Quantum Chemistry at ANU O		The Conjecture/Proof 000000	

Correlation energy of two-electron systems in the high-density limit

Pierre-François Loos and Peter M. W. Gill

Research School of Chemistry, Australian National University, Canberra, Australia

Nancy, SRSMC UMR 7565 23rd June 2010

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Quantum Chemistry at ANU		
•		
The Gill Group		

PhDs

 Kaew (Resolution) & Jia (HFPT)

Former Postdoc and Research Officer

 Deb Crittenden (Christchurch, NZ) and Andrew Gilbert

PhD & Postdoc

 Yves Bernard (Posmom) & Joshua Hollett (IFT)

Boss (rsc.anu.edu.au/~pgill)

Peter Gill

Correlation energy of two-electron systems in the high-density limit

・ 戸 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU	Introduction		
	000		
Electronic correlation			

Why bother with electron correlation?

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

3

◆□ > ◆圖 > ◆国 > ◆国 > ·

Quantum Chemistry at ANU	Introduction		
	• 0 00		
Electronic correlation			

Why bother with electron correlation?

■ HF theory ignores correlation and gives 99% of the energy

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU	Introduction		
	0000		
Electronic correlation			

Why bother with electron correlation?

- HF theory ignores correlation and gives 99% of the energy
- It is often accurate for the prediction of molecular structures

通 ト イヨ ト イヨト

Quantum Chemistry at ANU	Introduction		
	000		
Electronic correlation			

Why bother with electron correlation?

- HF theory ignores correlation and gives 99% of the energy
- It is often accurate for the prediction of molecular structures
- It is computationally cheap and can be applied to large systems

通 ト イ ヨ ト イ ヨ ト

Quantum Chemistry at ANU	Introduction		
	000		
Electronic correlation			

Why bother with electron correlation?

- HF theory ignores correlation and gives 99% of the energy
- It is often accurate for the prediction of molecular structures
- It is computationally cheap and can be applied to large systems
- Unfortunately, the final 1% can have important chemical effects

周 ト イ ヨ ト イ ヨ ト

Quantum Chemistry at ANU	Introduction		
	0000		
Electronic correlation			

Why bother with electron correlation?

- HF theory ignores correlation and gives 99% of the energy
- It is often accurate for the prediction of molecular structures
- It is computationally cheap and can be applied to large systems
- \blacksquare Unfortunately, the final 1% can have important chemical effects
- This is particularly true when bonds are broken and/or formed

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU	Introduction		
	0000		
Electronic correlation			

Why bother with electron correlation?

- HF theory ignores correlation and gives 99% of the energy
- It is often accurate for the prediction of molecular structures
- It is computationally cheap and can be applied to large systems
- \blacksquare Unfortunately, the final 1% can have important chemical effects
- This is particularly true when bonds are broken and/or formed
- Realistic chemistry requires a good treatment of correlation

(4 冊 ト イ ヨ ト イ ヨ ト

Quantum Chemistry at ANU	Introduction		
	0000		
Electronic correlation			

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

3

・ロト ・聞 ト ・ヨト ・ヨト

Pierre-François Loos and Peter M. W. Gill

Quantum Chemistry at ANU	Introduction		
	0000		
Electronic correlation			

The concept was introduced at the dawn of quantum chemistry Wigner Phys Rev 46 (1934) 1002

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

(人間) 人 ヨト 人 ヨト

Quantum Chemistry at ANU O	Introduction	Two-Electron Systems	The Conjecture/Proof 000000	
Electronic correlation				

- The concept was introduced at the dawn of quantum chemistry Wigner Phys Rev 46 (1934) 1002
- Its definition was agreed somewhat later Löwdin Adv Chem Phys 2 (1959) 207

(1日) (1日) (1日)

Quantum Chemistry at ANU O	Introduction	Two-Electron Systems	The Conjecture/Proof	
Electronic correlation				

- The concept was introduced at the dawn of quantum chemistry Wigner Phys Rev 46 (1934) 1002
- Its definition was agreed somewhat later Löwdin Adv Chem Phys 2 (1959) 207
- One Nobel Laureate used to refer to it as "the stupidity energy" Feynmann (1972)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Quantum Chemistry at ANU O	Introduction	Two-Electron Systems	The Conjecture/Proof	
Electronic correlation				

- The concept was introduced at the dawn of quantum chemistry Wigner Phys Rev 46 (1934) 1002
- Its definition was agreed somewhat later Löwdin Adv Chem Phys 2 (1959) 207
- One Nobel Laureate used to refer to it as "the stupidity energy" Feynmann (1972)
- There have been recent heroic calculations on the helium atom Nakashima & Nakatsuji J Chem Phys 127 (2007) 224104

・ 戸 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU O	Introduction	Two-Electron Systems	The Conjecture/Proof	
Electronic correlation				

- The concept was introduced at the dawn of quantum chemistry Wigner Phys Rev 46 (1934) 1002
- Its definition was agreed somewhat later Löwdin Adv Chem Phys 2 (1959) 207
- One Nobel Laureate used to refer to it as "the stupidity energy" Feynmann (1972)
- There have been recent heroic calculations on the helium atom Nakashima & Nakatsuji J Chem Phys 127 (2007) 224104
- "We conclude that theoretical understanding here lags well behind the power of available computing machinery" Schwartz Int J Mod Phys E 15 (2006) 877

(1日) (1日) (1日)

Quantum Chemistry at ANU	Introduction		
	0000		
Coulomb holes			

Can correlation bring electrons closer together?

