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A SRG Approach to Green’s Function Methods
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See also our work on the connections between CC and Green’s function methods
Quintero-Monsebaiz, Monino, Marie & Loos, JCP 157 (2022) 231102

< Scuseria et al. JCP 129 (2008) 231101

— Berkelbach, JCP 149 (2018) 041103; Lange & Berkelbach, JCTC 14 (2018) 4224
< Tolle & Chan, arXiv:2212.08982



The GW Approximation

@ The GW approximation allows us to access charged excitations (IPs & EAs)
Hedin, Phys. Rev. 139 (1965) A796

@ It yields accurate fundamental gaps at an affordable price for solids and molecules
Bruneval et al. Front. Chem. 9 (2021) 749779

@ GW corresponds to an elegant resummation of the direct ring diagrams

B2 Hence, it is adequate for weak correlation or in the high-density regime
Gell-Mann & Brueckner, Phys. Rev. 106 (1957) 364

& Self-consistent GW calculations can be tricky to converge due to intruder states
Monino & Loos JCP 156 (2022) 231101

@ Going beyond GW is, let's say, difficult...
Mejuto-Zaera & Vlcek, PRB 106 (2022) 165129



Hedin’s Pentagon
Out In The wonderful equations of Hedin |

C(12)  =Go(12) + / Go(13))(34)C(42)d(34)
——

Green's function

GWT

G =Go+ GoEG

B §3(12)
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W(12) = v(12) + / V(13)P(34)W(42)d(34)
——

screening

N(12) = i/G(14)W(13)F(423)d(34)

self-energy

Hedin, Phys Rev 139 (1965) A796
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Hedin, Phys Rev 139 (1965) A796

Hedin's Pentagen Square

The GW approximation I

C(12)  =Go(12) + / Go(13)73(34)(42)d(34)

——

Green's function

0>.(12
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vertex

P(12) = _if C(12)B{342Y0 (21) 34y = —i0(12)0(21)
——

polarizability

W(12) = v(12) + / V(13)P(34)W(42)d (34)
——

screening

$(12) = if C(12)W(12) P23y = i0(12)W(12)
——

self-energy




Dynamical Version of GW
Quasiparticle equation (in a general setting)

> dynamic
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One-Shot GW or GoW,
(Gowpfeatwes

» Diagonal approximation
» A single loop of Hedin's equations

Quasiparticle equation (assuming a HF starting point)

: S HF aw
Dynamic version: w =¢, + 300 (W)

N——
built with HF quantities

95 ()
ow

Linearized (static) version: ey = ep" + 2,500 (v =¢p') with Zy = |1 —

—HF
w=ep

renormalization factor

GoW, issues J

» Highly starting point dependent




Eigenvalue-Only GW or evGW
oG featores ——————————}

> Diagonal approximation

» Self-consistency on the quasiparticle energies only

Quasiparticle equation (assuming a HF starting point)

c=d W

——
built with GW quantities

evGW issues

» Lack of self-consistency on the orbitals

> Challenging to converge (even with DIIS)




Quasiparticle Self-Consistent GW or gsGW

qsGW features

» Static approximation of the self-energy
» Brute-force symmetrization

Quasiparticle equation

Fi sosaw OW _ (G it 30O S0 (") + 300 (e§")
é , b p ¥p pq D)

static self-energy N zati
symmetrization

Faleev et al. PRL 93 (2004) 126406

qsGW issues
> “Empirical” symmetrization [Ismail-Beigi, JPCM 29 (2017) 385501]
> Very challenging to converge (even with DIIS)




Intruder-State Problem

Intruder-state problem < a determinant in Q becomes near-degenerate with a determinant in P
= appearance of small denominators
= convergence issues!

How to avoid intruder states? = do not enforce QH*"P = 0
< near-degenerate determinants are not decoupled

QHP =0 QHP = PHQ =0 Energy

< Continuous (unitary) SRG transformation

SRG decouples the Hamiltonian starting from states that have the largest energy separation and
progressing to states with smaller energy separation




Historical Overview of SRG

» Introduced independently by

> Glazek and Wilson in quantum field theory [PRD 48 (1993) 5863, ibid 49 (1994) 4214]

> Wegner in condensed matter systems [Ann. Phys. 506 (1994) 77]

> (In-Medium) SRG is used a lot in nuclear physics
[Hergert et al. Phys. Rep. 621 (2016) 165]

» First introduced in chemistry by Steven White
[JCP 117 (2002) 7472]

> More recently developed by the group of Francesco Evangelista (SR/MR-DSRG)
[JCP 141 (2014) 054109; Annu. Rev. Phys. Chem. 70 (2019) 275]



