Focussing on a single nucleotide	The LSCF method		Acknowledgments

L'attaque de l'électron masqué (de basse énergie)

Pierre-François Loos[‡], Elise Dumont*, Adèle Laurent[‡] et Xavier Assfeld[‡]

[‡]Équipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, France

*Laboratoire de Chimie, UMR 5182 CNRS École Normale Supérieure de Lyon, Lyon, France.

19th September 2008

L'attaque de l'électron masqué (de basse énergie)

< ロト < 同ト < ヨト <

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Low-energy electr	rons induced strand breaks in DNA			

The murderer: the electron

 Secondary electrons¹ of low-energy² (< 30 eV)

¹L. Sanche Radiat. Phys. Chem. **1989**, 34, 15.

²L. Sanche Eur. Phys. J. D 2005, 35, 367.

Pierre-François Loos

L'attaque de l'électron masqué (de basse énergie)

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Low-energy elect	rons induced strand breaks in DNA			

The murderer: the electron

The victim: the supercoiled DNA

 Secondary electrons¹ of low-energy² (< 30 eV) Dry DNA (only structural H₂O and countercations)

Image: A match a ma

¹L. Sanche *Radiat. Phys. Chem.* **1989**, *34*, 15. ²L. Sanche *Eur. Phys. J. D* **2005**, *35*, 367.

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Low-energy elect	rons induced strand breaks in DNA			

The murderer: the electron

The victim: the supercoiled DNA

 Secondary electrons¹ of low-energy² (< 30 eV) Dry DNA (only structural H₂O and countercations)

 \implies Single-strand breaks (SSB) and double-strand breaks (DSB)

- ¹L. Sanche Radiat. Phys. Chem. **1989**, 34, 15.
- ²L. Sanche Eur. Phys. J. D 2005, 35, 367.

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Experimental res	ults: loss of supercoiled DNA			

The pieces of evidence

³Boudaïffa et al. *Science* **2000**, *287*, 1658. ⁴Martin et al. *PRL* **2004**, *93*, 068101.

Pierre-François Loos

L'attaque de l'électron masqué (de basse énergie)

イロト イポト イヨト イヨト

Introduction	Focussing on a single nucleotide	The LSCF method			Acknowledgments				
0000									
Experimental res	Experimental results: loss of supercoiled DNA								

The pieces of evidence

³Boudaïffa et al. *Science* **2000**, *287*, 1658. ⁴Martin et al. *PRL* **2004**, *93*, 068101.

L'attaque de l'électron masqué (de basse énergie)

4 ∰ >

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Experimental res	ults: loss of supercoiled DNA			

The pieces of evidence

³Boudaïffa et al. *Science* **2000**, *287*, 1658. ⁴Martin et al. *PRL* **2004**, *93*, 068101.

Image: A = 1

COTAW 08 - 19th September 2008 -

L'attaque de l'électron masqué (de basse énergie)

Pierre-Francois Loos

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Proposed mechar	nism for single-strand breaks			

⁵Barrios et al. *JPCB* **2002**, *106*, 7991; J. Simons *Acc. Chem. Res.* **2006**, *39*, 772. ⁶Li et al. *JACS* **2003**, *125*, 13668; Gu et al. *JACS* **2006**, *128*, 9322. ⁷Theodore et al. *Chem. Phys.* **2006**, *329*, 139; Gu et al. *Angewandte* **2007**, *46*, 1. ⁸Liang et al. *JCC* **2008**, in press.

COTAW 08 - 19th September 2008 -

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Proposed mechai	nism for single-strand breaks			

⁵Barrios et al. *JPCB* **2002**, *106*, 7991; J. Simons *Acc. Chem. Res.* **2006**, *39*, 772. ⁶Li et al. *JACS* **2003**, *125*, 13668; Gu et al. *JACS* **2006**, *128*, 9322. ⁷Theodore et al. *Chem. Phys.* **2006**, *329*, 139; Gu et al. *Angewandte* **2007**, *46*, 1. ⁸Liang et al. *JCC* **2008**, in press. ¹⁰ → *Cortaw Cortaw Cortaw*

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Proposed mechai	nism for single-strand breaks			

HC

O=P-OH

HC

⁵Barrios et al. *JPCB* **2002**, *106*, 7991; J. Simons *Acc. Chem. Res.* **2006**, *39*, 772. ⁶Li et al. *JACS* **2003**, *125*, 13668; Gu et al. *JACS* **2006**, *128*, 9322. ⁷Theodore et al. *Chem. Phys.* **2006**, *329*, 139; Gu et al. *Angewandte* **2007**, *46*, 1. ⁸Liang et al. *JCC* **2008**, in press.

Pierre-François Loos

L'attaque de l'électron masqué (de basse énergie)

Pyrimidines or purines ?