Coulomb hole in the He atom and H_2 molecule (Coulson & Neilson 1961)

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU	Introduction		
	0000		
Coulomb holes			

Can correlation bring electrons closer together?

Coulomb hole in the He atom and H₂ molecule (Coulson & Neilson 1961)

Pearson, Gill, Ugalde & Boyd Mol Phys 107 (2009) 1089

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

Quantum Chemistry at ANU	Introduction		
	0000		
Coulomb holes			

Can correlation bring electrons closer together?

Coulomb hole in the He atom and H₂ molecule (Coulson & Neilson 1961)

Pearson, Gill, Ugalde & Boyd Mol Phys 107 (2009) 1089 Per, Russo & Snook J Chem Phys 130 (2009) 134103 See also: Loos & Gill Phys Rev A 81 (2010) 052510

Quantum Chemistry at ANU	Introduction		
	0000		
Pursuit of ${\it E}_{ m He}$			

History of accurate calculation on the He atom

▲ □ ▶ ▲ ⓓ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ○ Q (Nancy, SRSMC UMR 7565 — 23rd June 2010 —

Pierre-François Loos and Peter M. W. Gill

Quantum Chemistry at ANU	Introduction		
	0000		
Pursuit of ${\it E}_{ m He}$			

History of accurate calculation on the He atom

Year	Authors	Energy (a.u.)
1929	Hylleraas	-2.902 43
1957	Kinoshita	-2.903 722 5
1966	Frankowski & Pekeris	-2.903 724 377 032 6
1994	Thakkar & Koga	-2.903 724 377 034 114 4
1998	Goldman	-2.903 724 377 034 119 594
1999	Drake	-2.903 724 377 034 119 596
2002	Sims & Hagstrom	-2.903 724 377 034 119 598 299
2002	Drake et al.	-2.903 724 377 034 119 598 305
2002	Korobov	-2.903 724 377 034 119 598 311 158 7
2006	Schwartz	-2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
2007	Nakashima & Nakatsuji	-2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37

Nakashima & Nakatsuji J Chem Phys 127 (2007) 224104

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

イロト イポト イヨト イヨト

Quantum Chemistry at ANU O	Introduction	The Conjecture/Proof 000000	
Pursuit of ${\it E}_{ m He}$			

History of accurate calculation on the He atom

Year	Authors	Energy (a.u.)
1929	Hylleraas	-2.902 43
1957	Kinoshita	-2.903 722 5
1966	Frankowski & Pekeris	-2.903 724 377 032 6
1994	Thakkar & Koga	-2.903 724 377 034 114 4
1998	Goldman	-2.903 724 377 034 119 594
1999	Drake	-2.903 724 377 034 119 596
2002	Sims & Hagstrom	-2.903 724 377 034 119 598 299
2002	Drake et al.	-2.903 724 377 034 119 598 305
2002	Korobov	-2.903 724 377 034 119 598 311 158 7
2006	Schwartz	-2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
2007	Nakashima & Nakatsuji	-2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37

Nakashima & Nakatsuji J Chem Phys 127 (2007) 224104

"For thousands of years mathematicians have enjoyed competing with one other to compute ever more digits of the number π . Among modern physicists, a close analogy is computation of the ground state energy of the helium atom, begun 75 years ago by E. A. Hylleraas." Schwartz Int J Mod Phys E 15 (2006) 877

Quantum Chemistry at ANU	Two-Electron Systems	
	● 0 00000000	
Helium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2} \left(
abla_1^2 +
abla_2^2
ight) - Z \left(rac{1}{r_1} + rac{1}{r_2}
ight) + rac{1}{r_{12}}$$

- Z = 1 gives the H⁻ anion
- Z = 2 gives the He atom
- Z = 3 gives the Li⁺ cation
- Z = 4 gives the Be²⁺ cation
- etc.

(4 冊 ト 4 三 ト 4 三 ト

Quantum Chemistry at ANU		Two-Electron Systems		
	0000	000000000	000000	
Helium				

The 1/Z expansion

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

《日》 《圖》 《圖》 《圖》

3

Pierre-François Loos and Peter M. W. Gill

Quantum Chemistry at ANU O	Two-Electron Systems O●○○○○○○○	The Conjecture/Proof 000000	
Helium			

The 1/Z expansion

 1930: During his seminal study of these ions, Hylleraas discovered that

$$E = -Z^2 + \frac{5}{8}Z - 0.157666 + O(Z^{-1})$$

Quantum Chemistry at ANU O	Two-Electron Systems O●○○○○○○○	The Conjecture/Proof 000000	
Helium			

The 1/Z expansion

1930: During his seminal study of these ions, Hylleraas discovered that

$$E = -Z^2 + \frac{5}{8}Z - 0.157666 + O(Z^{-1})$$

■ 1961: Linderberg showed that the analogous HF expansion is

$$E_{\rm HF} = -Z^2 + \frac{5}{8}Z + \left(\frac{9}{32}\ln\frac{3}{4} - \frac{13}{432}\right) + O(Z^{-1})$$

