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How to perform a HF calculation in practice?

The SCF algorithm for Hartree-Fock (HF) calculations (p. 146)

© Specify molecule {R4} and {Za} and basis set {¢, }
@ Calculate integrals Sy, Hyy and (uv|Ac)

® Diagonalize S and compute X = s1/2
©® Obtain guess density matrix for P

1.
. Compute F/ =Xt .F.X

. Diagonalize F’ to obtain C’ and E
. Calculate C = X - C’

o UA WN

Calculate J and K, then F=H + J+ K

Form a new density matrix P = C - ct

. Am | converged? If not go back to 1.

® Calculate stuff that you want, like Eyyf for example




Motivations & Assumptions

We consider the time-independent Schrodinger equation
HF is an ab initio method, i.e., there’s no parameter
We don’t care about relativistic effects

HF is an independent-particle model, i.e., the motion of one electron is considered to be independent of
the dynamics of all other electrons = interactions are taken into account in an average fashion

HF is the starting point of pretty much anything!



In the Schrodinger equation
HO({ri}, {Ra}) = E@({ri} {Ra})

the total Hamiltonian is

‘H:7—n+7z+vnc+vee+vnn

What are all these terms?

® 7, is the kinetic energy of the nuclei

Te is the kinetic energy of the electrons

® ) . is the Coulomb attraction between nuclei and electrons

Vee is the Coulomb repulsion between electrons

® V. is the Coulomb repulsion between nuclei

The Hamiltonian

M

@



The Hamiltonian (Take 2)

In atomic units(m=e="h=1)

® V2 is the Laplace operator (or Laplacian)

M VZ
To=—) (3a)
A=1 “MA ® My is the of nucleus A
N vz
=—-) =L 3b
Te = 2 (3b) ® Z, is the charge of nucleus A
M N 7,
= - Z Z o (3¢) ® ris is the distance between electron i and nucleus A
A=1i=1"i
Noq
Vee = Z — (3d) ® rj is the distance between electrons i and j
i<j Tij
M Z.Zg ® Ryupis the distance between nuclei A and B
nn — E (36)



Molecular coordinate system
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Figure 2.1 A molecular coordinate system i, j = electrons, 4, B = nuclei



The Born-Oppenheimer approximation

Born-Oppenheimer approximation = decoupling nuclei and electrons

Because M4 > 1, the nuclear coordinates are “parameters” = potential energy surface (PES)

M
. ZpZp
q:‘({ri}v {RA}) = anucl({RA})q)elec({ri}' {RA}) with ot = gelec + Z m 4)
A<B
Nuclear Hamiltonian
The nuclear Hamiltonian is
Hnuc|q>nuc| = 5nuclq>nuc| with Hnucl = Tn + Van (5)

It describes the vibration, rotation and translation of the molecules

Electronic Hamiltonian
The electronic Hamiltonian is

Helecée[ec = elec(belec with Helec = 7; + + Vee (6)




Spin of the electron

We are interested by electrons which are fermions = Pauli exclusion principle (cf next slide)

)

) szlsims) =

|y = |3, 3) spin-up electron |B) = ‘2, 7 = spin-down electron

Spin functions: |0} = |s, ms)  s*|s,ms) = s(s+ 1)

/zx*(w)/ﬁ(w)dw = [ pH(w)a(w)dw =0 / (w)a(w)dw = /,B =1 (7
{@]B) = (Blw) =0 < @) = (BIB) =1 ®
The composite variable x combines spin («) and spatial (r) coordinates: m
Antisymmetry principle
HeleceP(x1,x2, .. ., XN) = EelecP(x1, %2, .., XN) )

<I>(x1,...,xi,...,xj,...,xN) = fCI)(xL...,xJ~,...,x,~,...,xN) (10)



Antisymmetry

Problem:
“Show that, for a system of two fermions, the wave function vanishes when they are at the same point in
spin-space”



Antisymmetry

Problem:
“Show that, for a system of two fermions, the wave function vanishes when they are at the same point in
spin-space”

Solution
Indistinguishable particles means

|‘Y(X],X2)‘2 = |‘F(X2,X1)‘2 = Y(X1,X2) = :‘:‘Y(Xz,X]) (11)




Antisymmetry

Problem:
“Show that, for a system of two fermions, the wave function vanishes when they are at the same point in
spin-space”

Solution
Indistinguishable particles means

|‘Y(X],X2)‘2 = |‘P(X2,X1)‘2 = Y(X1,X2) = :‘:‘Y(Xz,X]) (11)

Bosons mean ¥ (x1, x2) = ¥(x2, x1) and Fermions mean ¥ (x;, x,) = —¥(x5, x1)

Let’s put them at the same spot, i.e. x = x1 = x3

For Fermions, ‘F(x, x) = f‘Y(x, x) = m (12)

The wave function vanishes! = This is called the Fermi hole!



