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How to perform a HF calculation in practice?

The SCF algorithm (p. 146) I

@ Specify molecule {ra} and {Z4} and basis set {¢y, }
Q@ Calculate integrals Sy, Hyy and (pv|Ac)

© Diagonalize S and compute X = s1/2

@ Obtain guess density matrix for P

1.
. Compute F/ = Xt . F.X

. Diagonalize F’ to obtain C" and E
. Calculate C = X - C’

o UA WN

Calculate J and K, then F=H + J + K

Form a new density matrix P = C - ct

. Am | converged? If not go back to 1.

@ Calculate stuff that you want, like Eiyr for example
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The HF wave function

A Slater determinant

xi(x1)  xa(x1) oo xn(xa)
1 (xi02)  xe(x2) - xn(x2)
‘I"HF(xhxz,...,xN):ﬁ
Jilen)  xalen) o xwGo) @
= [xi(x1)x2(x2) - xn(xn))
:AX1(X1)X2(X2)-~-XN(XN) I.AH(XI,XZ ..... XN)
o A is called the antisymetrizer
@ II(xq,x2,...,xy) is a Hartree product
@ The many-electron wave function ¥yjg(x1, X2, . . ., x) is an antisymmetrized product of one-electron
functions y
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Spin and spatial orbitals

(r K
Xi(x) = o(@)i(r) = {”‘(“’) vilr) i(r) =Y Cuigpu(r)
13

These are restricted spin orbitals =

The spin orbitals are orthogonal
« 1 ifi=j
(il = [ x5 x(0dx = 85 = {

0 otherwise
y

The spatial orbitals are orthogonal

(ilp;) = /I/J;k (r)p;(r)dr = 6j; = Kronecker delta

.

The basis functions (or atomic orbitals) orthogonal

<4’y|4’1/> = /¢,’j(r)cpv(r)dr = Suv = Overlap matrix

y
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Spin and spatial orbitals (Take 2)

Comments

o {¢uli=1,..., K} are basis functions or atomic orbitals (AOs)

o {xili=1,...,2K} are the spin orbitals

o {ili=1,...,K} are the or

@ With K AOs, one can create K and 2K spin orbitals

o For the ground state, the first N spin orbitals are occupied and the last 2K — N are vacant (unoccupied)

@ When a system has 2 electrons in each orbital, it is called a closed-shell system, otherwise it is called a
open-shell system

@ For the ground state of a closed shell, the first N/2 are doubly-occupied and the last
K — N/2 are vacant (unoccupied)

o The MOs are build by linear combination of AOs (LCAO)

o The coefficient Cy,; are determined via the HF equations based on
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Ground-state Hartree-Fock determinant

X2k
L[]
L
L d
virtual —————
spin Xs
orbitals X,
L ]
L]
L]
xN-o-I

L

—— Xy

L ]
occupied + X,
spin
orbitals — kX,
.
.

.
——X; Figure 2.4 The Hartree-Fock ground state
—— Xy determinant, |X1Xz C o Xadb XN
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Excited deter

Reference determinant

The electrons are in the N lowest orbitals (Aufbau principle):  |¥o) = [0} = |X1-.-XaXb---XN) (2)}

Singly-excited determinants

Electron in a promoted in r:  |¥.) = |[X1.-- X/ Xb---XN) (3))
Doubly-excited determinants

Electrons in a and b promoted in rand s:  [¥7,) = |x1... XrXs - XN) (4)J

o v T ey T

cccopud | ——f— x, b ——%

orbitets. e — B Xe N X

[ — R — J——

—_——X —e—X
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Physics vs Chemistry

Physicts’ notations

Gilhb) = (i1Al) = [ 7 ()b (x0) e ©)

(ijlkty = (xixjl xuxe) fjf?(, x1)x;j (x2) — Xk(x1)X1(X2)dX1dX2 (6)
(il t) = Cijlkt) = Ciiltk) = [ x; ) (xz> (1= Pl xi(x) dadx; 0|
(ijlkl) = (xixjlxexi) = HX, x1)x;j(x1) Xk(XZ)Xl(Xz)dX1dX2 ®)
(31 #1) = (31K1) — (’l|kl) ©)




Permutation symmetry

Permutation symmetry in physicts’ notations

(ijlkty = (xixjlxexe) f X7 () (x2) — Xk(x1)7€l(x2)dx1dx2 (10)
Complex-valued integrals:  (ij|kl) = <jl“k> = (kl|ij)* = {lk|ji)* (11)
Real-valued integrals:  (ij|kl) = (ji|kl) = (ij|lk) = (ji|lk) = (kl|ij) = (lk|ij) = (kl|ji) = (lk|ji) (12)J

Permutation symmetry in chemists’ notations

(ijlkl) = (xixjlxexo) = IIX, x1)xj(x1) Xk(xz))(l(xz)dx1dxz (13)

Real-valued integrals:  (ij|kl) = (ji|kl) = (ij|lk) = (ji|lk) = (kl\u) = (lk|ij) = (kl|ji) = (lk|ji) (14)J
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Slater-Condon rules: One-electron operators

O1=)_h(i) (15)

(K|O1|K) =) (m|h|m) (16)

(K|O1|L) = (m|h|p) (17) |

(K|O1|L) =0 (18)J




Slater-Condon rules: Two-electron operators

N
0, = Zr’;]

i<j

(19)

(K|O2|L) = (mnl|pq)
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The correlation energy

HF replaces the e-e interaction by an averaged interaction

@ The error in the HF method is called the correlation energy

The correlation energy is small but cannot but neglected!

o HF energy roughly 99% of total but chemistry very sensitive to remaining 1%

The correlation energy is always negative

Computing E. is one of the

In quantum chemistry, we usually “freeze” the core electrons for correlated calculations
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Most common correlation methods in quantum chemistry

@ Configuration Interaction: CID, CIS, CISD, CISDTQ, etc.