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

- 4 同 ト 4 回 ト 4 回 ト

Quantum Chemistry at ANU O	Two-Electron Systems O●○○○○○○○	The Conjecture/Proof 000000	
Helium			

The 1/Z expansion

1930: During his seminal study of these ions, Hylleraas discovered that

$$E = -Z^2 + \frac{5}{8}Z - 0.157666 + O(Z^{-1})$$

■ 1961: Linderberg showed that the analogous HF expansion is

$$E_{\rm HF} = -Z^2 + \frac{5}{8}Z + \left(\frac{9}{32}\ln\frac{3}{4} - \frac{13}{432}\right) + O(Z^{-1})$$

Subtracting yields the analogous correlation energy expansion

$$E_{\rm c} = -0.046663 + O(Z^{-1})$$

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

- 4 同 ト 4 回 ト 4 回 ト

Quantum Chemistry at ANU O	Two-Electron Systems O●○○○○○○○	The Conjecture/Proof 000000	
Helium			

The 1/Z expansion

1930: During his seminal study of these ions, Hylleraas discovered that

$$E = -Z^2 + \frac{5}{8}Z - 0.157666 + O(Z^{-1})$$

■ 1961: Linderberg showed that the analogous HF expansion is

$$E_{\rm HF} = -Z^2 + \frac{5}{8}Z + \left(\frac{9}{32}\ln\frac{3}{4} - \frac{13}{432}\right) + O(Z^{-1})$$

Subtracting yields the analogous correlation energy expansion

$$E_{\rm c} = -0.046663 + O(Z^{-1})$$

 \blacksquare Thus, in the high-density (i.e. $Z \rightarrow \infty),~E_{\rm c} = -46.7~{\rm mE_h}$

Quantum Chemistry at ANU	Two-Electron Systems	
	00000000	
Hookium		

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^4 \left(r_1^2 + r_2^2 \right) + \frac{1}{r_{12}}$$

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

3

《日》 《圖》 《圖》 《圖》

Quantum Chemistry at ANU	Two-Electron Systems	
	00000000	
Hookium		

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^4 \left(r_1^2 + r_2^2 \right) + \frac{1}{r_{12}}$$

1962: Introduced by Kestner and Sinanoglu

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

イロト イポト イヨト イヨト

Quantum Chemistry at ANU	Two-Electron Systems	
	00000000	
Hookium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2}\left(
abla_1^2 +
abla_2^2
ight) + Z^4\left(r_1^2 + r_2^2
ight) + rac{1}{r_{12}}$$

- 1962: Introduced by Kestner and Sinanoglu
- 1970: White & Byers Brown found the high-density $E_{\rm c} = -49.7 \text{ mE}_{\rm h}$

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

イロト イポト イヨト イヨト

Quantum Chemistry at ANU	Two-Electron Systems	
	00000000	
Hookium		

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^4 \left(r_1^2 + r_2^2 \right) + \frac{1}{r_{12}}$$

- 1962: Introduced by Kestner and Sinanoglu
- 1970: White & Byers Brown found the high-density $E_{\rm c} = -49.7 \text{ mE}_{\rm h}$
- 1989: Kais, Herschbach & Levine found it to be quasi-exactly solvable

Quantum Chemistry at ANU	Two-Electron Systems	
	00000000	
Hookium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2}\left(
abla_1^2 +
abla_2^2
ight) + Z^4\left(r_1^2 + r_2^2
ight) + rac{1}{r_{12}}$$

- 1962: Introduced by Kestner and Sinanoglu
- 1970: White & Byers Brown found the high-density $E_{\rm c} = -49.7 \text{ mE}_{\rm h}$
- 1989: Kais, Herschbach & Levine found it to be quasi-exactly solvable
- 1993: Taut found an infinite set of solutions

Quantum Chemistry at ANU	Two-Electron Systems	
	00000000	
Hookium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2}\left(
abla_{1}^{2} +
abla_{2}^{2}
ight) + Z^{4}\left(r_{1}^{2} + r_{2}^{2}
ight) + rac{1}{r_{12}}$$

- 1962: Introduced by Kestner and Sinanoglu
- 1970: White & Byers Brown found the high-density $E_{\rm c} = -49.7 \text{ mE}_{\rm h}$
- 1989: Kais, Herschbach & Levine found it to be quasi-exactly solvable
- 1993: Taut found an infinite set of solutions
- 2005: Katriel et al. discussed similarities and differences to He atom

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Hookium		

High-density correlation energies

$$E_{\rm c}(D) = -\frac{\Gamma\left(\frac{D-1}{2}\right)^2}{4\Gamma\left(\frac{D}{2}\right)^2} \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)_n^2}{\left(\frac{D}{2}\right)_n} \frac{2(1/4)^n - 1}{n! n}$$
$$E_{\rm c}(3) = \frac{2}{\pi} \left[1 + 5\ln 2 - 4\ln\left(1 + \sqrt{3}\right)\right] - \frac{1}{3}$$
$$E_{\rm c}(5) = \frac{8}{27\pi} \left[4 - 3\sqrt{3} + 15\ln 2 - 12\ln\left(1 + \sqrt{3}\right)\right] + \frac{7}{27}$$

