
A similarity renormalization group
(SRG) approach to GW
Antoine Marie & Pierre-François Loos

Feb 13th 2023
Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

https://lcpq.github.io/pterosor

https://lcpq.github.io/pterosor


A SRG Approach to Green’s Function Methods
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See also our work on the connections between CC and Green’s function methods
Quintero-Monsebaiz, Monino, Marie & Loos, JCP 157 (2022) 231102

↪→ Scuseria et al. JCP 129 (2008) 231101
↪→ Berkelbach, JCP 149 (2018) 041103; Lange & Berkelbach, JCTC 14 (2018) 4224
↪→ Tolle & Chan, arXiv:2212.08982



The GW Approximation

🤓 The GW approximation allows us to access charged excitations (IPs & EAs)
Hedin, Phys. Rev. 139 (1965) A796

🧐 It yields accurate fundamental gaps at an affordable price for solids and molecules
Bruneval et al. Front. Chem. 9 (2021) 749779

😇 GW corresponds to an elegant resummation of the direct ring diagrams

🥳 Hence, it is adequate for weak correlation or in the high-density regime
Gell-Mann & Brueckner, Phys. Rev. 106 (1957) 364

😕 Self-consistent GW calculations can be tricky to converge due to intruder states
Monino & Loos JCP 156 (2022) 231101

😢 Going beyond GW is, let’s say, difficult…
Mejuto-Zaera & Vlcek, PRB 106 (2022) 165129
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The wonderful equations of Hedin

G(12)︸ ︷︷ ︸
Green’s function

= G0(12) +

∫
G0(13)Σ(34)G(42)d(34)

Γ(123)︸ ︷︷ ︸
vertex

= δ(12)δ(13) +

∫
δΣ(12)

δG(45) G(46)G(75)Γ(673)d(4567)

P(12)︸ ︷︷ ︸
polarizability

= −i
∫
G(13)Γ(342)G(41)d(34)

W(12)︸ ︷︷ ︸
screening

= v(12) +
∫
v(13)P(34)W(42)d(34)

Σ(12)︸ ︷︷ ︸
self-energy

= i
∫
G(14)W(13)Γ(423)d(34)



Hedin’s Pentagon Square

G

Γ

P

W

Σ

InOut

Γ
=

1
+
δ
Σδ
G
G
G

Γ

P
=
−iG

GΓ

W
=
v +

vPW

Σ
=

iG
W

G = G0 + G0ΣG

P
=

−
iG

G

ε
H

F
/
K

SεG
W

Hedin, Phys Rev 139 (1965) A796

The GW approximation

G(12)︸ ︷︷ ︸
Green’s function

= G0(12) +

∫
G0(13)Σ(34)G(42)d(34)

Γ(123)︸ ︷︷ ︸
vertex

= δ(12)δ(13) +

∫
δΣ(12)

δG(45) G(46)G(75)Γ(673)d(4567)

P(12)︸ ︷︷ ︸
polarizability

= −i
∫
G(12)Γ(342)G(21)d(34) = −iG(12)G(21)

W(12)︸ ︷︷ ︸
screening

= v(12) +
∫
v(13)P(34)W(42)d(34)

Σ(12)︸ ︷︷ ︸
self-energy

= i
∫
G(12)W(12)Γ(423)d(34) = iG(12)W(12)



Dynamical Version of GW

Quasiparticle equation (in a general setting)

 F︸︷︷︸
Fock matrix

+ΣGW
(
ω = εGWp

)
︸ ︷︷ ︸
dynamic self-energy

ψGWp = εGWp︸︷︷︸
quasiparticle energies

ψGWp

Practical issues

I dynamic
I highly non-linear
I non-Hermitian

GW self-energy

ΣGW
pq (ω) =

∑
iν

Wν
piWν

qi

ω − εGWi +Ων − iη︸︷︷︸
regularizer

+
∑
aν

Wν
paWν

qa

ω − εGWa − Ων︸︷︷︸
RPA excitation

+iη

Screened two-electron integrals

Wν
pq =

∑
ia

〈pi|qa〉 (X + Y)νia︸ ︷︷ ︸
RPA eigenvectors



One-Shot GW or G0W0

G0W0 features
I Diagonal approximation
I A single loop of Hedin’s equations

Quasiparticle equation (assuming a HF starting point)