Antisymmetry (Take 2)

Problem:
“Given two one-electron functions x1(x) and x2(x), could you construct a two-electron (fermionic) wave function

Y(x1,x2)?”



Problem:

Antisymmetry (Take 2)

“Given two one-electron functions x1(x) and x2(x), could you construct a two-electron (fermionic) wave function

1‘II(X1,)(2)?”

Solution
A possible solution is

¥ (x1,x2) = x1(x1)x2(x2) — x1(x2)x2(x1)

This has been popularized by Slater:

T(X1 , Xz) =

xi(x1)
)

X1(x2

X2(x1)
x2(x2)

= x1(x1)x2(x2) — x1(x2) x2(x1)

This is called a Slater determinant!

A wave function of the form ¥ (xy, x2) = x1(x1)x2(x2) is called a Hartree product

(13)

(14)



The HF wave function

A Slater determinant

xi(x1)  xa(x1) AN(x1)
1 (xi2) xelx) o xn(x
Frr(xx2, o) = N : | = X1 (x1)xa(x2) .. xn(xn)) (a5)
xi(xn)  xa(xn) oo xn(xn)
= .A)ﬁ (X1)X2(X2) .. ~XN(XN) = .AH(X],XZ, . XN)
® A is called the antisymetrizer
° Il(x1,x2, ...,xy) is a Hartree product
® The many-electron wave function ¥ (x1, x2, ..., xy) is an antisymmetrized product of one-electron

functions



Spin and spatial orbitals

Blw) i(r)

These are restricted spin orbitals = Restricted Hartree-Fock = RHF

(r K
xi(x) = o (@)ilr) = {”‘(“’) vilr) $i(r) = Y Cuu(r)
H

The spin orbitals are orthogonal

1 ifi=j

0 otherwise

(xilx;) = /X?(X)XJ(X)dX =0jj = {
The spatial orbitals are orthogonal

<1/),’1[JJ> = /I,U:K (r)y;(r)dr = 6j; = Kronecker delta
The basis functions (or atomic orbitals) are, a priori, not orthogonal

(Pulgv) = / ¢y, (r)¢y (r)dr = Suy = Overlap matrix



Spin and spatial orbitals (Take 2)

Comments
® {¢uli=1,..., K} are basis functions or atomic orbitals (AOs)
® {xili=1,...,2K} are the
e {y;|i=1,..., K} are the spatial orbitals or molecular orbitals (MOs)

® With K AOs, one can create K spatial orbitals and 2K

® For the ground state, the first N are occupied and the last 2K — N are vacant (unoccupied)

® When a system has 2 electrons in each orbital, it is called a closed-shell system, otherwise it is called a
open-shell system

® For the ground state of a closed shell, the first N/2 spatial orbitals are doubly-occupied and the last
K — N/2 are vacant (unoccupied)

® The MOs are build by linear combination of AOs (LCAO)

® The coefficient Cy,; are determined via the HF equations based on variational principle



Ground-state Hartree-Fock determinant

X2k
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L ]
virtual X
spin s
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spin
orbitals —_— X,

Figure 2.4 The Hartree-Fock ground state
—_—¥— X determinant, |xyx2 = " XaXp® - Xn-



Excited determinants
Reference determinant
The electrons are in the N lowest orbitals (Aufbau principle):  [¥o) = |x1.--XaXb---XN) (16)
Singly-excited determinants
Electron in a promoted in = [¥.) = [x1.-- X/ Xb---XN) 17)

a

Doubly-excited determinants

. . i sy
Electrons in a and b promoted in rand s:  [¥7,) = |x1... XrXs- - XN) (18)
" Xex T Xex X
m{ i i, i,
p: ) R— — —x
L . I
aeeeseeesesae el lanas nanassaael X
{ —F—x by TET by LLE
oceget | ——f—— x, X, A
o | ———x, % :
H : —_—,
—_—x — X, —_—x
——x ——— X,



The Hartree-Fock energy

The HF energy is

‘ Envr = (Yhr|Hetec + Von|FHr) ‘ where  Hejee = Te + Vie + Vee (19)

We define a few quantities:

® the one-electron Hamiltonian (or core Hamiltonian) = nice guy!