Loos & Gill J Chem Phys 131 (2009) 241101

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Ballium		

The ballium atom

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^{M+2} \left(r_1^M + r_2^M \right) + \frac{1}{r_{12}} \quad (M \approx \infty)$$

Loos & Gill J Chem Phys 132 (2010) 234111

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Ballium		

The ballium atom

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^{M+2} \left(r_1^M + r_2^M \right) + \frac{1}{r_{12}} \quad (M \approx \infty)$$

2002: Introduced by Thompson & Alavi who treated small and large R

Loos & Gill J Chem Phys 132 (2010) 234111

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

・ 同 ト ・ ヨ ト ・ ヨ ト
Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Ballium		

The ballium atom

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^{M+2} \left(r_1^M + r_2^M \right) + \frac{1}{r_{12}} \quad (M \approx \infty)$$

- 2002: Introduced by Thompson & Alavi who treated small and large R
- 2003: Jung & Alvarellos performed more accurate calculations

Loos & Gill J Chem Phys 132 (2010) 234111

Correlation energy of two-electron systems in the high-density limit

周 ト イ ヨ ト イ ヨ ト

Quantum Chemistry at ANU		Two-Electron Systems	The Conjecture/Proof	
Ballium	0000		000000	

The ballium atom

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^{M+2} \left(r_1^M + r_2^M \right) + \frac{1}{r_{12}} \quad (M \approx \infty)$$

- 2002: Introduced by Thompson & Alavi who treated small and large R
- 2003: Jung & Alvarellos performed more accurate calculations
- 2010: We obtained near-exact energies for R = 1, 5 and 20 bohr

Loos & Gill J Chem Phys 132 (2010) 234111

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Ballium		

The ballium atom

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) + Z^{M+2} \left(r_1^M + r_2^M \right) + \frac{1}{r_{12}} \quad (M \approx \infty)$$

- 2002: Introduced by Thompson & Alavi who treated small and large R
- 2003: Jung & Alvarellos performed more accurate calculations
- 2010: We obtained near-exact energies for R = 1, 5 and 20 bohr
- 2010: We also found that the high-density $E_{\rm c} = -55.2 \text{ mE}_{\rm h}$

Loos & Gill J Chem Phys 132 (2010) 234111

(4 間) トイヨト イヨト

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2}\left(
abla_{1}^{2}+
abla_{2}^{2}
ight)+rac{1}{r_{12}}$$

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

3

・ロト ・聞ト ・ヨト ・ヨト

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

The Hamiltonian operator

$$\hat{H}=-rac{1}{2}\left(
abla_1^2+
abla_2^2
ight)+rac{1}{r_{12}}$$

1982: Introduced by Ezra & Berry to model excited states of He atom

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

イロト イポト イヨト イヨト

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2}\left(
abla_{1}^{2} +
abla_{2}^{2}
ight) + rac{1}{r_{12}}$$

- 1982: Introduced by Ezra & Berry to model excited states of He atom
- 2007: Seidl used it to study the interaction-strength-interpolation model

イロト イポト イヨト イヨト

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2}\left(\nabla_1^2 + \nabla_2^2\right) + \frac{1}{r_{12}}$$

- 1982: Introduced by Ezra & Berry to model excited states of He atom
- 2007: Seidl used it to study the interaction-strength-interpolation model
- 2009: We used it as a model system for intracule functional theory (IFT)

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

- 4 同 ト 4 回 ト 4 回 ト

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

The Hamiltonian operator

$$\hat{H} = -\frac{1}{2}\left(\nabla_1^2 + \nabla_2^2\right) + \frac{1}{r_{12}}$$

- 1982: Introduced by Ezra & Berry to model excited states of He atom
- 2007: Seidl used it to study the interaction-strength-interpolation model
- 2009: We used it as a model system for intracule functional theory (IFT)
- 2009: We examined the analytic properties of its Schrödinger equation

- 4 同 ト 4 回 ト 4 回 ト

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

The Hamiltonian operator

$$\hat{H} = -rac{1}{2}\left(
abla_{1}^{2} +
abla_{2}^{2}
ight) + rac{1}{r_{12}}$$

- 1982: Introduced by Ezra & Berry to model excited states of He atom
- 2007: Seidl used it to study the interaction-strength-interpolation model
- 2009: We used it as a model system for intracule functional theory (IFT)
- 2009: We examined the analytic properties of its Schrödinger equation
- 2010: We also studied the exact solutions in some special cases Loos Phys. Rev. A 81 (2010) 032510

イロト 不得下 イヨト イヨト

Quantum Chemistry at ANU	Two-Electron Systems	
	0000000000	
Spherium		

Nancy, SRSMC UMR 7565 — <u>2</u>3rd June 2010 —

・ロト ・聞ト ・ヨト ・ヨト

3

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU O	Two-Electron Systems	The Conjecture/Proof 000000	
Spherium			

Our numerical calculations

First, we solved the Schrödinger equation numerically, e.g.

