

European Research Council Established by the European Commission Laboratoire de Chimie et Physique Quantiques

Hierarchy Configuration Interaction and State-Specific Approaches for Excited States

Pierre-François (Titou) Loos

September 4th, 2022

Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse https://pfloos.github.io/WEB_LOOS

PTEROSOR has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

Hierarchy Configuration Interaction

Hierarchy configuration interaction (hCI)

Fábris Kossoski

Kossoski, Damour & Loos, JPCL 13 (2022) 4342.

S	0	2	4	6

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0	HF				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		CIS			
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2			CISD		
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3				CISDT	
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0	sCl0				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		sCI2			
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2			sCl4		
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3				sCl6	
4					
5					
6					

A novel partitioning of the Hilbert space

Hierarchy CI (hCI)

$$h=\frac{e+s/2}{2}$$

- *e*: excitation degree
- ► *s*: seniority number
- ► *h*: hierarchy parameter

Kossoski, Damour & Loos, JPCL 13 (2022) 4342

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

hCI

_____ _____ ____

e/s	0	2	4	6	8
0	HF				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		hCl1			
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2		hCl1.5			
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2			hCl2		
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3			hCl2.5		
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3				hCl3	
4					
5					
6					

Excitation-based CI vs Hierarchy CI vs Seniority-based CI

Physical motivation

- Excitation-based CI quickly recovers dynamic correlation
- Seniority-based CI performs well for static correlation
- hCl aims at accounting for most of both

Empirical motivation

Any well-defined truncation scheme is valid. Is hCl effective?

Computational motivation

Each hierarchy level accounts for all classes of determinants whose number share the same scaling with system size

excitation-based CI	hCl	$N_{\rm det}$
CIS	hCI1	$\mathcal{O}(N^2)$
-	hCI1.5	$\mathcal{O}(N^3)$
CISD	hCl2	$\mathcal{O}(N^4)$
-	hCI2.5	$\mathcal{O}(N^5)$
CISDT	hCI3	$\mathcal{O}(N^6)$

hCl can be implemented in a selected way for additional performance

Selected Configuration Interaction (SCI): "sparse" exploration of Hilbert spaces

Huron, Malrieu & Rancurel, JCP 58 (1973) 5745

Quantum Package 2.0

"SCI+PT2 methods provide near full CI (FCI) quality quantities with only a small fraction of the determinants of the FCI space"

Anthony Scemama

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs", Garniron et al., JCTC 15 (2019) 3591

Orbital optimized CI (oo-CI): F₂/cc-pVDZ

Yann Damour

Damour, Véril, Kossoski, Caffarel, Jacquemin, Scemama & Loos, JCP 155 (2020) 176101

oo-CIS

State-averaged vs State-specific excited-state calculations

State-averaged CI

- A common set of <u>orbitals</u> and <u>determinants</u> are used to construct the ground- and excited-state wave functions
- A single calculation is required with suitable weights on the different states
- > You may or may not further optimize the orbitals
- It's a half empty, half full strategy

State-specific CI

- A different set of <u>orbitals</u> and <u>determinants</u> are used to construct the ground- and excited-state wave functions
- Several calculations are required, one for each state
- One must find a suitable set of orbitals for the excited states (which might not be easy)
- Further optimizing orbitals for a given specific state is hard

Highly-accurate excitation energies: The QUEST project

"The aim of the QUEST project is to provide to the community a large set of highly-accurate excitation energies for various types of excited states"

Denis Jacquemin

Véril et al. WIREs Comput. Mol. Sci. 11 (2021) e1517

The QUEST website

Mika Véril

Véril et al. WIREs Comput. Mol. Sci. 11 (2021) e1517

https://lcpq.github.io/QUESTDB_website

Density-based nightmare...

Wavefunction-based nightmare...

And this is just for excited states...

- Head-Gordon's group: orbital-optimized DFT for double excitations [JCTC 16 (2020) 1699; JPCL 12 (2021) 4517] and TD-DFT benchmark [JCTC (in press)]
- Kaupp's group: assessment of hybrid functionals [JCP 155 (2021) 124108]
- Kallay's and Goerigk's groups: double hybrids [JCTC 15 (2019) 4735; JCTC 17 (2021) 927; JCTC 17 (2021) 5165; JCTC 17 (2021) 4211]
- Truhlar/Gagliardi's group: p-DFT [10.26434/chemrxiv-2022-9g7fd]
- Bartlett's group: Variants of EOM-CC for doubly-excited states [JCP 156 (2022) 201102]
- Neuscamman's group: QMC for doubly-excited states [JCP 153 (2022) 234105]
- Filippi/Scemama's groups: QMC for excited states [JCTC 15 (2019) 4889; JCTC 17 (2021) 3426; JCTC 18 (2022) 1089]
- Gould's group: ensemble DFT [JPCL 13 (2022) 2452]
- our group: wave function methods [JPCL 11 (2020) 974; JCTC 17 (2021) 4756; JCTC 18 (2022) 2418; JCP 157 (2022) 014103] and many-body perturbation theory [JCP 153 (2020) 114120; JCP 156 (2022) 164101]

Our state-specific CI algorithm

O Determine the minimal set of orbitals involved in each state

- Optimize this set of orbitals via energy minimization
- Add (in a selected way) singles and doubles linked to this set $\Rightarrow \Delta CISD$
- Add second-order Epstein-Nesbet perturbative correction $\Rightarrow \Delta CISD+PT2$

How does it work?

MAEs for various types of excitations

MAEs for doubly-excited states

MAEs wrt system size

Acknowledgements & Funding

QUEST team

- 🕨 Mika Véril
- Martial Boggio-Pasqua
- Denis Jacquemin

QUANTUM PACKAGE team

- Anthony Scemama
- Yann Garniron
- Emmanuel Giner
- Michel Caffarel

$https://pfloos.github.io/WEB_LOOS$

PTEROSOR team

- Fabris Kossoski
- Yann Damour
- Raul Quintero
- Enzo Monino

https://lcpq.github.io/PTEROSOR

European Research Council Established by the European Commission