N VZ M ZA
Or=Te+ Voo =Y_h(i) where h(i)=—-—L-3Y =2 (20)
P 2 — TiA
i=1 A=1
® the two-electron Hamiltonian (electron-electron repulsion) = nasty guy!
AN
02 = Vee = 2 - (21)
i<j Tij
Therefore, we have
N N 4
Helec = Zh(’)_'_zi (22)
~ ~ rii
i=1 i<j'u




The Hartree-Fock energy (Take 2)

Nuclear repulsion:

(THFVon|FHE) = Van (Fre|FHE) = Vin (23)
Core Hamiltonian:
N N
(Fur|O1¥ur) = ) (x Dxa(1)) = ) ha (24)
a=1 a=1
N
(Pue|O2[Frr) = Y [ (Xa(Dxs(2)Ir xa(Dx5(2)) = (Xa(D)x6(2)|r" [x5(1) xa(2))]
a<b
N o N N
= Z T — Kap - Z Z Jab — Kap) because
a<h \ == | 2 a=1p=1
Coulomb  Exchange
(25)
HF energy:
EHF—Z/T +Z Tab — Kap) + Van (26)
a=1 a<b




The Hartree-Fock energy (Take 3)

Coulomb operator

T xi(1) = (@) x(2)) [xi(1)) = {/ dxox} (x2)my ' xi (x2) | [xi(x1)) (27)
Coulomb matrix elements
Jij = Qa1 xi(M) = (M @)]ry'|xi(1)x5(2))
= [ 2 ) () i ) (2 ) b s

(non-local) Exchange operator

(28)

Ki() 1xi(1)) = (xi(2)]ra'|xi(2) |xi (1) = {/ dxo x| (x2)ry' xi(x2) | [x(x2)) (29)
Exchange matrix elements

Kij= aIKMIxi(1)) = (a(xi)] ' [xi()xi(2))

(30)
= [ x5 o) Oca) iy s (i (2 dxa



Integral notations

Spin orbitals
(1AL = Giltb) = [ o; Ger) )i by @Y
Gilkt) = Gl = [ x; )X} (x2) Xk(xl)Xl(XZ)dx1dx2—[’k|ﬂ] (32)
[k = Dexslxexd = [f xi i) Xk(xz)Xz(Xz)dX1dX2 (ik|jt) (33)
(il 1Kty = (iflkt) = Giltk) = [ x5 (xa) x,(xz>‘<1—7>u>xk<x1>xl<x2>dx1dxz (34)

Spatial orbitals
(L) = by = (ilhlgy) = [ 97 () b)) (35)

(1K) = (9l peg) = [ 97 () () i (r2) () i (36)



Permutation symmetry

Permutation symmetry in physicts’ notations

(ijlkty = (xixj| xuxe) IIX, x1)X} (x2) Xk(x1)7€1(x2)dx1dx2 (37)

Complex-valued integrals:  (ij|kl) = (jl\lk) = (kl|ij)* = {lk|ji)* (38)
Permutation symmetry in chemists’ notations

[ilkl) = D i = [ a6 xa)ag(xa) Xk(xZ)Xl(xz)dxldXZ (39)

Real-valued integrals:  [ij|kl] = [ji|kl] = [ij|lk] = Ul|lk] = [kl|ij] = [lk|ij] = [kl|ji] = [Ik|ji]  (40)



Slater-Condon rules: One-electron operators

N
O =) h(i)
Case 1 = differ by zero spinorbital: |[K) = |...mn...)
N
(KIOw[K) =} {m]|h|m)
Case 2 = differ by one spinorbital: |[K) = |...mn...) and |[L) =|...pn

(K[Ow[L) = (m|h|p)

Case 3 = differ by two spinorbitals: [K) = |...mn...)and |[L) = |...p

(K|O1|L) =0

(41)

(42)

)

(43)

q...)

(44)



Slater-Condon rules: Two-electron operators

(45)
Case 1 = differ by zero spinorbital: |K) = |...mn...)
1N
(K|Oa|K) = 52 (mn||mn) (46)
Case 2 = differ by one spinorbital: [K) = |...mn...) and |L) = |...pn...)
N
(K|Oa|L) =} (mn||pn) (a7)
Case 3 = differ by two spinorbitals: |[K) = |...mn...) and |[L) = |...pq...)

