchmark popular excited-state methods accounting for double and triple excitations
- recently improved TBEs with CC4 and CCSDTQ [JCP 154 (2021) 221103; JCTC 18 (2022) 4418]
pubs.acs.org/JCTC \quad Article

Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals
Pierre-François Loos,* Anthony Scemama, Martial Boggio-Pasqua, and Denis Jacquemin*

- two subsets of excitations and oscillator strengths
- an "exotic" subset of 30 VTEs for closed-shell molecules containing F, Cl, P, and Si

■ a "radical" subset of 51 doublet-doublet transitions in 24 small radicals

- total of 81 TBEs mostly obtained at the $\mathrm{FCl} /$ aug-cc-pVTZ level
- benchmark popular excited-state methods (U vs RO)

Received: 2 December 2020	Revised: 5 January 2021	Accepted: 7 January 2021

DOI: 10.1002/wcms. 1517

FOCUSARTICLE

QUESTDB: A database of highly accurate excitation energies for the electronic structure community

Mickaël Véril $^{\mathbf{1}}$ | Anthony Scemama ${ }^{\mathbf{1}}{ }^{\circ}$ | Michel Caffarel ${ }^{\mathbf{1}}$ | Filippo Lipparini $^{\mathbf{2}}$ | Martial Boggio-Pasqua ${ }^{1}$ | Denis Jacquemin ${ }^{3}$ | Pierre-François Loos $^{1}{ }^{\circ}$

■ 13 new systems composed by small molecules as well as larger molecules

■ 80 new transitions the vast majority being of CCSDT quality

- benchmark popular excited-state methods over the entire database

SC-NEVPT2 MAE: 0.15 eV
PC-NEVPT2 MAE: 0.13 eV

CIS(D) MAE: 0.22 eV

CC2 MAE: 0.15 eV

CCSD MAE: 0.12 eV

CC3 MAE: 0.02 eV

JCTC 18 (2022) 2418; JCP 157 (2022) 014103
|CTC
pubs.acs.org/JCTC
Article

Reference Energies for Intramolecular Charge-Transfer Excitations

Pierre-François Loos,* Massimiliano Comin, Xavier Blase,* and Denis Jacquemin*

- intramolecular charge-transfer transitions in π-conjugated molecules
- 30 transitions of CCSDT quality in 17 systems with cc-pVTZ
- Basis-set correction up to aug-cc-pVQZ computed with CCSD and CC2
- benchmark popular excited-state methods

■ additional benchmarks of BSE@GW and TD-DFT (hybrids and range-separated hybrids)
the journal of
PHYSICAL
CHEMISTRY

| pubs.acs.org/PPCA Article |
| :--- | :--- |

A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Bicyclic Systems

Published as part of The Journal of Physical Chemistry virtual special issue "Vincenzo Barone Festschrift". Pierre-François Loos* and Denis Jacquemin*

■ VTEs for 10 bicyclic molecules
■ 91 new transitions of CCSDT quality for larger systems

- benchmark popular excited-state methods accounting for double and triple excitations

Mika Véril

Véril et al. WIREs Comput. Mol. Sci. 11 (2021) e1517
https://lcpq.github.io/QUESTDB_website

■ Head-Gordon's group: orbital-optimized DFT for double excitations [JCTC 16 (2020) 1699; JPCL 12 (2021) 4517] and TD-DFT benchmark [JCTC 18 (2022) 3460]

- Kaupp's group: assessment of hybrid functionals [JCP 155 (2021) 124108]

■ Kallay's and Goerigk's groups: double hybrids [JCTC 15 (2019) 4735; JCTC 17 (2021) 927; JCTC 17 (2021) 5165; JCTC 17 (2021) 4211]

- Truhlar/Gagliardi's group: p-DFT [JCTC 18 (2022) 6065]

■ Bartlett's group: Variants of EOM-CC for doubly-excited states [JCP 156 (2022) 201102]

- Neuscamman's group: QMC for doubly-excited states [JCP 153 (2022) 234105]
- Filippi/Scemama's groups: QMC for excited states [JCTC 15 (2019) 4889; JCTC 17 (2021) 3426; JCTC 18 (2022) 1089]

■ Gould's group: ensemble DFT [JPCL 13 (2022) 2452]
x Forget about large systems/basis sets:
JCTC 16 (2020) 1711

- 1-3 non- H atoms with triple- or quadruple- ζ basis
- 4-6 non-H atoms with double- ζ basis
\checkmark Open-shell systems are "easy" (no spin contamination and independent of starting orbitals) JCTC 16 (2020) 3720
\checkmark Double excitations are easily accessible (especially if they have the same symmetry as the ground state)
JCTC 15 (2020) 1939
\checkmark You can post-process CIPSI wave functions!
- one- and two-body density matrices
- QMC trial wave functions

[^0]: Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
 Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

