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Electronic correlation

Why bother with electron correlation?

Ec = Eexact — EHartree-Fock
—_——

mean-field

®

Hartree-Fock theory ignores correlation and gives 99% of the energy

© It is often accurate for the prediction of molecular structures

®

It is computationally cheap and can be applied to large systems

® , the final 1% can have important chemical effects

®

This is particularly true when bonds are broken and/or formed

® Thus, realistic physics and chemistry requires a good treatment of correlation



Hartree-Fock calculation on a single GPU
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Barca et al. JCTC 16 (2020) 7232



Hartree-Fock calculation on supercomputers

Barca et al. SC'20: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis 81 (2020) 1-14



Electronic correlation

Some random thoughts on electron correlation

® The concept was introduced at the dawn of electronic structure theory
Wigner Phys Rev 46 (1934) 1002

® |ts definition was agreed somewhat later
Léwdin Adv Chem Phys 2 (1959) 207

® One Nobel Laureate used to refer to it as “the stupidity energy”
Feynmann (1972)

© There have been recent heroic calculations on the helium atom
Nakashima & Nakatsuji JCP 127 (2007) 224104

® "We conclude that theoretical understanding here lags well behind the power of available computing
machinery”
Schwartz Int J Mod Phys E 15 (2006) 877



The helium-like ions: One nucleus of charge Z and Two electrons

The Hamiltonian operator (in atomic units m=h =e =1)

A = —E(V%—FV%) —Z(l + l) + El where > =|n — n)|
2 n o n o

® Z =1 gives the H™ anion

® Z = 2 gives the He atom

® Z = 3 gives the LiT cation

® 7 =4 gives the Be?" cation

® etc.



Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877



Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877

Year Authors Energy (a.u.)
1929 Hylleraas -2.902 43




Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877

Year Authors Energy (a.u.)
1929 Hylleraas -2.902 43
1957 Kinoshita -2.903 722 5




Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877

Year Authors Energy (a.u.)
1929 Hylleraas -2.902 43
1957 Kinoshita -2.903 722 5

1966

Frankowski & Pekeris

-2.903 724 377 032 6



Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877

Year Authors Energy (a.u.)

1929 Hylleraas -2.902 43

1957 Kinoshita -2.903 722 5

1966 Frankowski & Pekeris -2.903 724 377 032 6

1994 Thakkar & Koga -2.903 724 377 034 114 4

1998 Goldman -2.903 724 377 034 119 594
1999 Drake -2.903 724 377 034 119 596
2002 Sims & Hagstrom -2.903 724 377 034 119 598 299
2002 Drake et al. -2.903 724 377 034 119 598 305

2002 Korobov -2.903 724 377 034 119 598 311 158 7



Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877

Year Authors Energy (a.u.)

1929 Hylleraas -2.902 43

1957 Kinoshita -2.903 722 5

1966 Frankowski & Pekeris -2.903 724 377 032 6

1994 Thakkar & Koga -2.903 724 377 034 114 4

1998 Goldman -2.903 724 377 034 119 594

1999 Drake -2.903 724 377 034 119 596

2002 Sims & Hagstrom -2.903 724 377 034 119 598 299

2002 Drake et al. -2.903 724 377 034 119 598 305

2002 Korobov -2.903 724 377 034 119 598 311 158 7

2006 Schwartz -2.903 724 377 034 119 598 311 159 245 194 404 440 049 5



Pursuit of Ege

History of accurate (non-relativistic) calculation on the He atom

“For thousands of years mathematicians have enjoyed competing with one other to compute ever more
digits of the number w. Among modern physicists, a close analogy is computation of the ground state
energy of the helium atom, begun 75 years ago by E. A. Hylleraas.”

Schwartz Int J Mod Phys E 15 (2006) 877

Year Authors Energy (a.u.)

1929 Hylleraas -2.902 43

1957 Kinoshita -2.903 722 5

1966 Frankowski & Pekeris -2.903 724 377 032 6

1994 Thakkar & Koga -2.903 724 377 034 114 4

1998 Goldman -2.903 724 377 034 119 594

1999 Drake -2.903 724 377 034 119 596

2002 Sims & Hagstrom -2.903 724 377 034 119 598 299

2002 Drake et al. -2.903 724 377 034 119 598 305

2002 Korobov -2.903 724 377 034 119 598 311 158 7

2006 Schwartz -2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
2007 Nakashima & Nakatsuji -2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37

Nakashima & Nakatsuji JCP 127 (2007) 224104



The “spherium” model: Why bother with electron(s) on a sphere?




The “spherium” model: Why bother with electron(s) on a sphere?