 $R = 1 \qquad E = 0.852 \ 781 \ 065 \ 056 \ 462 \ 665 \ 400 \ 437 \ 966 \ 038 \ 710 \ 264 \ \dots$

 $R = 100 \quad E = 0.005 \ 487 \ 412 \ 426 \ 784 \ 081 \ 726 \ 642 \ 485 \ 484 \ 213 \ 968 \ \dots$

Loos & Gill Phys Rev A 79 (2009) 062517

Quantum Chemistry at ANU		Two-Electron Systems	The Conjecture/Proof	
	0000	0000000000	000000	
Spherium				

Our numerical calculations

First, we solved the Schrödinger equation numerically, e.g.

R = 1 E = 0.852 781 065 056 462 665 400 437 966 038 710 264 ...

 $R = 100 \quad E = 0.005 \,\,487 \,\,412 \,\,426 \,\,784 \,\,081 \,\,726 \,\,642 \,\,485 \,\,484 \,\,213 \,\,968 \,\ldots$

Loos & Gill Phys Rev A 79 (2009) 062517

Our analytical calculations

After that, we solved the Schrödinger equation exactly, e.g.

$$R = \sqrt{3}/2$$
 $E = 1$ $\Psi(\mathbf{r}_1, \mathbf{r}_2) = 1 + r_{12}$

$$R = \sqrt{7}$$
 $E = 2/7$ $\Psi(\mathbf{r}_1, \mathbf{r}_2) = 1 + r_{12} + \frac{5}{28}r_{12}^2$

Loos & Gill Phys Rev Lett 103 (2009) 123008

Pierre-François Loos and Peter M. W. Gill

Quantum Chemistry at ANU	Two-Electron Systems	
	0000000000	
Spherium		

Exact solutions of a (D + 1)-ball

State	D	R	Ε	$\Psi(\mathbf{r}_1,\mathbf{r}_2)$
	1	$\sqrt{6}/2$	2/3	$r_{12}(1+r_{12}/2)$
1 c	2	$\sqrt{3}/2$	1	$1 + r_{12}$
5	3	$\sqrt{10}/2$	1/2	$1 + r_{12}/2$
	4	$\sqrt{21}/2$	1/3	$1 + r_{12}/3$
	1	$\sqrt{6}/2$	1/2	$1 + r_{12}/2$
3 p	2	$\sqrt{15}/2$	1/3	$1 + r_{12}/3$
'	3	$\sqrt{28}/2$	1/4	$1 + r_{12}/4$
	4	$\sqrt{45}/2$	1/5	$1 + r_{12}/5$

Loos & Gill Phys Rev Lett 103 (2009) 123008 Loos & Gill Mol Phys (submitted) arXiv:1004.3641v1

Correlation energy of two-electron systems in the high-density limit

(4月) (4日) (4日)

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

High-density correlation energies

$$\begin{split} E_{\rm c}(D) &= -\frac{\Gamma(D)}{4\pi} \frac{\Gamma\left(\frac{D-1}{2}\right)^2}{\Gamma\left(\frac{D}{2}\right)^2} \sum_{n=1}^{\infty} \frac{(n+1)_{D-2}}{(n+\frac{1}{2})_{D-1}^2} \left[\frac{1}{n} + \frac{1}{n+D-1}\right] \\ E_{\rm c}(2) &= 4\ln 2 - 3 \qquad \qquad E_{\rm c}(3) = \frac{4}{3} - \frac{368}{27}\pi^{-2} \\ E_{\rm c}(4) &= \frac{64}{75}\ln 2 - \frac{229}{375} \qquad \qquad E_{\rm c}(5) = \frac{24}{35} - \frac{2650112}{385875}\pi^{-2} \\ E_{\rm c}(6) &= \frac{1024}{2205}\ln 2 - \frac{455803}{1389150} \qquad \qquad E_{\rm c}(7) = \frac{4924}{10395} - \frac{588637011968}{124804708875}\pi^{-2} \end{split}$$

Loos & Gill J Chem Phys 131 (2009) 241101

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU	Two-Electron Systems	
	000000000	
Spherium		

High-density correlation energies

$$E_{\rm c}(D) = -\frac{\Gamma(D)}{4\pi} \frac{\Gamma\left(\frac{D-1}{2}\right)^2}{\Gamma\left(\frac{D}{2}\right)^2} \sum_{n=1}^{\infty} \frac{(n+1)_{D-2}}{(n+\frac{1}{2})_{D-1}^2} \left[\frac{1}{n} + \frac{1}{n+D-1}\right]$$

$$D \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

0.010139

Note: For D = 3, we find the high-density $E_c = -47.6 \text{ mE}_h$

0.047637 0.019181

Loos & Gill J Chem Phys 131 (2009) 241101

Pierre-François Loos and Peter M. W. Gill

 $-E_{\rm c}$

Correlation energy of two-electron systems in the high-density limit

0.227411

0.006220

イロト イポト イヨト イヨト

0.004189

3

Quantum Chemistry at ANU		The Conjecture/Proof	
		• 00 000	
Conjecture			

A unified view

< □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < ○ へ </p>
Nancy, SRSMC UMR 7565 — 23rd June 2010 —

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU O		The Conjecture/Proof ●00000	
Conjecture			

A unified view

The Hamiltonian

$$\hat{H} = -rac{1}{2}\left(
abla_1^2 +
abla_2^2\right) + V(r_1) + V(r_2) + rac{1}{r_{12}}$$