@ Moller-Plesset perturbation theory: MP2, MP3, MP4, MP5, etc.

@ Coupled Cluster: CCD, CCSD, CCSD(T), CCSDT, CCSDTQ, etc.

@ Multireference methods: MCSCF, CASSCF, RASSCF, MRCI, MRCC, CASPT2, NEVPT2, etc.
@ Density-functional theory: DFT, TDDFT, etc.

@ Quantum Monte Carlo: VMC, DMC, FCIQMC, etc.
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Assumptions & Notations

Let’s talk about notations

@ Number of occupied orbitals O
@ Number of vacant orbitals V
° N=0+V

@ i,j, k, L are occupied orbitals
@ a, b, ¢, d are vacant orbitals
@ p,q,r,sare

® U, v, A, 0 are basis function indexes
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Configuration Interaction (Cl)

@ This is the oldest and perhaps the easiest method to understand
o Cl is based on the variational principle (like HF)
o The Cl wave function is a linear combination of determinants
o Cl methods use to “improve” the reference (usually HF) wave function
_ ab b be abcd abcd
|Pcr) = o [¥o) + + ) Y Z YR+ Y YR+ (29
~— i<j i<j<k<l
reference a<b a< h c a<b<c<d
singles doubles triples quadruples
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Cl method and Excited determinants

Excited determinants

T 1T

33131
FI+17%
A NES =t

HF S-type S-type D-type D-type T-type

y
Cl wave function

[1@ci) = @ [0) +cs |S) + o [D) +er [T) + cq Q) + -+ | (24)

4




Truncated ClI

@ When |S) ( ) are taken into account: CIS
(25)
NB: CIS is an
@ When |D) (doubles) are taken into account: CID
|q)CID> = ‘0> + ¢ |D> (26)
NB: CID is the cheapest Cl method
@ When |S) and |D) are taken into account: CISD
‘CDCISD> = ‘0> + cs ‘S> “+ ¢cp ‘D> (27)
NB: CISD is the most commonly-used Cl method
@ When |S), D) and |T) (triples) are taken into account: CISDT
|Pcispr) = 0 [0) +¢s|S) + cp [D) + 7 [T) (28)

e CISDTQ, etc.
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@ When all possible excitations are taken into account, this is called a Full CI calculation (FCI)

|Drci) = 0 |0) + ¢s|S) + cp D) + cr |T) + cq | Q) + - (29)

FCI gives the

FCl is becoming more and more fashionable these days (e.g. FCIQMC and SCI methods)

So, why do we care about other methods?

Because FCl is super computationally expensive!
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Size of Cl Matrix

For n=10and N = 38:
o There is Cfo possible ways of selecting k electrons out of the 10

occupied orbitals

Num. of excitations
1

280

17,010
393,120
4,299,750
24,766,560
79,115,400
142,084,800
139,864,725
69,069,000
13,123,110
472,733,756

Ck _ n!

" kl(n—k)!

o There is CX; ways of distributing them out in the 28 virtual orbitals
o For a given excitation level k, there is CX Ck; excited determinants

° is

O ONONU A WN o O

10
Y ckchy = Cif = 472,733,756
k=0

—_
(=1

g
Ia

This is a lot...
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Pople diagram

level of theory.,

FCI exact

e e °
CISDTQP
CISDTQ |
CISDT
CISD |
HF ;

. . . . . o basis set

Sz DZ TZ Q7 5z complete © oo® o€
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Cl Lagrangian

The ClI Lagrangian is

L= (Pci|H|®ci) — A(Pci|Per) — 1) with  [Pcp) =Y ¢ |1) (30)
I
with
(@il H|@cr) =) ag (1)) = ZC/ (A + ) (1AL 31
7 H,—J I?HT
U}
(DCI‘CPCI ZC/CJ IU ZCIZ (32)
I
Following the variational procedure, we get
oL 2) ¢gHy—2Ae; =0 (Hy—=A)a+Y_H 0 (33)
o5 _ _ — r - =
o - Gty < o /] o] Z e
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Cl secular equations

Hoo — E  Ho Hoy @ 0
Hio Hi—E ... Hyy o 0
1] e ()
Hpo Hy—E < 0
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The FCI matrix:

[ [Pci) = o [HF) + c5[S) + 0 [D) + er [T) + e Q) + (35)

IHF) s) D) m Q)
(HF| (HF|AH|HF> <HF\AH\S> <HFLH|D> <HFLH|T) <HF|AIA-I\Q>
(S| (SIHIHE)  (s|Fjs) (s|fD)  (SIAT) (S|H|Q)

w_ (O (OIANF  (©lAs) (OAD) AT (DlQ) - 6
<<T| (T|H|HF) <(T\H|S)> <<T|H|D>> <<T|/—/|T> <<T‘H‘Q>

Q| (QlA[HF)  (Q|A|s Q|AH[D Q|A|T)y  (QlH|Q)