Arguments for high-impact journals

It can be experimentally realized:
® Multielectron bubbles in liquid helium
® Arrangements of protein subunits on spherical viruses
® Colloid particles in colloidosomes

® Fullerene-like molecules: Cgo, C240, Csa0, ...
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Arguments for high-impact journals

It can be experimentally realized:
® Multielectron bubbles in liquid helium
® Arrangements of protein subunits on spherical viruses
® Colloid particles in colloidosomes

® Fullerene-like molecules: Cgo, C240, Csa0, ...

Other arguments. ..

® |t yielded a number of unexpected discoveries

® This is actually related to “real” Physics and Chemistry
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The spherium atom: electron(s) on a sphere of radius R

One electron on a sphere Two electrons on a sphere

f-_ly A—

Solution: Solution:
Yem(0, ¢) = Boring!!!

Loos & Gill PRA 79 (2009) 062517



One electron on a sphere

The spherium atom:

fo_L

Solution:
Yem(0, ¢) = Boring!!!

Loos & Gill PRA 79 (2009) 062517

electron(s) on a sphere of radius R

Two electrons on a sphere

[ e
by A
g
F/:i(vﬁvi) +?12

Solution:
7?77 = Exciting!!!
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Let’s play a game...

First, we solved the Schrodinger equation numerically, e.g.

R=1, Esp, = 0.852 781 065 056 462 665 400 437 966 038 710 264 ...
R =100, Esp, = 0.005 487 412 426 784 081 726 642 485 484 213 968 ...

Observation:

— With a small expansion ¢ =", ckrly, one can get many digits! —

Is it trying to tell us something?
Loos & Gill PRA 79 (2009) 062517



Hamiltonian of the ground state
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Hamiltonian of the ground state

2 2
~ o d 3r12 1 d 1
A=(l2 )& L (22_ ) 9 L =
(4R2 ) dr122 + (4R2 r12> df12 + I6¥)

Frobenius method R
G 0(¢+2)/(4R?) — E
We seek polynomial solutions W(ri, rn) = ZE:O Cgrfz and we get cp40 = ce1+ [ &4_)2()2 ) lee

Analytical solutions
R:\/§/2 E=1 \Il(rl,rg):1+r12
R:\ﬁ E:2/7 \Il(rl,rz):1+r12+2%rl22

Loos & Gill PRL 103 (2009) 123008
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The glomium atom: electron(s) on a glome

What is a “glome”?
A glome is a 3-sphere, i.e. the surface of a 4-dimensional ball

2 2

~ o d 5r12 2 d 1

H = — 1| — _— —_
<4R2 ) dr, + <4R2 r12> dri * r2

Analytical solutions
R:\/10/2 E:1/2 \Il(rl,rz):l—i—%rlz
R=+v66/2 E=2/11 W(n,rn)=1+1m+&m



Generalization to a D-dimensional space

Simplest exact solutions for a D-sphere

D 4Rz E \U(l’l,rz)

1 6 2/3 r12(1 + ro2 2)

2 3 1 1+rp min. ‘ e
i 10 1/2 1+r12/2 l o o

21 1/3 1+ r2/3

D (29_1;(0_1) 1/(§—1) 1+r12/f(D—1) ? ’ ?

— Kato's cusp conditions are identical to real systems —

Loos & Gill PRL 103 (2009) 123008; Mol Phys 108 (2010) 2527



Hydrogen-like ions: electron-nucleus coalescence

What happen when an electron and a nucleus meet each other?

Ay = Evp Hydrogen atom (Z = 1):
v
(-5 +v)v-ev v
1 dzw 2 dw Z — exact
1 d*y 2dy _Z_ —— €—n cusp
2 (dr2 + r dr) r v

For small r, let's approximate the wave function as
Yv=1+ar+ O(r2)

Then,

a=-72 = ‘wwlerforsmallr‘

This is the electron-nucleus (e-Z) cusp!
Kato, Com Pure Appl Math 10 (1957) 151; Pack and Byers Brown, JCP 45 (1966) 556



Helium-like ions: two-electron coalescence

What happen when two electrons meet each other?

V2_

<

2 29 2 20 92 4 9
T T hon ToR T non 00, on
242 -2 92 24—k 92
2rino onor 2rr2 Ordrip
V4 V4 1
n on o

Let's assume ri3 is tiny compared to r; and rp

Then,

1
P=3

=

=14 Bn2

W1t %2 for small rip

This is the electron-electron (e-e) cusp!

