

European Research Council Established by the European Commission Laboratoire de Chimie et Physique Quantiques

The elephant in the room of Green's function methods

Pierre-François (Titou) Loos

RCTF 2022 (Bordeaux) – June 28th, 2022

Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse https://lcpq.github.io/pterosor

PTEROSOR has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

General overview of our research group

PA-5: Selected CI for dipole moments and oscillator strengths

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs", Garniron et al., JCTC 15 (2019) 3591

PA-19: Reference Energies for Cyclobutadiene

Enzo Monino

Monino et al. JPCA (submitted) arXiv:2204.05098.

PA-23: Fock-Space Coupled Cluster

Raul Quintero

Hierarchy configuration interaction (hCI)

Fábris Kossoski

Kossoski, Damour & Loos, JPCL 13 (2022) 4342.

One-body Green's function

One-body Green's function in the quasiparticle approximation

$$G(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega) = \underbrace{\sum_{i} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{i}(\mathbf{r}_{2})}{\omega - \epsilon_{i} - i\eta}}_{\text{removal part = IPs}} + \underbrace{\sum_{a} \frac{\phi_{a}(\mathbf{r}_{1})\phi_{a}(\mathbf{r}_{2})}{\omega - \epsilon_{a} + i\eta}}_{\text{addition part = EAs}}$$

What can we calculate with Green's function methods?	
Ionization potentials (IPs) given by occupied MO energies	$\mathrm{IP}=-\epsilon_{\mathrm{HOMO}}$
Electron affinities (EAs) given by virtual MO energies	$EA = -\epsilon_LUMO$
🎡 Fundamental (HOMO-LUMO) gap (or band gap in solids)	$E_{\rm g}^{\rm fund} = {\rm IP} - {\rm EA}$

Correlation and total energies

The Wonderful Equations of Hedin

Hedin's pentagon square

The GW approximation $G(12) = G_0(12) + \int G_0(13)\Sigma(34)G(42)d(34)$ Green's function $\Gamma(123) = \delta(12)\delta(13) + \frac{\delta\Sigma(12)}{\deltaG(45)}C(46)C(75)\Gamma(673)d(4567)$ vertex $P(12) = -i \int G(12) \frac{\Gamma(324)}{G(21)} G(21) \frac{d(34)}{d(34)} = -i G(12) G(21)$ polarizability $W(12) = v(12) + \int v(13)P(34)W(42)d(34)$ screening $\Sigma(12) = i - \int G(12) W(12) F(324) d(34) = i G(12) W(12)$ self-energy

🐨 Dyson equation

$$[\mathbf{C}(\mathbf{r}_1, \mathbf{r}_2; \omega)]^{-1} = [\mathbf{C}_{\mathsf{HF}}(\mathbf{r}_1, \mathbf{r}_2; \omega)]^{-1} + \underline{\Sigma^{\mathsf{c}}(\mathbf{r}_1, \mathbf{r}_2; \omega)}$$

HF Green's function

correlation part

🍿 Non-linear quasiparticle (QP) equation

$$\left| \epsilon_p^{\mathsf{HF}} + \Sigma_p^{\mathsf{c}}(\omega) - \omega = 0 \right| \Rightarrow \epsilon_{p,s}^{GW}$$
 (s numbers the solutions)

🍘 Spectral weight or renormalization factor

$$0 \leq Z_{p,s} = \frac{1}{1 - \frac{\partial \Sigma_p^c(\omega)}{\partial \omega}}\Big|_{\omega = \epsilon_{p,s}^{GW}} \leq 1$$

Solutions of the non-linear QP equation: $G_0 W_0 @HF/6-31G$ for H₂ at R = 1 bohr

PySCF: Zhu & Chan, JCTC 17 (2021) 727

🐨 Turbomole: van Setten et al. JCTC 9 (2013) 232; Kaplan et al. JCTC 12 (2016) 2528

GW100: IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (http://gw100.wordpress.com)