The FCI matrix:

[ [Pci) = o [HF) + c5[S) + 0 [D) + er [T) + e Q) +

IHF) s) D) m
<HF| (HF|H|HF> 0 <HF\H\D> 0 0
(S| o (s|f)s) (s|FD) (SIHIT) o
w_ (Dl (DIfHF) (DIFs) (DIAD) (DAIT) (D|A|Q)
<<T| o (i) i) (A (T

Q| 0 0

Q|AID)  (Q|AIT) (QlA|Q)

(37)

(38)




Rules & Observations

@ No coupling between HF ground state |HF) and single excitations |S)

(39)
@ No coupling between |HF) and triples |T) , quadruples |Q) , etc.
= Slater-Condon rules
(HF[AIT) = (HFIAQ) = --- =0 (40)
(SIHIQ) =---=0 (41)
@ |S) have small effect but mix indirectly with |D)
= CID # CISD
(HF|A|S) =0 but (S|A|D) #£0 (42)
@ |D) have large effect and |Q) more important than |T)
= CID gives most of the correlation energy
(HF|A|D) > (HF|H|Q) > (HF|H|T) (43)

@ Of course, this matrix is never explicitly built in practice (Davidson algorithm)...
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Weights of excited configurations for Ne

Excit. level Weight Correlation energy of Be and Method scaling
=1
(1) Zg i 1874 Method AE, % Scaling
. 73
2 3.4 % 1072 EIFS 8 g zs
—4
£31 i; i 13—4 CISD 0.075277  96.05 N©
5 R CISDT  0.075465 96.29 NB
6 1.7 x 106 CISDTQ  0.078372 100 N10
7 1-4 x 1077 FCI 0.078372 100 eN
. y
8 1.1x107°
y
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Size consistency and size extensivity

Truncated Cl methods are size inconsistent i.e.

2E:(Hz) # Ec(Hp----Hz)

o Size consistent defines for non-interacting fragment
° refers to the scaling of E. with the number of electrons

NB: FCl is size consistent and size extensive
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Rayleigh-Schrodinger perturbation theory

Let’s assume we want to find ¥y and Ey, such as

(/:/(0> —I—)\/:/(D)‘Fo =EKEY, (44)
and that we know

BOgO) _ Oyl 540 (45)

Let’s expand ¥ and Ej in term of A:
Eo=A"E + A ED 4 A2 EP 4 0 EP 4 (46)
¥o = A0 AT e 2w o ow® (47)

such as (intermediate normalization)
<\Y§°>‘\P§°)> =1 <‘Y(()O)"Y(()k)> =0, k=12...,00 (48)
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Rayleigh-Schrodinger perturbation theory (Part 1)

Gathering terms with respect to the power of A:

A HOw ) — gy (49)
A O 4 ) = (0D 4 (Vg0 (50)
A2 OwR el = 0w 4 g(Del) g (51)

HO¥P 4 O — EOw P 4 Ve 1 EP Y+ Y (52)

2 g = (r | O ) (53)
A = (e |HO ) (54)
A2 E(52> = <‘Y(<)O) A "I"(()1)> Wigner’s (2n+1) rule! (55)

Y = (¥ [HOe) = (wiV [ - gV |¢V) (56)
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Rayleigh-Schrodinger perturbation theory (Part 2)

Expanding ‘Y(()1> in the basis ‘I’,(,()) withn=0,1,2,...,00

) =D ) = ) = (e -
Therefore,
) - ) e ) o
n#0
Using results from the previous slide, one can show that
(0) A(1)‘ (0)>2
; Y, | H'Y Y
P G U
E 7,; E(SO) EQ (59)
(60)

Pierre-Francois LOOS



Megller-Plesset (MP) perturbation theory

In Mgller-Plesset perturbation theory, the partition is

N N
r . . . ~(1) 1 .
HO =Y f() = Yl + v 0], A=) )G (61)
=1 =1 i<j 'l i
Therefore,
0 & (1) 15 (0 (1)
Ey = Zei: Ey = ) Z<UH’J> = Enr = £y + E (62)
i ij
The first information about the correlation energy is given by the second-order correction
occ virt e 2
b
Eéz) = M This is the MP2 correlation energy! (63)
iTjach€iTE —€a—€p
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MP3 energy

The third-order correction is a bit ugly...

£ (ij]|ab) (k[ ij) {abl | k)

0 7722(6 +ej—€a—€p)(ex+ € —€a—€p)
ijkl ab i j a b k l €a €p

+1 Z y (ij||ab) (ab||d) (cd]|if)

(€i+ej—€ea—ep)(ei+ej—ec—ey)

ij abcd
+ZZ U\|ab><kb||cj><ac\|fk>
ijk abc (ei + €j—€a— eb) (6, + €k —€a— ec)

@ MP4 does need singly, doubly, triply and quadruply excited determinants!
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Pople diagram

level of theory.,

MPol .exact?

