

European Research Council

Laboratoire de Chimie et Physique Quantiques

Benchmarking multiconfigurational methods for vertical excitation energies

Martial Boggio-Pasqua & Pierre-François (Titou) Loos

10th OpenMolcas Developers' Workshop

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

> PTEROSOR has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

Density-based nightmare...

Wavefunction-based nightmare...

And this is just for excited states...

TD-DFT vs CC/ADC [JCTC 15 (2019) 4581; JCTC 17 (2021) 1106]

Highly-accurate excitation energies: The QUEST project

"The aim of the QUEST project is to provide to the community a large set of highly-accurate excitation energies for various types of excited states"

Mika Véril

Martial Boggio-Pasqua

Denis Jacquemin

Selected CI methods

"SCI+PT2 methods provide near full CI (FCI) quality energies with only a small fraction of the determinants of the FCI space"

Anthony Scemama

Emmanuel Giner

Michel Caffarel

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs", Garniron et al., JCTC 15 (2019) 3591

QUEST #1 - small molecules -

A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks

Pierre-François Loos,**[†][©] Anthony Scemama,[†] Aymeric Blondel,[‡] Yann Garniron,[†] Michel Caffarel,[†] and Denis Jacquemin^{**,‡}[©]

¹Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31013 Toulouse Cedex 6, France ⁵Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

- 110 vertical excitation energies (VTEs) and oscillator strengths
 - 18 small molecules with 1 to 3 non-H atoms
- CC3/aug-cc-pVTZ geometries
- mostly singly-excited states and very few doubly-excited states
- rely on FCI to define "theoretical best estimates" (TBEs)
- aug-cc-pVTZ and CBS vertical energies
- benchmark popular excited-state methods accounting for double and triple excitations

QUEST #2 - double excitations -

Reference Energies for Double Excitations

Pierre-François Loos,**[†][©] Martial Boggio-Pasqua,[†][©] Anthony Scemama,[†] Michel Caffarel,[†] and Denis Jacquemin[‡][©]

[†]Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France [‡]Laboratoire CEISAM (UMR 6230), CNRS, Université de Nantes, 44399 Cedex 3 Nantes, France

- 20 VTEs for doubly-excited states
- 14 small- and medium-sized molecules
- mostly rely on FCI to define TBEs (except for the largest molecules)
- aug-cc-pVTZ and CBS vertical energies
- benchmark excited-state methods including at least triple excitations
- additional benchmarks of multi-configurational methods

pubs.acs.org/JCTC

A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules

Pierre-François Loos,* Filippo Lipparini,* Martial Boggio-Pasqua, Anthony Scemama, and Denis Jacquemin*

Medium-size molecules

Article

- 238 VTEs (and oscillator strengths) with mostly singly-excited states and aug-cc-pVTZ basis
- 27 small- and medium-sized molecules with 4 to 6 non-H atoms
- rely mostly on CCSDT or CCSDTQ to define TBEs
- benchmark popular excited-state methods accounting for double and triple excitations
- recently improved TBEs with CC4 and CCSDTQ [JCP 154 (2021) 221103; arXiv:2204.11658]

QUEST #4 – "exotic" molecules and radicals –

pubs.acs.org/JCTC

Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals

Pierre-François Loos,* Anthony Scemama, Martial Boggio-Pasqua, and Denis Jacquemin*

 two subsets of excitations and oscillator strengths

Article

- an "exotic" subset of 30 VTEs for closed-shell molecules containing F, Cl, P, and Si
- a "radical" subset of 51 doublet-doublet transitions in 24 small radicals
- total of 81 TBEs mostly obtained at the FCI/aug-cc-pVTZ level
- benchmark popular excited-state methods (U vs RO)

QUEST #5 – larger molecules –

80 new transitions the vast majority being of CCSDT quality

benchmark popular excited-state methods over the entire database

QUESTDB: A database of highly accurate excitation energies for the electronic structure community

