

European Research Council

Laboratoire de Chimie et Physique Quantiques

Accurate FCI correlation energies and reduced density matrices

Pierre-François (Titou) Loos

June 17th, 2022

Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse https://pfloos.github.io/WEB_LOOS

> PTEROSOR has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

Selected Configuration Interaction (SCI): "sparse" exploration of the FCI space

"Among the very large number of determinants contained in the FCI space, only a tiny fraction of them significantly contributes to the energy"

CIPSI = CI using a Perturbative Selection made Iteratively

- Developed in Toulouse many (many) years ago Huron, Malrieu & Rancurel, JCP 58 (1973) 5745
- Based on old idea by Bender and Davidson, and Whitten and Hackmeyer Bender & Davidson, Phys. Rev. 183 (1969) 23 Whitten & Hackmeyer, JCP 51 (1969) 5584
- CIPSI (and SCI methods in general) has been recently resurrected! Giner, Scemama & Caffarel, CJC 91 (2013) 879 Giner, Scemama & Caffarel, JCP 142 (2015) 044115
- CIPSI ≈ heat-bath CI (Umrigar) ≈ adaptive sampling CI (Evangelista) ≈ iterative CI (Liu) ≈ incremental CI (Zimmerman) ≈ FCIQMC (Alavi)

CIPSI algorithm

Quantum Package 2.0

"SCI+PT2 methods provide near full CI (FCI) quality quantities with only a small fraction of the determinants of the FCI space"

Anthony Scemama

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs", Garniron et al., JCTC 15 (2019) 3591

The Benzene Blind Challenge: Frozen-core correlation energy (cc-pVDZ)

Eriksen et al. JPCL 11 (2020) 8922

Performance of CIPSI for C₆H₆/cc-pVDZ (1)

Loos, Damour & Scemama, JCP 153 (2020) 176101

Loos, Damour & Scemama, JCP 153 (2020) 176101

Orbital-optimized CIPSI for C₆H₆/cc-pVDZ (and many others)

- Orbital optimization largely accelerates the convergence of selected CI
- Trust-region Newton-Raphson algorithm

Yann Damour

Damour, Véril, Kossoski, Caffarel, Jacquemin, Scemama & Loos, JCP 155 (2020) 176101

Highly-accurate excitation energies: The QUEST project

"The aim of the QUEST project is to provide to the community a large set of highly-accurate excitation energies for various types of excited states"

Denis Jacquemin

Density-based nightmare...

Wavefunction-based nightmare...

And this is just for excited states...

The QUEST website

Mika Veril

Véril et al. WIREs Comput. Mol. Sci. 11 (2021) e1517

https://lcpq.github.io/QUESTDB_website

- Head-Gordon's group: orbital-optimized DFT for double excitations [JCTC 16 (2020) 1699; JPCL 12 (2021) 4517] and TD-DFT benchmark [JCTC (in press)]
- Kaupp's group: assessment of hybrid functionals [JCP 155 (2021) 124108]
- Kallay's and Goerigk's groups: double hybrids [JCTC 15 (2019) 4735; JCTC 17 (2021) 927; JCTC 17 (2021) 5165; JCTC 17 (2021) 4211]
- Neuscamman's group: QMC for doubly-excited states [JCP 153 (2022) 234105]
- Filippi's and Scemama's groups: QMC for excited states [JCTC 15 (2019) 4889; JCTC 17 (2021) 3426; JCTC 18 (2022) 1089]
- Tim Gould's group: ensemble DFT [JPCL 13 (2022) 2452]
- our group: wave function methods [JPCL 11 (2020) 974; (2020) JCTC 17 (2021) 4756; JCTC 18 (2022) 2418] and many-body perturbation theory [JCP 153 (2020) 114120; JCP 156 (2022) 164101]

Large-Scale Benchmarking of Multireference

Vertical-Excitation Calculations via

Automated Active-Space Selection

Daniel S. King,[†] Matthew R. Hermes,[†] Donald G. Truhlar,^{*,‡} and Laura

Gagliardi*.¶

 †Department of Chemistry, University of Chicago, Chicago IL 60637
‡Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis MN 55455-0431

60637

E-mail: truhlar@umn.edu; lgagliardi@uchicago.edu

Abstract

We have calculated state-averaged complete-active-space self-consistent-field (SA-CASSCF), multiconfiguration pair-density functional theory (MC-PDFT), hybrid MC-PDFT (HMC-PDFT), and *n*-electron valence state second-order perturbation theory (NEVPT2) excitation energies with the approximate pair-coefficient (APC) automated active-space selection scheme for the QUESTDB benchmark database of 542 vertical excitation energies. We eliminated poor active spaces (20-30% of calculations) by ap-

Hierarchy Configuration Interaction

Hierarchy configuration interaction (hCI)

hCI1

hCl2

hCl3

FCI

Distance

Fábris Kossoski

Kossoski, Damour & Loos, JPCL 13 (2022) 4342.