,NH2

Cytosine

Thymine

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Proposed mecha	nism for single-strand breaks			

Pyrimidines or purines ?

⁵Barrios et al. *JPCB* **2002**, *106*, 7991; J. Simons *Acc. Chem. Res.* **2006**, *39*, 772. ⁶Li et al. *JACS* **2003**, *125*, 13668; Gu et al. *JACS* **2006**, *128*, 9322. ⁷Theodore et al. *Chem. Phys.* **2006**, *329*, 139; Gu et al. *Angewandte* **2007**, *46*, 1. ⁸Liang et al. *JCC* **2008**, in press.

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method		Acknowledgments
0000				
Energetic criteria	for an electron attachment			

Requirement for an electron capture

・ロト ・日 ・ ・ ヨ ・ ・

▶ ▲ 壹 ▶ ◀ 壹 ▶ 壹 ∽ Q (<u>COTAW 0</u>8 — 19th September 2008 —

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method			Acknowledgments	
0000						
Energetic criteria for an electron attachment						

Requirement for an electron capture

- VEA: Vertical Electron Affitiny
- \blacksquare EA $_{\rm ad}:$ adiabatic Electron Affitiny
- **VDE**: Vertical Detachment Energy

▲ @ ▶ ▲ ∃ ▶

COTAW 08 - 19th September 2008 -

Pierre-François Loos

Introduction	Focussing on a single nucleotide	The LSCF method			Acknowledgments	
0000						
Energetic criteria for an electron attachment						

Requirement for an electron capture

- VEA: Vertical Electron Affitiny
- **EA**_{ad}: **ad**iabatic **E**lectron **A**ffitiny
- **VDE**: Vertical Detachment Energy

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

COTAW 08 - 19th September 2008 -

Electron capture \iff **VEA**, **EA**_{ad} and **VDE** should be > 0

Pierre-François Loos

	Focussing on a single nucleotide	The LSCF method		
	000			
Model system				

Single nucleotide: 2'-deoxycytidine-3'-monophosphate (3'-dCMPH)

⁹Gu et al. *JACS* **2006**, *128*, 1250. ¹⁰Gu et al. *JACS* **2006**, *128*, 9322.

Pierre-François Loos

L'attaque de l'électron masqué (de basse énergie)

< ロト < 同ト < ヨト <

	Focussing on a single nucleotide	The LSCF method		Acknowledgments
	000			
Model system				

Single nucleotide: 2'-deoxycytidine-3'-monophosphate (3'-dCMPH)

Electron affinities⁹ (eV)

EA_{ad}	0.15
VEA	0.00
VDE	0.87

Level of theory: B3LYP/6-311+G*

COTAW 08 - 19th September 2008 -

 $^9 {\rm Gu}$ et al. JACS 2006, 128, 1250. $^{10} {\rm Gu}$ et al. JACS 2006, 128, 9322.

Pierre-François Loos

	Focussing on a single nucleotide	The LSCF method		
	000			
Model system				

Single nucleotide: 2'-deoxycytidine-3'-monophosphate (3'-dCMPH)

Electron affinities⁹ (eV)

 Energetic barrier of the C_{3'}-O_{3'} bond cleavage¹⁰ (kcal/mol)

Pierre-François Loos

	Focussing on a single nucleotide	The LSCF method			Acknowledgments	
	000					
Protonation state of the phosphate group						

Adiabatic electron affinities wrt protonation state

	Focussing on a single nucleotide	The LSCF method			Acknowledgments	
	000					
Protonation state of the phosphate group						

Adiabatic electron affinities wrt protonation state

	Focussing on a single nucleotide	The LSCF method			Acknowledgments	
	000					
Protonation state of the phosphate group						

Adiabatic electron affinities wrt protonation state

¹¹IEF-PCM model using water solvent and UA0 radii. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

COTAW 08 - 19th September 2008 -

L'attaque de l'électron masqué (de basse énergie)

Pierre-Francois Loos

	Focussing on a single nucleotide	The LSCF method				
	000					
Protonation state of the phosphate group						

Barrier of the $C_{3^\prime}\text{-}O_{3^\prime}$ bond cleavage wrt protonation state in aqueous solution

▲ □ ► < □ ►</p>

Pierre-François Loos

	Focussing on a single nucleotide	The LSCF method			Acknowledgments	
	000					
Protonation state of the phosphate group						

Barrier of the $C_{3'}$ - $O_{3'}$ bond cleavage wrt protonation state in aqueous solution

< 17 × <

COTAW 08 - 19th September 2008 -

A key question: modulation due to the environment?