I
|
MP5 !
|
MP4 |
I
MP3 |
|
MP2 1
|
HF ;
|

. . . . . +—3 basis set

Sz Dz TZ Qz 5z complete | oo ¢
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Illustration for the Be atom

Correlation energy of Be in a 4s2p basis set

Scaling  Level AE, % Level AE, %
N° MP2  0.053174  67.85

N© MP3  0.067949 86.70  CISD 0.075277  96.05
N’ MP4  0.074121  94.58

NB& MP5  0.076918 98.15  CISDT 0.075465  96.29
N? MP6  0.078090  99.64

N10 MP7  0.078493 100.15 CISDTQ 0.078372 100

@ MPnis not a variational method, i.e. you can get an energy lower than the true ground state energy!
@ MPn fails for systems with small HOMO-LUMO gap

@ The MPn series can oscillate around the exact energy
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MP2 correlation energy

MP2 is the simplest way of catching a good chunk of correlation:

occ virt

=L

(ij|ab) (2 {ij|ab) — (ij

|ba))

ij ab

=2Y)

ij ab

GG —Ca=Cp

Ij|ab
€it€ —€—€p

,Zzw

7B €it+€ —€—€p

direct part

b

exchange part

(64)
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Computing the MP2 correlation energy

How much does it cost to compute the MP2 correlation energy?

procedure MP2 CORRELATION ENERGY
E? =9
fori=1,0do
forj=1,0do
fora=1,Vdo
forb=1, Vdo
A=e¢it+ej—€s—¢€p
EP = E? + (2(ij|ab)® — (ijlab) (ij|ba)) /A
end for
end for
end for
end for
end procedure > O(N4) because there are four loops!)
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AO to MO transformation (Take 1)

The naive way...

(pqlrs) = Y cupcvgerrcos (pv|Ac) (65)
R uvAoc -
MO integrals AO integrals
procedure AO-T0-MO TRANSFORMATION
for p=1,Ndo
forqg=1,Ndo
for r =1,Ndo
for s =1,Ndo

(pq|rs) =0 > Initialization of the array

for i =1,Ndo

forv=1,Ndo
for A =1, N do
foroc =1,Ndo
(pqlrs) = (pqlrs) + cupevqen cos (pv|Ac) > Accumulation step
end for
end for
end for
end for
end for
end for
end for

end for > Thisisa O(N8> algorithm! You won’t do much quantum chemistry with this...

end procedure
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AO to MO transformation (Take 2)

Semi-direct algorithm...

(pq|rs) ch, ch,q Zc\, (Zc (pv|A > (66)

p
‘l _\/_/

Step #2

Step #3

Step #4
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Semi-direct algorithm

Semi-direct algorithm... Step #1

procedure SEMI-DIRECT ALGORITHM ( )
Allocate temporary array [ of size N*
for =1, Ndo
forv=1,Ndo
for A =1, Ndo
foroc =1, Ndo
for s =1,Ndo
I;n/,\ = I;u/,\ + cos {pv|A >
end for
end for
end for
end for
end for > costs O(N) and O (N*) storage

end procedure )
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Semi-direct algorithm

Semi-direct algorithm...

procedure SEMI-DIRECT ALGORITHM (STEP #2)
Allocate temporary array J of size N*
for =1, Ndo
forv=1,Ndo
for A =1, Ndo
for r=1,Ndo
fors=1,Ndo
./;lvr = J}wr + ), I;u/,f\
end for
end for
end for
end for
end for > Step #2 costs O(N°) and O (N*) storage
end procedure

vy
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Semi-direct algorithm

Semi-direct algorithm...

procedure SEMI-DIRECT ALGORITHM (STEP #3)
for y = 1,N do
forv=1,Ndo
forg=1,Ndo
forr=1,Ndo
fors =1,Ndo
I;lqr = I]lq/‘ + Cqu;wr
end for
end for
end for
end for
end for > Step #3 costs O (NS) and no new storage
end procedure )
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Semi-direct algorithm

Semi-direct algorithm...

procedure SEMI-DIRECT ALGORITHM (STEP #4)
for y = 1,N do
for p=1,Ndo
forg=1,Ndo
forr=1,Ndo
fors =1,Ndo
(palrs) = (palrs) + Supluar
end for
end for
end for
end for
end for > Step #4 costs O (NS) and no new storage
end procedure

4
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Coupled-Cluster Theory

A few random thoughts about coupled cluster (CC)

o CC theory comes from nuclear physics
o The idea behind CC is to include all corrections of a given type to infinite order
@ The CC wave function is an exponential ansatz

@ The CC energy is size-extensive, but non-variational

o CCis considered as the gold standard for weakly correlated systems
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@ CC wave function

Yeeo = eAT‘I’O where ¥ is a reference wave function (67)
o Excitation operator
T=f+5L+.. 4T, (68)

o Exponential ansatz

5 A 14 14
T _ 5 532 53
el =TT P T
~ A a 1 ) A PN 1,3
=1+T+ I, +5 1 T\ B+ L+ -h
~— 2 6 (69)
connected disconnected
A A A 1 ) 1, 4p 1 44
+ T, +hLT+- 72 4oL+ =T +...
~—~— 2 ~—~— 2 24
four electrons two pairs of electrons
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Excitation operators

o Singles
h=Y ¢ ada = Yo=Y ¥ (70)
ia <~~~ ia
amplitudes
@ Doubles 1 1
L=, Lttnags = T¥=_) ye (71)
ijab ijab

excited determinants

e FCIl wave function
Yecr=(1+NY =0+ +L+T+...)% (72)

@ Anticommutation relation of the annihilation and creation operators

A A ata | oA At
=0 apag + aga, =0 apaq + apag = Opq (73)
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Pople diagram

level of theory.,

FCC exact

e e °
CCSDTQP
CCSDTQ |
CCSDT
CCSD |
HOF !