е	
0	
1	
2	
3	

S	0	2	4	6

S	0	2	4	6
	sCl0			

S	0	2	4	6
		sCl2		

S	0	2	4	6
			sCl4	

S	0	2	4	6
				sCl6

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0	HF				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		CIS			
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2			CISD		
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3				CISDT	
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0	sCl0				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		sCI2			
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2			sCl4		
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3				sCl6	
4					
5					
6					

A novel partitioning of the Hilbert space

Hierarchy CI (hCI)

$$h=\frac{e+s/2}{2}$$

- *e*: excitation degree
- ► *s*: seniority number
- ► *h*: hierarchy parameter

e/s	0	2	4	6	8
0					
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0	HF				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1		hCl1			
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2		hCI1.5			
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2			hCl2		
3					
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3			hCI2.5		
4					
5					
6					

e/s	0	2	4	6	8
0					
1					
2					
3				hCl3	
4					
5					
6					

Excitation-based CI vs Hierarchy CI vs Seniority-based CI

Physical motivation

- Excitation-based CI quickly recovers dynamic correlation
- Seniority-based CI performs well for static correlation
- hCl aims at accounting for most of both

Empirical motivation

Any well-defined truncation scheme is valid. Is hCl effective?

Computational motivation

Each hierarchy level accounts for all classes of determinants whose number share the same scaling with system size

excitation-based CI	hCl	$N_{\rm det}$
CIS	hCl1	$\mathcal{O}(N^2)$
-	hCI1.5	$\mathcal{O}(N^3)$
CISD	hCl2	$\mathcal{O}(N^4)$
-	hCI2.5	$\mathcal{O}(N^5)$
CISDT	hCI3	$\mathcal{O}(N^6)$

 hCl can be implemented in a selected way for additional performance

e/s	0	2	4	6	8
0	1				
1					
2					
3					
4					
5					
6					

e/s	0	2	4	6	8
0	1				
1		N ²			
2	N ²				
3					
4					
5					
6					

e/s	0	2	4	6	8
0	1				
1		N ²			
2	N²	N ³			
3					
4					
5					
6					

e/s	0	2	4	6	8
0	1				
1		N ²			
2	N ²	N ³	N ⁴		
3		N ⁴			
4	N ⁴				
5					
6					

e/s	0	2	4	6	8
0	1				
1		N ²			
2	N²	N ³	N ⁴		
3		N ⁴	N ⁵		
4	N ⁴	N⁵			
5					
6					

e/s	0	2	4	6	8
0	1				
1		N ²			
2	N ²	N ³	N ⁴		
3		N ⁴	N⁵	N ⁶	
4	N ⁴	N⁵	N ⁶		
5		N ⁶			
6	N ⁶				

Orbital optimized CI (oo-CI): F₂/cc-pVDZ

oo-CIS

Summary

Hierarchy configuration interaction (hCl)

Novel CI hierarchy, physically, computationally, and empirically inspired

Performance of hCl

Overall better than excitation-based CI, for different systems, properties, and basis sets

Orbital optimized CI (oo-CI)

Not always recommended. Stepping up the CI ladder might be a wiser choice

oo-CIS

Minimally correlated model (only single excitations), promising results

Perspectives

hCl

Excited states

- Open-shell systems
- Hierarchy coupled-cluster
- Trial wave functions for Quantum Monte Carlo
- RDMFT [Senjean et al. arXiv:2204.00699]

Orbital optimization

Optimize the orbitals at a lower level of CI, then run a higher level of CI

oo-CIS

Excited states

Acknowledgements & Funding

QUEST team

- 🕨 Mika Véril
- Martial Boggio-Pasqua
- Denis Jacquemin

QUANTUM PACKAGE team

- Anthony Scemama
- Yann Garniron
- Emmanuel Giner
- Michel Caffarel

$https://pfloos.github.io/WEB_LOOS$

PTEROSOR team

- Fabris Kossoski
- Yann Damour
- Raul Quintero
- Enzo Monino

https://lcpq.github.io/PTEROSOR

European Research Council Established by the European Commission