SRG Fundamental Equation
Unitary transformation of the Hamiltonian |

[H— H(s) = U(S) HU'(s), s €[0,00)]

> Fors > 0, H(s) has a more (block) diagonal form than H
> The flow variable s is a time-like parameter that controls the extent of the transformation
> Ifs=0,thenU(s)=1,ie,Hs=0)=H

> In the limit s — oo, H(s) becomes (block) diagonal

H(s) = H4(s) + Hoa(s) = lim Heg(s) =0
—— Ne—— s—00

diagonal  off-diagonal




SRG Flow Equation
The SRG flow equation

dH(s
1)~ nts). HEs)), H(O) = H
where the flow generator n(s) = %(S)UT(S) = —n'(s) isananti-Hermitian operator

Suitable parametrization of 7)(s) allows to integrate the flow equation and find a numerical solution
of H(s) that satisfies the boundary conditions without having to explicitly construct U(s)

Wegner’s canonical generator

[1"(5) = [Hs(5), Hoa(5)] |

As long as n"(s) # 0,

dis Tr[Hod(s)2] <0 = off-diagonal decreases in a monotonic way




Perturbative Analysis

Partitionning of the initial problem

H(s = 0) = Ha(s = 0) +A Hog(s = 0)

zeroth order first order

Perturbative analysis of the SRG equations

H(s) = HO(s) + XHD () + N HP (s) + -+
n(s) =1 (s) + AV (s) + X°n@(s) + -

How to identify the diagonal and off-diagonal terms in GW?



Static Version of GW

F 2 (o = )" = g gt = g

f 2h1p 2pth
EGW(M) _ WZth(/ 1 sz)_l(wzmp)f downfolding F w w
upfolding H= (WZMD)Jr CZMD 0
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1h & 1p conf. F  [w2hip[yy/2p1h] b internal space P
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Bintrim & Berkelbach, JCP 154 (2021) 041101; Monino & Loos JCP 156 (2022) 231101; Tolle & Chan,
arXiv:2212.08982



Regularized Quasiparticle Equation

Regularized GW equations up to second order |
SRG GW
[Fi&)+ 70 = )] = "ug”

Energy-dependent regularization

+ A 17 v v v v
Foq(s) = Gpqep” + Z #@:;)2 (W Wor — Wi (s)Wor ()] with  Ap =& — & £Q

o Wr(s)We (s W, ()W, (s . v
E;S;SG GW(W;S) _ Z : p:( ) q:( ) +Z pu( ) qa( ) with Wp"r(S) — Wgre—(Ap,ps

-1+ Q, ayw—egW—Q,,
For a fixed value of the energy cut-off A = s~1/2,
it |Ap] > A then W (s) = Whe (Bi* ~ 0 (decoupled)
if |Ap] <A then Wy (s) = Wy, (remains coupled)




Limiting Forms

Limitas s — oo

~ SRG-GW . NN
22 35— 00) =0 and  Fp(S — 00) = dpgep + ot Bar v
( ) pal( ) = dpacp ; Bz (g e

static correction

By removing the coupling terms, SRG transforms continuously the dynamic problem into a static one

SRG-qsGW self-energy from first principles

N
A

5 oRG-asew pr +Agr v y y
> w; = — = T  _ITWEWY — W w
(w59) g (A5 + (A%)? [ pr¥qr or(S) qr(s)]




SRG-gqsGW

GW)
static flow
(SRG-qsGW)

dynamic flow
(SRG-
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Example: Principal IP of water (aug-cc-pV1Z) wrt ACCSD(T)

1.5f

1.0
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Principal IPs for a set of small molecules (aug-cc-pVTZ) wrt ACCSD(T)

HF GoWy@HF 5 = 0.001 qsGW = 0.1 SRG-qsGW s = 100
-1 0 1 2 3-1 0 1 2 3-1 0 1 2 3-1 0 1 2 3
Error (eV) Error (eV) Error (eV) Error (eV)
MSE 0.64 eV 0.26 eV 0.24 eV 0.17 eV

MAE 0.74 eV 0.32 eV 0.25 eV 0.19 eV




Principal EAs for a set of small molecules (aug-cc-pVTZ) wrt ACCSD(T)

HF GoWy@HF 7 = 0.001 @sGW n=0.1 SRG-qsGW s = 100
N
-3 -2 -1 0 1-3 -2 -1 0 1-3 -2 -1 0 1-3 -2 -1 0 1
Error (eV) Error (eV) Error (eV) Error (eV)
MSE -0.30 eV -0.02 eV 0.00 eV 0.00 eV
MAE 0.32 eV 0.19 eV 0.11 eV 0.12 eV
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