Kato, Com Pure Appl Math 10 (1957) 151; Pack and Byers Brown, JCP 45 (1966) 556

1 T )
- 1 0 1



Two Electrons on a Ring

72

Ringium: “— One Ring to Rule Them All —'

Wavefunctions & Energies

fo_ L[ o7 1
T 2R? 80% 305 rz
E=7
V=7



Separating the Hamiltonian

Let's define the extracule © = (01 + 62)/2 and intracule 0 = 01 — 0,

Using these coordinates, the Hamiltonian is a sum of two independent parts

1 92 1 92 1

H= iR 007 R op " 2Rsin(0)2)

so we can solve for the extracule and intracule wavefunctions separately.

1 d? 1 d° 1 “
"R de™ T8 | TRae T 2Rsin(ay2) | VT Y

The total wavefunctions and energies are then given by

V= ¢4(0)¢;(0) Ej=¢& +¢



Extracule Schrodinger equation

The Schrddinger equation for the extracule © = (01 + 62)/2 is

1 d?

TaRi e = O

The resulting wavefunctions and energies are

¢y = exp(1JO) E)j = —

J 0 1 2 3
Symmetry > Mn A 0} r




Intracule Schrédinger equation
The Schrodinger equation for the intracule 6 = 61 — 05 is

1 d? 1
[fﬁﬁ + 2Rsin(9/2)} v=ey

If we use the distance u = | — r|, instead of §, we obtain the Heun-type differential equation

? d? u d 1
KW*Q@*W@*Z]WW

If we define x = u/(2R), the general solution is
¥ =x (1+x)7% (1-x)"? P(x)

where a=0o0r 1, and b=0or 1, and is a regular power series in x.



The four families of solutions

¥ =x (14+x) (1= x)"? P(x)

o of solutions: (a, b) = (0,0), (1,0), (0,1) or (1,1)

® b =0 vyields the ground, 2nd-excited, 4th-excited, etc. states.

® b =1 yields the 1st-excited, 3rd-excited, bth-excited, etc. states.

® When R is an “eigenradius”, P(x) terminates, becoming a polynomial
® In these cases, both ¢ and € can be obtained in closed form

® There are a countably infinite number of these closed-form solutions



RZXE
N B O ®

The (a, b) = (0,0) family

12!
10/

140

o=




RZXE
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The (a, b) = (1,0) family

12!
10/

145

o=




RZXE

The (a, b) = (0,1) family

0:\ I I I I I I I
0



RZXE

The (a, b) = (1,1) family

0:\ I I I I I I I
0



RZXE

All four families




Some exact closed-form wavefunctions

State R e P(u) x = u/(2R)
1/2 9/4 u/T+x
V3/2 2/3 u[1+ L]
HV33+3)  B(7-v33)  uvI+x[1+(R- 1)K
V2372 9/46 w1+ ot 522
Istexcited  }(v33-3)  B(7+v33)  uv/T-x[1+(R+ 1)
5/2 9/10 uvT = xvT+x L+ Lu]

\/33/2 8/33

uv/1—xv/14x [1+ %u—i— %XQ]

Loos & Gill PRL 108 (2012) 083002



What is one-dimensional Chemistry?

| |

4

*
*
Y

@

Electrons

Loos, Ball & Gill, PCCP 17 (2015) 3196
Ball, Loos & Gill, PCCP 19 (2017) 3987



Why one dimension?

Experimental
® Carbon nanotubes
® Atomic or semi-conducting nanowires (quantum wires)
® (very) Strong magnetic fields
® Many others!

Theoretical
® Test/Model system for electron behaviour and electronic correlation
® Lower dimensionality is simpler mathematically

® Dimensional reduction:

\U(r]_, rn,..., rn) — W(X17X2, e 7X”)

p(x,y,2) — p(x)



Complications

Pecularities of 1D
® The Coulomb operator |x|™* is strongly singular in 1D
® This prevents us from solving the Schrédinger equation using normal techniques

Loudon [Am J Phys 27 (1959) 649]
® Found a set of solutions for the hydrogen atom in 1D by examining a sequence of truncated
Coulomb operators that approach the unmodified operator
® Concluded that the ground state has an infinite binding energy due to the electron ‘falling’ onto the
nucleus



Way around it

More recent work

® Chemists use softened Coulomb interactions (x? + 1)71/2

Wagner et al, PCCP 14 (2012) 8581

® Physicists argue over whether or not there is an infinite binding energy

to model experimentally available systems

Oliveira & Verri (2009 — 2012) and our work [PRL 108 (2012) 083002]

® There are an infinite number of treatments that work around the Coulomb singularity

® But the Dirichlet boundary conditions is the one to use:

= If xi = x; or xi = xa then ¥ =0
| |




Consequences of the Dirichlet boundary conditions

@ Spin-blindness
The energy of the system is invariant under any change of spin coordinates. As a result we can ignore
the spin coordinates.