Pierre-François Loos

		The LSCF method				
		0				
The Local Self-Consistent Field method						

The Local Self-Consistent Field method

 Optimization of the WF under constraint¹²

$$\mathbf{F} \cdot \mathbf{C} = \underbrace{\mathbf{S} \cdot \mathbf{C} \cdot \mathbf{E}}_{\text{variational}} + \underbrace{\mathbf{S} \cdot \mathbf{L} \cdot \boldsymbol{\Lambda}}_{\text{frozen}}$$

■ QM/MM boundary¹³ *Strictly Localized Bond Orbital* (SLBO) ⇔

$$|I_I
angle = \sum_{\mu\in\{X,Y\}} I_{\mu I}|\mu
angle$$

 \implies Localization criteria (transferability principle)

¹²Assfeld et al. Chem. Phys. Lett. 1996, 263, 100.
 ¹³Ferré et al. J. Comput. Chem., 2002, 23, 610.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

COTAW 08 - 19th September 2008 -

Pierre-François Loos

		The LSCF method					
0000	000	00	00				
The hybrid LSCF/MM scheme							

LSCF/MM calculation

Electrostatic Embedding: polarization of the WF

$$\sum_{\boldsymbol{A}\in\mathrm{MM}}\sum_{\mu\nu} P_{\mu\nu}^{\mathsf{T}} \left\langle \mu \left| \frac{q_{\mathsf{A}}}{|\mathbf{r}-\mathbf{R}_{\mathsf{A}}|} \right| \nu \right\rangle$$

- Self-consistent core orbitals¹⁴:
 - $\rightarrow\,$ any additional parameters for the QM/MM frontier 15
 - $\rightarrow\,$ proper treatment of the electronic attachment
 - $\rightarrow \mbox{ No ponctual charges} \\ \mbox{ redistribution }$

5' end SLBO SLBO 5' end Single-Strand Double-Strand

• • • • •

COTAW 08 - 19th September 2008 -

¹⁴Loos et al. Comput. Lett. 2007, 4, 473.
 ¹⁵Fornili et al. CPL 2006, 427, 236.

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			••				
Modulation due to the environment							

From single nucleotide to double-stranded DNA

3'-dCMPH C-C-C CG-CG-CG

Image: A matching of the second se

Level of theory: B3LYP/6-311+G*/Amber ff99 for nucleic acids

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			••				
Modulation due to the environment							

From single nucleotide to double-stranded DNA

Image: A matching of the second se

3'-dCMPH C-C-C CG-CG-CG EA_{ad} (eV) 0.15 0.32 0.92

Level of theory: B3LYP/6-311+G*/Amber ff99 for nucleic acids

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

From single nucleotide to double-stranded DNA

イロト イポト イヨト イヨト

COTAW 08 - 19th September 2008 -

Level of theory: B3LYP/6-311+G*/Amber ff99 for nucleic acids

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

Embedding	Full	Only SS	None
-----------	------	---------	------

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

¹⁶Loos et al. *JCTC* 2008, 4, 637; Dumont et al. *JCTC* 2008, 4, 1171 + (=)

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

¹⁶Loos et al. *JCTC* **2008**, *4*, 637; Dumont et al. *JCTC* **2008**, *4*, 1171≣ → *4* ≡ → = → → →

COTAW 08 - 19th September 2008 -

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

¹⁶Loos et al. JCTC 2008, 4, 637; Dumont et al. JCTC 2008, 4, 1171 + (=) = 00

COTAW 08 - 19th September 2008 -

Pierre-François Loos

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

		The LSCF method	SSB resolved at the QM/MM level				
			00				
Modulation due to the environment							

		The LSCF method		Conclusion			
				•			
Conclusions & Outlooks							

Conclusions

- Huge modulation once the environment is taken into account:
 - Electron affinities increase (electrostatic effects)
 - and also the barriers of the 3' cleavage
- Other pathways may exist ...

Outlooks

- Other bonds¹⁷: $C_{5'}-O_{5'}$?
- Other nucleobases: Thymine and purines¹⁸
- Helical structures: A-DNA, B-DNA, Z-DNA

¹⁷Gu et al. PNAS 2008, 130, 12224.
 ¹⁸Schyman et al. JACS 2008, 130, 12224.

Pierre-François Loos

L'attaque de l'électron masqué (de basse énergie)

COTAW 08 — 19th September 2008 —

	Focussing on a single nucleotide	The LSCF method			Acknowledgments
					•
Acknowledgments					

Nancy

 Elise Dumont and Adèle Laurent

LSCF

 Yohann Moreau (Orsay) and Nicolas Ferré (Marseille)

Namur

 Denis Jacquemin, Julien Preat and Eric Perpète

Boss

 Jean-Louis Rivail and Xavier Assfeld

・ロト ・回ト ・ヨト

▶ < ■ > < ■ > < ■ > = ∽ < COTAW 08 — 19th September 2008 —