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

3

・ロト ・聞ト ・ヨト ・ヨト

Quantum Chemistry at ANU O		The Conjecture/Proof ●00000	
Conjecture			

A unified view

The Hamiltonian

$$\hat{H} = -rac{1}{2}\left(
abla_1^2 +
abla_2^2
ight) + V(r_1) + V(r_2) + rac{1}{r_{12}}$$

The external potentials

Atom	Helium	Spherium	Hookium	Ballium
V(r)	-Z/r	0	$Z^4 r^2$	$Z^{M+2}r^M$
т	-1	0	2	∞

 $V(r) = \operatorname{sgn}(m) Z^{m+2} r^m$

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

3

ヘロト 人間ト 人間ト 人間ト

Quantum Chemistry at ANU O		The Conjecture/Proof O●O○○○	
Conjecture			

A conjecture

Correlation energies (a.u.) in the high-density limit

		6.1		
D	Helium	Spherium	Hookium	Ballium
	m = -1	m = 0	m = 2	$m = \infty$
1	$-\infty$	$-\infty$	$-\infty$	$-\infty$
2	-0.220133	-0.227411	-0.239641	-0.266161
3	-0.046663	-0.047637	-0.049703	-0.055176
4	-0.018933	-0.019181	-0.019860	-0.021913
5	-0.010057	-0.010139	-0.010439	-0.011437
6	-0.006188	-0.006220	-0.006376	-0.006940
7	-0.004176	-0.004189	-0.004280	-0.004631
:	:	:	÷	:

Correlation energy of two-electron systems in the high-density limit

イロト イポト イヨト イヨト

Quantum Chemistry at ANU O		The Conjecture/Proof ○●○○○○	
Conjecture			

A conjecture

Correlation energies (a.u.) in the high-density limit

D	Helium	Spherium	Hookium	Ballium
	m = -1	m = 0	m = 2	$m = \infty$
1	$-\infty$	$-\infty$	$-\infty$	$-\infty$
2	-0.220133	-0.227411	-0.239641	-0.266161
3	-0.046663	-0.047637	-0.049703	-0.055176
4	-0.018933	-0.019181	-0.019860	-0.021913
5	-0.010057	-0.010139	-0.010439	-0.011437
6	-0.006188	-0.006220	-0.006376	-0.006940
7	-0.004176	-0.004189	-0.004280	-0.004631
:	:	÷	:	:
•		•	•	•
∞	$-\frac{\gamma^2}{8} - \frac{67}{384}\gamma^3$	$-\frac{\gamma^2}{8} - \frac{21}{128}\gamma^3$	$-\frac{\gamma^2}{8} - \frac{47}{256}\gamma^3$	$-\frac{\gamma^2}{8} - \frac{53}{128}\gamma^3$

where $\gamma = 1/(D-1)$ is the Kato cusp factor

イロト イポト イヨト イヨト

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU O		The Conjecture/Proof 00●000	
Conjecture			

A conjecture

A precise statement of the conjecture

For the ¹S ground state of two electrons confined by a radial external potential $V(r) = sgn(m)Z^{m+2}r^m$ in D dimension, the high-density correlation energy is

$$\lim_{Z\to\infty} E_{\rm c}(D,m) \sim -\frac{\gamma^2}{8} + O(\gamma^3)$$

where $\gamma = 1/(D-1)$ is the Kato cusp factor

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

・ 同下 ・ ヨト ・ ヨト

Quantum Chemistry at ANU O		The Conjecture/Proof	
Proof			

In Dudley's footsteps ...

Herschbach J Chem Phys 84 (1986) 838

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

3

Quantum Chemistry at ANU O		The Conjecture/Proof ○○○●○○	
Proof			

In Dudley's footsteps ...

How can one prove such a conjecture?

Herschbach J Chem Phys 84 (1986) 838

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

イロト イポト イヨト イヨト

Quantum Chemistry at ANU		The Conjecture/Proof	
		000 00	
Proof			

In Dudley's footsteps ...

- How can one prove such a conjecture?
- We need to examine the limiting behavior for large Z and D

Herschbach J Chem Phys 84 (1986) 838

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

(4 冊 ト 4 三 ト 4 三 ト

Quantum Chemistry at ANU O	Introduction 0000	Two-Electron Systems	The Conjecture/Proof ○○○●○○	
Proof				

In Dudley's footsteps ...

- How can one prove such a conjecture?
- We need to examine the limiting behavior for large Z and D
- This requires double perturbation theory

Herschbach J Chem Phys 84 (1986) 838

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

・ 戸 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU O	Introduction	Two-Electron Systems	The Conjecture/Proof	
Proof				

In Dudley's footsteps ...

- How can one prove such a conjecture?
- We need to examine the limiting behavior for large Z and D
- This requires double perturbation theory
- After transforming both independent and dependent variables

$$\left(\frac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z}\hat{\mathcal{W}}\right)\Phi=\mathcal{E}\Phi$$

where $\Lambda = (D-2)(D-4)/4$

Herschbach J Chem Phys 84 (1986) 838

Quantum Chemistry at ANU O	Introduction	Two-Electron Systems	The Conjecture/Proof	
Proof				

In Dudley's footsteps ...