Sz DZ TZ Q7 5z complete * asis set
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o Schrodinger equation
H[¥cc) = E|¥ Fe' [¥,) = Ee’ [¥ T el ¥,) = E|¥ 74
[Yee) = E[Yee) = He' [Yo) = Ee’ [Yo) = e He [Yo) = E[Yo)  (74)
H = similarity transform

@ Variational CC energy (factorial complexity)

(Yec|H[¥ee)  (Fo(el)t|Hle™ o)
T

- S >Eexac
(Yeel¥ee) (Fo(e)leT¥e) — 9

Evce =

o (Traditional) projected CC energy (polynomial complexity)

b _ (BlHIY0) _ (Yoo T|HeT¥0)
TCC — - 57 (76)
(Yol o) (Foe T|eT¥o)

@ Unitary CC energy (very expensive unless you have a quantum computer)

<‘F0(ef)+‘l:l|€fq'r0> _ <T0€_f|l:l|ef‘¥0>

E = - = = where # = T — T is anti-Hermitian 77
VT T ¥ ()T o) (%o[¥o) @7
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Similarity-transformed Hamiltonians & Amplitude equations

Similarity-transformed Hamiltonians
@ The similarity-transformed Hamiltonian H = e~ T el is not Hermitian:
(e_ATIA-Ie?)+ = (eAT)Jrl'A-IJr(e_?)Jr =l fe T = e THel (78)

o The similarity-transformed Hamiltonian e~ He® is Hermitian:

(e THe) = (N it (e D)t =" He ™ = e THe' because 1= —% (79))

The two most important equations in CC theory

@ The energy equation

(¥ole T Hle [¥,) = E (80)

@ The amplitude equation

(¥&leTHe ¥y =0 = 1~ ®1)

y
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CISD vs CCSD

Let’s build the CISD and CCSD Hamiltonian matrices in the basis of |0), |S), and |D):

CISD Hamiltonian

. Ewp O Hop
Hosp=1 0 Hss Hsp (82)

Hpo Hps Hpp )

CCSD Hamiltonian

. Ecc /:‘/05 IEIOD
Heesp = 0 Hss  Hsp (83)
0 Hps Hpp

NB: This is the equation-of-motion (EOM) CCSD Hamiltonian!
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The Hausdorff expansion

Campbell-Baker-Hausdorff formula
1

FaF oA A T e aq = T rrrm, aq &0 & A AT AT A

e THe' =f+ AT +EHH, 7], 7] +§[[[H, 7. 7]. 7] +EH[H, TLTLT]+... (83)

1
H= thqapaq + Z {pql|rs) A;agasar (85)
pq pqrs
[a;aq,aga,} = ab agal a—al adl ag = a0 — alopag (36)
dga—afag dip—afa;

4

o At the TCC level, the BCH expansion truncates naturally after the first five terms
@ At the VCC level, the BCH expansion does not truncate but terminates

o At the UCC level, the BCH expansion does not terminate

For more details about normal-ordered operators, Wick’s theorem, and diagrammatic techniques, see
Crawford & Schaefer, Reviews in Computational Chemistry, Vol. 14, Chap. 2, 2000.
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Projected CC energy

Assuming that (¥o[¥o) = 1, we have
ECC = <1F()|FI6T|TO>

= YolAG+T+ T+ = T1 )| ¥o)

(87)

= (Yol H[¥o) + (Yol AT\[¥o) + (FolAT,[¥o) + = (Yol HTF|¥0)

1

2

—Eo+22t (ol H[¥E) + - 22 (10 + t8eD — the8) (W, | H[¥E)
ij ab
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CC energy with Hartree-Fock reference

HF reference wave function

® £y = Enr
o (Yo|H|¥%) = (ilfla) =0 < Brillouin’s theorem

° (‘Y0|I:I|Tj}b> = (ij||ab) = (ij|lab) — (ij|ba) < Two-electron integrals

1
Ecc = Enr + 3 1 (5 + 7t — 247) (ij||ab) (88)
ij ab
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Truncated CC

CC with doubles (CCD)

@ Only doubles, doubles of doubles, etc = 7= 'Afz

o Still an infinite series

5 A 14 1. 14
i+ L+ B+ T+ 89
e tht oL+ + T+ (89)
o CCD energy
Eccp = Enr + 5 }:Zt (ij|| ab) (90)
ij ab y
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CCD equations

@ Projection of similarity-transformed Hamiltonian onto doubles
(‘I’fjb|l_-l|‘1’0> = Ecc (‘i’f}bwo) =0 = (‘P?jb|e7TI:IeT\‘Y0> =0 91)