Dynamic version: ω = εHFp + ΣGW
pp (ω)︸ ︷︷ ︸

built with HF quantities

Linearized (static) version: εGWp = εHFp + ZpΣGW
pp (ω = εHFp ) with Zp =

1− ∂ΣGW
pp (ω)

∂ω

∣∣∣∣∣
ω=εHFp

−1

︸ ︷︷ ︸
renormalization factor

G0W0 issues
I Highly starting point dependent



Eigenvalue-Only GW or evGW

evGW features
I Diagonal approximation
I Self-consistency on the quasiparticle energies only

Quasiparticle equation (assuming a HF starting point)

ω = εHFp + ΣGW
pp (ω)︸ ︷︷ ︸

built with GW quantities

evGW issues
I Lack of self-consistency on the orbitals
I Challenging to converge (even with DIIS)



Quasiparticle Self-Consistent GW or qsGW

qsGW features
I Static approximation of the self-energy
I Brute-force symmetrization

Quasiparticle equationF + ΣqsGW︸ ︷︷ ︸
static self-energy

ψGWp = εGWp ψGWp with ΣqsGW
pq =

ΣGW
pq (ε

GW
p ) + ΣGW

pq (ε
GW
q )

2︸ ︷︷ ︸
symmetrization

Faleev et al. PRL 93 (2004) 126406

qsGW issues
I “Empirical” symmetrization [Ismail-Beigi, JPCM 29 (2017) 385501]
I Very challenging to converge (even with DIIS)



Intruder-State Problem

Intruder-state problem⇔ a determinant in Q becomes near-degenerate with a determinant in P
⇒ appearance of small denominators
⇒ convergence issues!

How to avoid intruder states?⇒ do not enforce QHeffP = 0

⇔ near-degenerate determinants are not decoupled

⇐ Continuous (unitary) SRG transformation

SRG decouples the Hamiltonian starting from states that have the largest energy separation and
progressing to states with smaller energy separation



Historical Overview of SRG

I Introduced independently by

I Glazek and Wilson in quantum field theory [PRD 48 (1993) 5863, ibid 49 (1994) 4214]

I Wegner in condensed matter systems [Ann. Phys. 506 (1994) 77]

I (In-Medium) SRG is used a lot in nuclear physics
[Hergert et al. Phys. Rep. 621 (2016) 165]

I First introduced in chemistry by Steven White
[JCP 117 (2002) 7472]

I More recently developed by the group of Francesco Evangelista (SR/MR-DSRG)
[JCP 141 (2014) 054109; Annu. Rev. Phys. Chem. 70 (2019) 275]



SRG Fundamental Equation

Unitary transformation of the Hamiltonian

H→ H(s) = U(s)HU†(s), s ∈ [0,∞)

I For s > 0, H(s) has a more (block) diagonal form than H

I The flow variable s is a time-like parameter that controls the extent of the transformation

I If s = 0, then U(s) = 1, i.e., H(s = 0) = H

I In the limit s → ∞, H(s) becomes (block) diagonal

H(s) = Hd(s)︸ ︷︷ ︸
diagonal

+ Hod(s)︸ ︷︷ ︸
off-diagonal

⇒ lim
s→∞

Hod(s) = 0



SRG Flow Equation

The SRG flow equation

dH(s)
ds = [η(s),H(s)], H(0) = H

where the flow generator η(s) = dU(s)
ds U†(s) = −η†(s) is an anti-Hermitian operator

Suitable parametrization of η̂(s) allows to integrate the flow equation and find a numerical solution
of Ĥ(s) that satisfies the boundary conditions without having to explicitly construct Û(s)

Wegner’s canonical generator

ηW(s) = [Hd(s),Hod(s)]

As long as ηW(s) 6= 0, d
ds Tr

[
Hod(s)2

]
≤ 0 ⇒ off-diagonal decreases in a monotonic way



Perturbative Analysis

Partitionning of the initial problem

H(s = 0) = Hd(s = 0)︸ ︷︷ ︸
zeroth order

+λHod(s = 0)︸ ︷︷ ︸
first order

Perturbative analysis of the SRG equations

H(s) = H(0)(s) + λH(1)(s) + λ2H(2)(s) + · · ·

η(s) = η(0)(s) + λη(1)(s) + λ2η(2)(s) + · · ·

How to identify the diagonal and off-diagonal terms in GW?