- How can one prove such a conjecture?
- We need to examine the limiting behavior for large Z and D
- This requires double perturbation theory
- After transforming both independent and dependent variables

$$\left(\frac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z}\hat{\mathcal{W}}\right)\Phi=\mathcal{E}\Phi$$

where $\Lambda = (D-2)(D-4)/4$

This is now in a suitable form for double perturbation theory

Herschbach J Chem Phys 84 (1986) 838

イロト イポト イヨト イヨト

Quantum Chemistry at ANU O	Introduction 0000	Two-Electron Systems	The Conjecture/Proof ○○○○●○	
Proof				

In Dudley's footsteps ...

Goodson & Herschbach J Chem Phys 86 (1987) 4997

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

イロト イポト イヨト イヨト

Quantum Chemistry at ANU O		The Conjecture/Proof ○○○○●○	
Proof			

In Dudley's footsteps ...

We have

$$\left(\frac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z}\hat{\mathcal{W}}\right)\Phi=\mathcal{E}\Phi$$

Goodson & Herschbach J Chem Phys 86 (1987) 4997

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

Quantum Chemistry at ANU O		The Conjecture/Proof ○○○○●○	
Proof			

In Dudley's footsteps ...

- We have $\left(rac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+rac{1}{Z}\hat{\mathcal{W}}
 ight)\Phi=\mathcal{E}\Phi$
- In the $D = \infty$ limit, the pure kinetic term $\hat{\mathcal{T}}$ vanishes and we then have a semi-classical electrostatics problem

Goodson & Herschbach J Chem Phys 86 (1987) 4997

・ 戸 ト ・ ヨ ト ・ ヨ ト

Quantum Chemistry at ANU O		The Conjecture/Proof ○○○○●○	
Proof			

In Dudley's footsteps ...

- We have $\left(rac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+rac{1}{Z}\hat{\mathcal{W}}
 ight)\Phi=\mathcal{E}\Phi$
- In the $D = \infty$ limit, the pure kinetic term $\hat{\mathcal{T}}$ vanishes and we then have a semi-classical electrostatics problem
- The electrons settle into a fixed "Lewis" structure that minimizes $\hat{U} + \hat{V} + \frac{1}{Z}\hat{W}$

Goodson & Herschbach J Chem Phys 86 (1987) 4997

通 ト イヨト イヨト

Quantum Chemistry at ANU O		The Conjecture/Proof ○○○○●○	
Proof			

In Dudley's footsteps ...

- We have $\left(\frac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z}\hat{\mathcal{W}}\right)\Phi=\mathcal{E}\Phi$
- In the $D = \infty$ limit, the pure kinetic term $\hat{\mathcal{T}}$ vanishes and we then have a semi-classical electrostatics problem
- The electrons settle into a fixed "Lewis" structure that minimizes $\hat{\mathcal{U}} + \hat{\mathcal{V}} + \frac{1}{Z}\hat{\mathcal{W}}$
- \blacksquare In this optimal structure, the angle θ_∞ between the electrons is slightly greater than 90°

Goodson & Herschbach J Chem Phys 86 (1987) 4997

周下 イモト イモト

Quantum Chemistry at ANU O		The Conjecture/Proof ○○○○●○	
Proof			

In Dudley's footsteps ...

- We have $\left(\frac{1}{\Lambda}\hat{\mathcal{T}}+\hat{\mathcal{U}}+\hat{\mathcal{V}}+\frac{1}{Z}\hat{\mathcal{W}}\right)\Phi=\mathcal{E}\Phi$
- In the $D = \infty$ limit, the pure kinetic term $\hat{\mathcal{T}}$ vanishes and we then have a semi-classical electrostatics problem
- The electrons settle into a fixed "Lewis" structure that minimizes $\hat{\mathcal{U}} + \hat{\mathcal{V}} + \frac{1}{Z}\hat{\mathcal{W}}$
- \blacksquare In this optimal structure, the angle θ_∞ between the electrons is slightly greater than 90°
- \blacksquare In the analogous HF calculation, one finds $\theta_{\infty}=90^{o}$ exactly

Goodson & Herschbach J Chem Phys 86 (1987) 4997

(4 間) トイヨト (4 ヨト)

Quantum Chemistry at ANU O		The Conjecture/Proof	
Proof			

In Dudley's footsteps ...

Loos & Gill Phys Rev Lett (submitted) arXiv:1005.0676v2

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

Quantum Chemistry at ANU		The Conjecture/Proof	
		000000	
Proof			

In Dudley's footsteps ...

l

Now, by carefully taking the high-Z limit, one finds

$$E^{(2)}(D,m) = \left[-\frac{1}{2(m+2)} - \frac{1}{8}\right]\gamma^2 + O(\gamma^3)$$
$$E^{(2)}_{\rm HF}(D,m) = \left[-\frac{1}{2(m+2)}\right]\gamma^2 + O(\gamma^3)$$

Loos & Gill Phys Rev Lett (submitted) arXiv:1005.0676v2

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Nancy, SRSMC UMR 7565 — 23rd June 2010 —

Quantum Chemistry at ANU		The Conjecture/Proof	
		000000	
Proof			

In Dudley's footsteps ...