Mickaël Véril¹ | Anthony Scemama¹[©] | Michel Caffarel¹ | Filippo Lipparini² | Martial Boggio-Pasqua¹ | Denis Jacquemin³ | Pierre-François Loos¹[©]

QUEST #6 – charge-transfer states –

pubs.acs.org/JCTC

Reference Energies for Intramolecular Charge-Transfer Excitations

Pierre-François Loos,* Massimiliano Comin, Xavier Blase,* and Denis Jacquemin*

- intramolecular charge-transfer transitions in π-conjugated molecules
- 30 transitions of CCSDT quality in 17 systems with cc-pVTZ
- Basis-set correction up to aug-cc-pVQZ computed with CCSD and CC2
- benchmark popular excited-state methods
- additional benchmarks of BSE@GW and TD-DFT (hybrids and range-separated hybrids)

QUEST #7 – bicyclic molecules –

pubs.acs.org/JPCA

Article

A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Bicyclic Systems

Published as part of The Journal of Physical Chemistry virtual special issue "Vincenzo Barone Festschrift".

Pierre-François Loos* and Denis Jacquemin*

- VTEs for 10 bicyclic molecules
- 91 new transitions of CCSDT quality for larger systems
- benchmark popular excited-state methods accounting for double and triple excitations

The QUEST website

Mika Véril

Véril et al. WIREs Comput. Mol. Sci. 11 (2021) e1517

https://lcpq.github.io/QUESTDB_website/

- Head-Gordon's group: orbital-optimized DFT for double excitations [JCTC 16 (2020) 1699; JPCL 12 (2021) 4517] and TD-DFT benchmark [JCTC (in press)]
- Kaupp's group: assessment of hybrid functionals [JCP 155 (2021) 124108]
- Kallay's and Goerigk's groups: double hybrids [JCTC 15 (2019) 4735; JCTC 17 (2021) 927; JCTC 17 (2021) 5165; JCTC 17 (2021) 4211]
- Neuscamman's group: QMC for doubly-excited states [JCP 153 (2022) 234105]
- Filippi's and Scemama's groups: QMC for excited states [JCTC 15 (2019) 4889; JCTC 17 (2021) 3426; JCTC 18 (2022) 1089]
- Tim Gould's group: ensemble DFT [JPCL 13 (2022) 2452]
- our group: wave function methods [JPCL 11 (2020) 974; (2020) JCTC 17 (2021) 4756] and many-body perturbation theory [JCP 153 (2020) 114120; JCP 156 (2022) 164101]

Benchmarking MR-PT2 & -PT3 methods for vertical transition energies

Triazine

3 (non-H) atom molecules

- 284 VTEs at CC3/aug-cc-pVTZ geom.: - 174 singlet - 110 triplet - 206 valence \rightarrow - 78 n $\rightarrow\pi^*$ - 119 $\pi\rightarrow\pi^*$ - 78 Rydberg - 9 double excitations
- NFVPT2
 - aug-cc-pVTZ
 - frozen core
 - SC and PC versions
 - state-specific calculations
- CASPT2 / CASPT3
 - aug-cc-pVTZ
 - frozen core
 - IPEA = $0.25 E_{\rm h}$ or = 0 (no IPEA)
 - Level shift = $0.3 E_{\rm h}$
 - state-specific calculations
- Performed in Molpro

R. Sarkar et al., J. Chem. Theory Comput. 2022, 18, 2418–2436. M. Boggio-Pasqua et al., 2022, arXiv:2204.06480.

Reference CASSCF calculations

Choice of active space and state-averaging in the reference CASSCF wavefunction:

- state-average between ground state and the excited state(s) of interest
 -> minimize bias between GS and ESs
- state-average between states of different electronic symmetries

-> allows to preserve degeneracy in doubly-degenerate irreducible representations (E, Π , Δ) of non-Abelian point groups (D_{3h} , D_{6h} , $C_{\infty v}$, $D_{\infty h}$)

• active space chosen as "intuitive" as possible but for difficult cases

Thiophene example

¹A₁(π , π ^{*}) excited states SA3-CASSCF(6,5) ¹A₂(π ,3s) excited state SA2-CASSCF(6,6)

Results: Global trends

Errors (in eV) taking the TBEs as reference.