@ Residual equation

~ (illab) + uif + vip
rgb = (ij||ab) + APt + uP +viP =0| = | = G (92)
ij
o Energy differences
A =eater—ei—g ©3)
@ Linear array
uif = £(tf") = O(N) (94)
o Quadratic array
= f(5§7) = O(N°) or O(N) (95)
smart dumb
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Each term of the linear term can be computed in O(N®):

b1 d
Z _E§<ab|‘6d tc + = Z leU tkl

Wy 0000
(96)

+Z zkzip_c ) 84+ (kal|jc) the — (kal|ic)ths + (kbl|ic) 5
ovov

NB: CCD(vj” = 0) = linear CCD (LCCD)
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array: the way

The quadratic term is the computational bottleneck of CCD:
1
vit = 5 2 (Kll[ed) 6P — 2(efe e + 57 4F)
kled
00VV (97)
b cd d cab bd bd
(tﬁ( JC[ + thk ﬁ )_'_4(1.’17(6 jl + Lik ﬁc)

The “formal” scaling of the quadratic term is O(N®)
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array: the way

One can “sacrifice” storage to gain in scaling:

(Kl Xa|ij) = Y (kl||cd) £ (b1Xale) = Y (kd||cd) tf (98)
—_— T "
O(N®) O(N)
(k[ Xslj) = Y (Kl||cd) 57 (il| Xs|ad) =Y (kl||cd) t4¢ (99)
N —r led — k
O(N°) : O(N®) ¢

Now, the quadratic term can be computed in O(N°®)

b 1 b 1 / \ b
i =3 1 (kixled) - 5;[<b»wsf+ <aXz\C>f5-]

(100)
—72[ kIXa 1) 1% + (k| Xs|i tkj] +Z[ ik| X ac) <ik\x4|bc>tgf]
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CCD algorithm

CCD subroutine

procedure ITERATIVE CCD ALGORITHM
Perform HF calculation to get €, and (pq||rs)
Set uf}b =0, and vi”;[’ =0
Compute amplitudes t,-‘}-b = — (ij||ab) /Af}b (MP2 guess)
while max |r,~’j~b| > 7 do
Form linear array u,?j-b
Compute intermediate arrays (k{|X1|ij), (b|Xz2|c), (k|Xs|j), and
(il| Xa| ad).
Form quadratic array v}jb \ o M,Z + \ K {
Compute residues: r}'}b = (ij||ab) + Af}bt{‘}b + ug-b + v,:”;b
i . rab b b b
Update amplitudes: " < t7” — ri?/ A
end while
Compute CCD energy: Eccp = Enr + % s tgb (ij||ab)
end procedure

cis
Lec

+
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Illustration for the Be atom

Correlation energy of Be in a 4s2p basis set

Scaling  Level AE, % Level AE, % Level AE, %
N° MP2  0.053174  67.85

NS MP3  0.067949  86.70  CISD 0.075277 96.05 CCSD 0.078176  99.75
N’ MP4  0.074121  94.58 CCSD(T)  0.078361  99.99
N8 MP5  0.076918  98.15  CISDT 0.075465 96.29 CCSDT 0.078364  99.99
N? MP6  0.078090  99.64

N1© MP7  0.078493  100.15 CISDTQ  0.078372 100  CCSDTQ  0.078372 100

e




Monte Carlo (MC) Methods

@ Monte Carlo is a numerical integration method

o It is used in problems where it is too difficult or impossible to obtain analytical expressions or the
dimensionality of the integral is large

@ The method consists in repeating random sampling many times to obtain numerical results:
= thisisa or stochastic method.

e MC converges as N~ /2 where N is the number of MC step

@ In 1946, Stanislaw Ulam was the first mathematician to dignify this approach with a name, in honor of
his uncle having a little issue with gambling

@ Nicolas Metropolis also made important contributions ( )
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Monte Carlo Computation of 7

11 1, xX2+y2 <1,

—1J-1 0, otherwise.

~ 1948 __
T T = 31792




Variational Monte Carlo (VMC)

o Within quantum chemistry, VMC is used to obtain expectation values (mainly energies)

o In VMC, the expectation value of the Hamiltonian with respect to a Yt is obtained
using a stochastic integration technique

@ The VMC energy is an upper bound to the exact ground state energy

H¥1(R) )2
- J¥r(R) H¥T(R)dR _ v (k) IT(R)*dR _ JER)¥r(R)*dR (o)
YMET Y (R)2dR [¥r(R ZdR f‘I’T ZdR

where R
HY¥1(R)

E.(R) = ﬁ is the local energy and R = (r1,r2,...,ry) (102)
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Diffusion Monte Carlo (DMC)

Time-dependent Schrédinger equation written in imaginary time:

oT

0D(R, T)

= (F— S)®(R, )

@ For T — o9, the solution is the

o DMC generates configurations (or walkers) distributed according to the density

p(R, ) = ¥1(R) ®(R, 7)

Jo(R, T 1
p(T) =5 V?(R,7)+ V- [F(R)p(R, )] — [EL(R) — Er] p(R. T)
diffusion branching
where
F(R) = V\P‘I%‘({\’)) is the quantum force

If ¥1(R) has exact nodes, DMC energy = exact energy (fixed-node error)

(103)

(104)