@ Super-Pauli principle
Two electrons confined to one dimension cannot occupy the same quantum state regardless of spin.
That is, only one electron may occupy each orbital.

@ Nuclear impenetrability

Electrons are unable to pass from one side of a nucleus to another, and no tunnelling can occur in 1D
systems. This separates space into regions that electrons become trapped within.



Notation

o1 — (Do)~ [

Notation
We use a special notation for 1D molecules to account for electrons occupying different domains.

Examples:
1H2|_i1 1H1|_i2 1He3B3H1 H3B3



Left-handed ground state:

1H

“Chirality” in 1D: Hydrogen atom

Right-handed ground state: H;

+1

+1



“Chirality” in 1D: Hydrogen atom

Left-handed ground state: Right-handed ground state:
L @
+1 +1
‘ P(x) = —x exp(+x) ‘ ‘ P(x) = xexp(—x) ‘

w=+15 R=+(x?)=18 uw=—15 R=+/(x?)=18



Helium atom in 1D

One-sided helium: Two-sided helium:

+2 +2



Helium atom in 1D

One-sided helium: Two-sided helium:
Q- ° @
+2 +2

E =-2.1074 E = —3.2429

p=435 R=48 p=0 R=10



More 1D atoms...

Lithium: p=15and R =238 Beryllium: p=0and R =2.1
=.: ° A .
+3 +4

Boron: =19 and R =4.7 Carbon: y=0and R =37

e o

+5 +6



lonisation energy (eV)

Electron affinity (eV)

lonisation energies and electron affinities (in eV)

Atom lonisation energies  Electron affinities
H 13.606 3.893
He 33.822 —
Li 4.486 1.395
Be 10.348 —
B 2.068 0.643
C 4.670 —
N 1.125 0.340
0] 2.515 —
F 0.666 0.203
Ne 1.518 —




lonization potentials and electron affinities in 3D

30
o s-block
25 Mo S pblock
o Sk
Bt
Lo
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H ° o Xe Cn
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Electron affinity [eV]

12 10 18 36 54 86
Atomic number (2)



Electron affinity [eV]

lonization potentials and electron affinities in 3D

o5block
S pblock
Sfblock
SFblock
s Ke 7 8 9 10 11 12 13 14 15 16 17 18
3 ' X o
o k; Hg Ro £
— ° ° 2
%@“f“m S| g S BWUM S| umnomoocon, F S e
& 1
Ne
2 w4 s e 7 s s 0 10 12

36
Atomic number (2)
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Periodic trends in 1D atoms

1D atoms have only two sides
Shells hold only two electrons

Odd electron = unfilled shell
Even electron = filled shell

Odd electron = reactive
Even electron = unreactive

Odd electron = “alkali metals”

Even electron = “noble gases”

The periodic table in 1D

The 1D periodic table



The periodic table in 1D

The 1D periodic table
Periodic trends in 1D atoms

Group 1 2

1D atoms have only two sides Alkali  Noble
metals Gases

Shells hold only two electrons )
Period
1
Odd electron = unfilled shell
Even electron = filled shell )

Odd electron = reactive
Even electron = unreactive 3
Odd electron = “alkali metals” 4

Even electron = “noble gases”




The Ho™ molecule in 1D

The H,H™" state: ;=0

The HH; " state: ;1 #0




The state: =0
—@
The state: u #0

EMH3)-EMH)-EMH") (a.u.)

The Ho™ molecule in 1D

Potential energy curves for Hy*

1.0

0.8}
0.6}
04}
0.2}
0.0¢
-0.2}
-04}




The Hy molecule in 1D

The state The state
S S — o ——0—
The state The state




E(H;)-2E(H) (a.u.)

Two-electron diatomic molecules in 1D

Potential energy curves for the H, molecule

1.0
0.8}
0.6}
0.4}
0.2}




Lego-style formation of 1D polymers

—@ &

A single Hi atom has a dipole moment
Two Hji atoms will feel dipole-dipole attraction

The resulting H1H1 molecule also has a dipole
moment

HiH1 and Hi will feel dipole-dipole attraction

The resulting HiH1H1 molecule also has a dipole
moment

HiH1H1 and H; will feel dipole-dipole attraction

Hi +Hi — HiH;g

H{H{; + Hy — HiH{H4

HiH;H; + Hi — HiHiH1H;



This is the end...

Thank you!
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