Method	MSE	MAE	RMSE	SDE	max(+)	max(–)
SA-CASSCF	0.12	0.47	0.61	0.58	2.15	-1.18
SC-NEVPT2	0.13	0.15	0.19	0.14	0.65	-0.38
PC-NEVPT2	0.09	0.13	0.17	0.14	0.46	-0.57
CASPT2(IPEA)	0.06	0.11	0.16	0.14	0.71	-0.32
CASPT2(NOIPEA)	-0.26	0.27	0.33	0.21	0.30	-1.02
CASPT3(IPEA)	0.10	0.11	0.17	0.14	0.93	-0.28
CASPT3(NOIPEA)	0.05	0.09	0.14	0.13	0.79	-0.36

Some conclusions:

- CASSCF: small MSE, large MAE and max(+/-)
- CASPT2(NOIPEA): poor MSE & MAE
- CASPT2(IPEA): good MSE & MAE
- PC-NEVPT2 competitive with CASPT2(NOIPEA)
- SC-NEVPT2 slightly inferior
- CASPT3(NOIPEA) only slightly better than CASPT2(IPEA)

Results: Global trends with type of transition

Some conclusions:

- VTEs to triplet states more accurate than those to singlet states
- Similar accuracy for valence and Rydberg transitions
- CASPT2(NOIPEA) reasonable only for Rydberg transitions

Results: Global trends with system size

Some conclusions:

- Accuracy gets slightly worse as system size increases
- CASPT3(NOIPEA) does not improve on CASPT2(IPEA) for larger systems

Results: CASPT3 vs CASPT2 timings

Active	# CAS	# contracted	# uncontracted	t _{PT2}	t _{PT3}
space	det.	config.	config.		
(6e,60)	104	4.50×10^{6}	2.29×10^{8}	11	60
(6e,7o)	165	7.27×10^{6}	3.69×10^{8}	39	249
(6e,80)	412	1.59×10^{7}	8.98×10^{8}	159	1333
(6e,90)	1800	3.96×10^{7}	3.53×10^{9}	578	6332

Timings (in sec) for CASPT2 and CASPT3 energies of benzene.

Some conclusions:

• CASPT3 probably not worth the extra computational effort (at least for large systems)...

Results: Handling difficult cases

Example of $2^{1}B_{1u}(\pi,\pi^{*})$ state in pyrazine:

SA4-CASSCF(6,9)	9.65 eV	(valence a	π + three 3p _x for radial correlation : artificial valence/Rydberg mixing)
CASPT2(IPEA)	8.59 eV		
CASPT3(NOIPEA)	8.57 eV		
ТВЕ	7.98 eV		
SA3-RASSCF(6,6+6+6)[1,1]		9.16 eV	(valence π in RAS2 + σ_{cc}/σ_{cN} in RAS1 + $\sigma^*_{cc}/\sigma^*_{cN}$ in RAS3 to remove
CASPT2(IPEA)	7.92 eV		valence/Rydberg mixing)
CASPT3(NOIPEA)	8.10 eV		

Conclusions & Perspectives

General conclusions based on the present data set (small organic systems):

- IPEA important for CASPT2/aug-cc-pVTZ but not necessary for CASPT3/aug-cc-pVTZ
- CASPT2(IPEA) good accuracy (ca. 0.1 eV)
- PC-NEVPT2 competitive with CASPT2(IPEA) (with no need for shifts & 1.5 to 3 times faster)
- SC-NEVPT2 slightly inferior to PC-NEVPT2
- CASPT3(NOIPEA) only slightly better than CASPT2(IPEA)
- CASPT2(IPEA) similar accuracy as ADC(2), CC2, CCSD but describes double excitations

Perspectives:

• multi-state CASPT2

- larger systems (CT excitations in π conjugated systems, bicyclic systems, ...)
- benchmark away from GS geometry (e.g., along photochemical paths)