(105)
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Excited-State Methods: Single-Reference Methods

o HF- and DFT-based methods
o Configuration interaction single (CIS)
o Time-dependent HF (TDHF)
o Time-dependent DFT (TDDFT)
o Excited-state mean-field (HF and KS)

CC-based methods

e Equation-of-motion CC (EOM-CCSD, EOM-CCSDT, etc)
e CC2and CC3 (approximation of CCSD and CCSDT with linear response)

@ Cl-based methods

o CIS(D): perturbative approach to CIS that approximately introduces doubles
o Symmetry-adapted cluster Cl (SAC-CI)

o Algebraic diagrammatic construction (ADC)
o Bethe-Salpeter equation (BSE-GW) formalism
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Excited-State Methods: Multi-Reference Methods

@ Multiconfigurational self-consistent field (MCSCF)

o Complete active space self-consistent field (CASSCF)
o Complete active space perturbation theory 2nd order (CASPT2)
o Restricted active space self-consistent field (RASSCF)

o Multireference Cl (MRCI)
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Photochemistry
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Photochemistry
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Equations for CIS

HF wave function

The HF ground-state wave function is taken as reference
lI’r()(X1,X2,...,Xn) = |X](X1)X2(X2)...Xn(xn)> y
CIS wave function
occ virt
[Yeis) = ch," |[¥¢) where [¥¢) are singly-excited determinants
i a
4

CIS energy

‘ H[¥cis) = Ecis [¥cis) ‘:> Y H[YE) = Ecis ) [¥])
ia ia

= ZC? <"ij|l:l‘lffl> = ECIS Zc,‘-‘&ijéab
ia ia
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Solving the CIS Equations

The Slater-Condon rules tell us that
(YY) = (Eo + €q— €)0ii0ap + (ib]|aj)

with (ib||aj) = (ib|aj) — (ib|ja), and

dX1 dx2

j Xi(x1)xp(x2 Xa(x1)7(j(x2)

(ib
(iblaj) = i — 1]

Therefore,

Y [(ea—€i)éijdap + (ibllaj)] ! = weis Y 8ijbapc!
ia

ia

We obtain the excitation energy w by diagonalising A

AX=wX = (A-w1)-X=0| with Agj = (cq— €)dba+ (ib]|a))
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Comments, Properties, and Limitations of CIS

Comments

@ (eq — €j)djjdzp: energy difference between orbitals i and a, which are the ones from which and to which
the electron is excited

@ (ib||aj): linear response of the Coulomb operator to the first-order changes in the one-electron orbitals)

Properties and limitations

@ All excited-state total energies are true upper bounds to their exact values
@ CIS is size-consistent
@ One can obtain pure singlet and triplet states (no spin contamination)

@ CIS excitation energies are usually overestimated
(too large by about 0.5-2 eV compared to exact values)

4
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Time-Dependent Hartree-Fock (TDHF)

TDHF wave function

The reference wave function is a time-dependent HF wave function:

Yur(ri, ... rn t) = Yue(R, t) = |x1(r1, O)x2(r2, t) ... xn(rn, £)) )

TDHF equations
n

.0
F(R, t)¥ur(R, 1) = i

Yue(R, t) F(R,t) = F(R) +V(R,t) = F(R) + Z vi(rj, t)

What physically happens?

@ Att = 0, the system is in a stationary state given by ¥1;r(R)

@ A small TD perturbation is applied: the orbitals respond only slightly

@ Linear response: we use Ist-order TD perturbation theory to find this response

G
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Time-Dependent Hartree-Fock (TDHF)

How to solve the TDHF equations?

We have a non-Hermitian problem:

(% %) Gn)=en ()

Aia,jb = (Ea — ei)éijéab + <lb| ‘aj) Bia,jb = <Ij‘ |ab)

which can be reduced in a Hermitian eigenvalue equation

4

Tamm-Dancoff approximation

@ CISisequivalent to TDHF with B = 0

@ B = 0 & Tamm-Dancoff approximation (TDA)

Pierre-Francois LOOS



Comments on TDHF

Comments

@ (€qa — €)0ij0qp: energy difference between orbitals i and a, which are the ones from which and to which
the electron is excited

@ (ib||aj): linear response of the Coulomb operator to the first-order changes in the one-electron orbitals
@ (ij||ab) linear response of the exchange operator to the first-order changes in the one-electron orbitals
@ TDHF is an extension of CIS: It includes single “de-excitations” as well as single excitations

@ TDHF = RPAx and TDHF without exchange is direct RPA (dRPA)
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Properties and limitations of TDHF

Properties and limitations

@ TDHEF is a size-consistent method

@ One can obtain pure singlet and triplet states for closed-shell molecules
@ TDHF has problems with triplets (instabilities)

@ TDHF has not been very successful in the quantum chemistry community

@ Excitation energies calculated with TDHF are slightly smaller than the ones obtained with CIS, but they
are still overestimated

@ TDHF is not a significative improvement over CIS and is slightly more expensive
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Time-dependent density-functional theory (TDDFT)

The Runge-Gross theorem

The Runge-Gross theorem can be seen as the time-dependent analogue of the first Hohenberg-Kohn theorem
and constitutes the cornerstone of the formal foundation of the time-dependent Kohn-Sham (KS) formalism}