Static Version of GW

[
F +ΣGW(ω = εGWp

)]
ψGWp = εGWp ψGWp

ΣGW(ω) = W2h1p
(
ω1− C2h1p

)−1

(W2h1p)†

+W2p1h
(
ω1− C2p1h

)−1

(W2p1h)†


downfolding
↼−−−−−−−−−−−−⇁
upfolding


HΨGW

p = εGWp ΨGW
p

H =

 F W2h1p W2p1h

(W2h1p)† C2h1p 0

(W2p1h)† 0 C2p1h



F

C2h1p

W 2h1p

W 2h1p

C2p1h

W 2p1h

W 2p1h

0

0

internal space P1h & 1p conf.

2h1p conf.

2p1h conf.

external space Q

Bintrim & Berkelbach, JCP 154 (2021) 041101; Monino & Loos JCP 156 (2022) 231101; Tolle & Chan,
arXiv:2212.08982



Regularized Quasiparticle Equation

Regularized GW equations up to second order[
F̃(s) + Σ̃

SRG-GW
(ω = εGWp ; s)

]
ψGWp = εGWp ψGWp

Energy-dependent regularization

F̃pq(s) = δpqε
HF
p +

∑
rν

∆ν
pr +∆ν

qr

(∆ν
pr)2 + (∆ν

qr)2
[
Wν
prWν

qr −Wν
pr(s)Wν

qr(s)
]

with ∆ν
pr = εGWp − εGWr ± Ων

Σ̃SRG-GW
pq (ω; s) =

∑
iν

Wν
pi(s)Wν

qi(s)
ω − εGWi +Ων

+
∑
aν

Wν
pa(s)Wν

qa(s)
ω − εGWa − Ων

with Wν
pr(s) = Wν

pre−(∆ν
pr)

2s

For a fixed value of the energy cut-off Λ = s−1/2,

if |∆ν
pr| � Λ then Wν

pr(s) = Wν
pre−(∆ν

pr)
2s ≈ 0 (decoupled)

if |∆ν
pr| � Λ then Wν

pr(s) ≈ Wν
pr (remains coupled)



Limiting Forms

Limit as s→ 0

F̃(s = 0) = F and Σ̃
SRG-GW

(ω; s = 0) = ΣGW(ω)

Limit as s→ ∞

Σ̃
SRG-GW

(ω; s→ ∞) = 0 and F̃pq(s→ ∞) = δpqε
HF
p +

∑
rν

∆ν
pr +∆ν

qr

(∆ν
pr)2 + (∆ν

qr)2
Wν
prWν

qr︸ ︷︷ ︸
static correction

By removing the coupling terms, SRG transforms continuously the dynamic problem into a static one

SRG-qsGW self-energy from first principles

Σ̃
SRG-qsGW

(ω; s) =
∑
rν

∆ν
pr +∆ν

qr

(∆ν
pr)2 + (∆ν

qr)2
[
Wν
prWν

qr −Wν
pr(s)Wν

qr(s)
]



SRG-qsGW
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qsGW vs SRG-qsGW functional forms for s = 1/(2η2)



Example: Principal IP of water (aug-cc-pVTZ) wrt ∆CCSD(T)
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Principal IPs for a set of small molecules (aug-cc-pVTZ) wrt ∆CCSD(T)

-1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3

MSE 0.64 eV 0.26 eV 0.24 eV 0.17 eV
MAE 0.74 eV 0.32 eV 0.25 eV 0.19 eV



Principal EAs for a set of small molecules (aug-cc-pVTZ) wrt ∆CCSD(T)

-3 -2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0 1

MSE -0.30 eV -0.02 eV 0.00 eV 0.00 eV
MAE 0.32 eV 0.19 eV 0.11 eV 0.12 eV
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