Now, by carefully taking the high-Z limit, one finds

$$E^{(2)}(D,m) = \left[-\frac{1}{2(m+2)} - \frac{1}{8}\right]\gamma^2 + O(\gamma^3)$$
$$E^{(2)}_{\rm HF}(D,m) = \left[-\frac{1}{2(m+2)}\right]\gamma^2 + O(\gamma^3)$$

• Both of these depend on the external potential parameter m

Loos & Gill Phys Rev Lett (submitted) arXiv:1005.0676v2

Correlation energy of two-electron systems in the high-density limit

- 4 回 ト 4 ヨ ト 4 ヨ ト
| Quantum Chemistry at ANU | | The Conjecture/Proof | |
|--------------------------|--|----------------------|--|
| | | 00000 | |
| Proof | | | |
| | | | |

A proof

In Dudley's footsteps ...

l

Now, by carefully taking the high-Z limit, one finds

$$E^{(2)}(D,m) = \left[-\frac{1}{2(m+2)} - \frac{1}{8}\right]\gamma^2 + O(\gamma^3)$$
$$E^{(2)}_{\rm HF}(D,m) = \left[-\frac{1}{2(m+2)}\right]\gamma^2 + O(\gamma^3)$$

- Both of these depend on the external potential parameter *m*
- But their difference is independent of *m*, proving the conjecture!

Loos & Gill Phys Rev Lett (submitted) arXiv:1005.0676v2

- 4 同 ト - 4 ヨ ト - -

Quantum Chemistry at ANU	Introduction	Two-Electron Systems	The Conjecture/Proof	Conclusion
	0000	000000000	000000	

The state of the art

		Helium	Spherium	Hookium	Ballium
Normal density	E _{HF} E E _c		Exact Quasi Quasi	Quasi	
High density	E _{HF} E E _c	Exact	Exact Exact Exact	Exact Exact Exact	Exact

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

・ロト ・聞ト ・ヨト ・ヨト

Quantum Chemistry at ANU		Conclusion

Summary

Pierre-François Loos and Peter M. W. Gill

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU		Conclusion

Summary

1 The high-density limit sheds light on the normal case

Pierre-François Loos and Peter M. W. Gill

Nancy, SRSMC UMR 7565 - 23rd June 2010 -

イロト イポト イヨト イヨト

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU		Conclusion

Summary

- **1** The high-density limit sheds light on the normal case
- **2** High-Z: $E_{\rm c}({\rm He}) \approx E_{\rm c}({\rm Sp}) \approx E_{\rm c}({\rm Ho}) \approx E_{\rm c}({\rm Ba})$

(1日) (1日) (1日)

Quantum Chemistry at ANU		Conclusion

Summary

- The high-density limit sheds light on the normal case
- **2** High-Z: $E_{\rm c}({\rm He}) \approx E_{\rm c}({\rm Sp}) \approx E_{\rm c}({\rm Ho}) \approx E_{\rm c}({\rm Ba})$
- 3 The high-dimension limit sheds light on these cases

(4 間) トイヨト (4 ヨト)

Quantum Chemistry at ANU		Conclusion

Summary

- The high-density limit sheds light on the normal case
- **2** High-Z: $E_{\rm c}({\rm He}) \approx E_{\rm c}({\rm Sp}) \approx E_{\rm c}({\rm Ho}) \approx E_{\rm c}({\rm Ba})$
- 3 The high-dimension limit sheds light on these cases
- 4 High-Z, Large-D: $E_{\rm c}({
 m He}) = E_{\rm c}({
 m Sp}) = E_{\rm c}({
 m Ho}) = E_{\rm c}({
 m Ba})$

- 4 間 と 4 き と 4 き と

Quantum Chemistry at ANU		Conclusion

Summary

- The high-density limit sheds light on the normal case
- **2** High-Z: $E_{\rm c}({\rm He}) \approx E_{\rm c}({\rm Sp}) \approx E_{\rm c}({\rm Ho}) \approx E_{\rm c}({\rm Ba})$
- 3 The high-dimension limit sheds light on these cases
- 4 High-Z, Large-D: $E_{\rm c}({\rm He}) = E_{\rm c}({\rm Sp}) = E_{\rm c}({\rm Ho}) = E_{\rm c}({\rm Ba})$
- 5 Ultimately, the electron-electron cusp determines everything

・ 同 ト ・ ヨ ト ・ ヨ ト

Correlation energy of two-electron systems in the high-density limit

Quantum Chemistry at ANU		Conclusion

Summary

- The high-density limit sheds light on the normal case
- **2** High-Z: $E_{\rm c}({\rm He}) \approx E_{\rm c}({\rm Sp}) \approx E_{\rm c}({\rm Ho}) \approx E_{\rm c}({\rm Ba})$
- 3 The high-dimension limit sheds light on these cases
- 4 High-Z, Large-D: $E_{\rm c}({\rm He}) = E_{\rm c}({\rm Sp}) = E_{\rm c}({\rm Ho}) = E_{\rm c}({\rm Ba})$
- 5 Ultimately, the electron-electron cusp determines everything
- 6 High-Z, Large-D: $E_{\rm c} \sim -\gamma^2/8$

イロト イポト イヨト イヨト 二日