TDDFT equations

2
Fis(R, t)¥ks(R, t) = ig‘f’Ks(R. t)

4

How to solve the TDDFT equations?
A B X\ _  (Xm
—B* —A* Yn) " \Yn

Aia,jb = (ea - €i)éij&zb + <1b|a./> + <’./‘f;<c|ab>
Biajb = (ij|ab) + (ibl|fic|aj)

M
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ES——
TDDFT equations

(iilficlab) = [[ gi(ri)gy(r )%%(ﬁ)%(rz)dndm

Tamm-Dancoff approximation

@ I[n the Tamm-Dancoff approximation (TDA), we set B = 0: = TDA/TDDFT
@ It’s a very good approximation & it makes the problem Hermitian )
Hybrid functionals
Aiajb = (€a — €i)0ij0ap + (ialjb) — ciir (ijlab) + (1 — ciir) (ialfic|jb)
Bia,jb = (ialbj) — ciir (iblaj) + (1 — ciir) (ialfxc|bj)
where is the fraction of HF exchange in the hybrid functional )
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Relationship between CIS, TDHF, DFT and TDDFT

A 4 linear response y
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Comments on TDDFT

@ Although standard functionals are developed for ground states, they are also employed in TDDFT
@ Results are very sensitive to the choice of the xc functional

o TDDFT is accurate for valence-excited states (error of 0.1-0.5 eV)
= It can be as good as EOM-CCSD or CASPT2

o TDDFT has troubles with

© Rydberg states

@ Valence states of molecules exhibiting extended 7-systems
@ Doubly excited states

© Charge-transfer (CT) excited states

@ Core-excited states

e
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Failures of TDDFT

o Rydberg states and extended 7t-systems:
wrong long-range behavior of standard xc functionals (faster than 1/r)

@ Doubly-excited states:
cannot be treated within linear response theory (only contains singly excited states)

o CT excited states:
excitation energies are drastically underestimated due to wrong asymptotic behavior of xc functionals.
It can be fixed using range-separated functionals (CAM-B3LYP, etc).

@ In these cases, we can have errors of several eV and incorrect curvature of PES
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Multiconfigurational self-consistent field (MCSCF)

@ MCSCEF is a Cl on steroids:
both the coefficients in front of the determinants and the MOs used for constructing the determinants
are optimised

o MCSCEF optimisation is iterative like the SCF procedure in HF or KS

© MCSCEF are much harder to converge and prone to converge on solutions that are not minima (2nd-order
SCF procedure)

o MCSCF wave function is usually smaller than Cl because harder to optimize
@ MCSCEF (orbital relaxation) do not recover a large fraction of the correlation energy: static correlation

o Cl recovers a large fraction of the correlation energy: dynamic correlation
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The two faces of correlation energy

Static correlation energy

Energy lowering is introduced by adding enough flexibility in the wave function to be able to qualitatively
describe the system. This is essentially the effect of allowing orbitals to become (partly) singly-occupied
instead of forcing double occupation, i.e. describing near-degeneracy effects (two or more configurations
having almost the same energy)

y
Dynamic correlation energy
The remaining energy lowering by correlating the motion of the electrons and the electronic cusp. The
problem is that there is no rigorous way of separating dynamic and static correlations J

Take-home message 1

MCSCF methods are mainly used for generating a qualitatively correct wave function, i.e.
recovering the “static” part of the correlation

M
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Complete active space self-consistent field (CASSCF)

@ In CASSCEF, the selection of configurations is done by partitioning the MOs into active and inactive
spaces

@ The active MOs will typically be some of the highest occupied and some of the lowest unoccupied MOs
from HF calculation

@ The inactive MOs have either 2 or 0 electrons, i.e. always either doubly occupied or empty
@ [n, m|-CASSCF: n electrons are distributed in all possible ways in m orbitals

o CASSCEF gets the “static” part of the correlation energy
=- CASPT2 is used to get the “dynamical” part

Pierre-Francois LOOS



CASSCF vs RASSCF

RAS3
All — 0,1or2
CAS excita- RAS2 excitations
- tions =)=
=li= ==
== o |
—l— RAS1 | _ -
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[n, n]-CASSCF

Number of configurations generated in an [n, n]-CASSCF wave function

n Number of CSFs
2 3
4 20
6 175
8 1764
10 19404
12 226,512
14 2,760,615
y
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Restricted active space self-consistent field (RASSCF)

@ The active MOs are divided into three spaces: RAS1, RAS2 and

@ RAST consists of MOs that are doubly occupied in HF reference determinant
©@ RAS2 is generated by FCI (analogously to CASSCF)
Q consists of MOs that are empty in HF reference determinant

@ FCI within RAS2
@ CISD from RAS1 to and from RAS2 to

@ This procedure can be customized if required

Take-home message 2

MCSCF methods aren’t BLACK BOX!
How do we choose the active space?
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CASSCF vs RASSCF

RAS3
All — 0,1or2
CAS excita- RAS2 excitations
- tions =)=
=li= ==
== o |
—l— RAS1 | _ -
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Good books

Introduction to Computational Chemistry (Jensen)

Essentials of Computational Chemistry (Cramer)

@ Modern Quantum Chemistry (Szabo & Ostlund)

Molecular Electronic Structure Theory (Helgaker, Jorgensen & Olsen)
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