ORIGINAL RESEARCH published: 21 December 2021 doi: 10.3389/fchem.2021.749779

The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules

Fabien Bruneval *1, Nike Dattani² and Michiel J. van Setten³

¹CEA, Service de Recherches de Métallurgie Physique, Direction des Energies, Université Paris-Saclay, Paris, France, ²HPQC Labs, Waterloo, ON, Canada, ³IMEC, Leuven, Belgium

QP energies of H₂ at the $C_0 W_0$ @HF/6-31G level with $\eta = 0$

Enzo Monino

Loos et al. JCTC 14 (2018) 3071 Véril et al. JCTC 14 (2018) 5220 Monino & Loos, JCP 156 (2022) 231101

Total energies: F₂ at the G₀W₀@HF/cc-pVQZ level

Loos et al. JPCL 11 (2020) 3536; Berger et al. JCTC 17 (2021) 191

Upfolding the *GW* **equations**

A linear version of GW

$$\boldsymbol{H}^{(p)} \cdot \boldsymbol{c}^{(p,s)} = \boldsymbol{\epsilon}_{p,s}^{\boldsymbol{GW}} \boldsymbol{c}^{(p,s)} \quad \text{with} \quad \boldsymbol{H}^{(p)} = \begin{pmatrix} \boldsymbol{\epsilon}_{p}^{\mathsf{HF}} & \boldsymbol{V}_{p}^{2\mathsf{h}1\mathsf{p}} & \boldsymbol{V}_{p}^{2\mathsf{p}1\mathsf{h}} \\ (\boldsymbol{V}_{p}^{2\mathsf{h}1\mathsf{p}})^{\mathsf{T}} & \boldsymbol{C}^{2\mathsf{h}1\mathsf{p}} & \boldsymbol{0} \\ (\boldsymbol{V}_{p}^{2\mathsf{p}1\mathsf{h}})^{\mathsf{T}} & \boldsymbol{0} & \boldsymbol{C}^{2\mathsf{p}1\mathsf{h}} \end{pmatrix} \quad \text{and} \quad \boldsymbol{Z}_{p,s} = \left[\boldsymbol{c}_{1}^{(p,s)} \right]^{2}$$

Bintrim & Berkelbach, JCP 154 (2021) 041101; Monino & Loos, JCP 156 (2022) 231101.

QP and satellite energies of H₂ at the $C_0 W_0$ @HF/6-31G level

The reference 1p determinant $|1\bar{1}3\rangle$ and the external 2p1h determinant $|12\bar{2}\rangle$ are involved!

Intruder-state problem \Leftrightarrow a determinant in **Q** becomes near-degenerate with a determinant in **P** \Rightarrow appearance of small denominators \Rightarrow numerical issues!

How to avoid intruder states? \Rightarrow do not enforce $QH^{\text{eff}}P = 0$

 \Leftrightarrow near-degenerate determinants are not decoupled

 $\leftarrow \text{Continuous similarity renormalization group (SRG)} \\ transformation$

Glazek & Wilson, PRD 48 (1993) 5863; ibid 49, 4214 (1994); Wegner, Ann. Phys. 506 (1994) 77

Regularized GW method

Regularized GW self-energy & quasiparticle equation

SRG-based energy-dependent regularizer $f_\kappa(\Delta) = rac{1-e^{-2\Delta^2/\kappa^2}}{\Lambda}$ $g(\Delta) = \frac{1}{\Delta}$ $f(\Delta, \mathbf{10}) = \frac{1 - e^{-10\Delta^2}}{c}$ $f(\Delta, 1) = \frac{1 - e^{-\Delta^2}}{4}$ -2 -3 -3 -2 -1 0 1 2 Evangelista, JCP 140 (2014) 124114

QP and satellite energies of H_2 at the $C_0 W_0 @HF/6-31G$ level

Total energy of F_2 at the $G_0 W_0 @HF/cc-pVDZ$ level

Acknowledgements & Funding

QUEST team

Mika Véril

Martial Boggio-Pasqua

Denis Jacquemin

QUANTUM PACKAGE team

- **Emmanuel** Giner

Michel Caffarel

https://pfloos.github.io/WEB_LOOS

PTEROSOR team

- Fabris Kossoski
- Yann Damour
- Raul Quintero
- Enzo Monino

https://lcpq.github.io/PTEROSOR