(K|O2|L) = (mn||pq) (48)



The Hartree-Fock energy: examples

Problem: Normalization of the HF wave function
“Show that the HF wave function built with two (normalized) spin orbitals x1 and X, is normalized”



The Hartree-Fock energy: examples

Problem: Normalization of the HF wave function
“Show that the HF wave function built with two (normalized) spin orbitals x1 and X, is normalized”

Solution

Yor = 1 xa(1) X2(1)‘ x1()x2(2) = x1(2)x2(1)

V2 1x1(2) x2(2) - V2
(Frr[¥hr) = % i (Mx2(2) = 2(Dx1(2) [xa(Dx2(2) = x2(1)xa(2))
=3 { i (x2(2)[x1(1)x2(2)) — (1 (Nx2(2) [ x2(1)x1(2))

— (oM@ (M) + (e @)Rn ) ]

—_

1
=—-|1-0-0 1]:1
3[1-0-0+

Remember that (x1(1)x2(2)[x1(1)x2(2)) = (x1(1)[x1(1)) {x2(2)[x2(2))



The Hartree-Fock energy: examples (Take 2)

Problem: Core Hamiltonian
“Show that (¥ 1| O1[¥ ne) = LN_1 ha for the same system”



The Hartree-Fock energy: examples (Take 2)

Problem: Core Hamiltonian
“Show that (¥ 1| O1[¥ ne) = LN_1 ha for the same system”

Solution

O = h(1)+ h(2)
(Yurlh(1) + h(2)[¥F)

= S ((Mx(2) — 0 @I + ) (1)) - 1))
= %[0(1(1)?(2(2)\/1(1) +h(2)1x1(Dx2(2)) = i (Dx2(2)[A(1) + h(2) [x2(1)x1(2))
= (Mx12)]h(1) + h(2)x1(Dx2(2)) + Cr(Dxa(2)[h(1) + ’7(2)\?(2(1))(1(2»}

1
:5[h1+h27070+hz+h1] — b+ by



The Hartree-Fock energy: examples (Take 3)

Problem: Two-electron Hamiltonian
“Show that (¥ pr|O2[¥ ur) = 22/<b (Tap — Kap) for the same system and write down the HF energy”



The Hartree-Fock energy: examples (Take 3)

Problem: Two-electron Hamiltonian
“Show that (¥ pr|O2[¥ ur) = 22/<b (Tap — KCap) for the same system and write down the HF energy”

Solution
-1
02 - ru

_ 1 _
(Fhelr! [Pre) = 5 e = xax Iri2' XXz — x2x1)

% [<X1X2\fﬁ]|X1X2> — (xixalr' [x2x1)
— (exlm' ) + (x \’E]|X2X1>}
= 5 [Fa = Kn — K+ T = T — K
Remember that (xax1|r,' [x2x1) = (X1x2lry' [x1x2)
’EHF =h1+hz+\71z*IC12‘




The Hartree-Fock energy: examples (Take 4)

Three-electron system

“Find the HF energy of a three-electron system composed by the spin orbitals x1, X2 and x3”

Solution

Oy = h(1) + h(2) + h(3)

_ 1 —1 —1
Oy=r; +r3 +r3

Envp=m+h+h+To+Tis+ T3 —Kio—Kiz— Ky




HF energy of He

Singlet 1s state of the He atom T = (xixalxixz)
= (ala) (BIB) (Y1pr[¢rp1) = Jnn

K2 = (xaxalxaxi)
= (a|B) (Bla) (P11 |[rypr) = 0

xi=apr xa=p
Epr(singlet) = by + by + J12 — Kqg = 20 + 1y

Triplet 1s2s state of the He atom

xi=atr  x2=at
En(triplet) = hy + hy 4+ J12 — K2 = hi + by + Ji2 — Kz

Singlet-triplet energy splitting
AEyF = EHF(tripIet) — Enr(singlet)

= (hy— h)+ (J1z — 1) =Kz
—_——  ~——

>0 <0



HF Energy of Atoms

Problem: HF energy of the Li atom
“Find the HF energy of the Li atom in terms of the spatial MOs”



HF Energy of Atoms

Problem: HF energy of the Li atom
“Find the HF energy of the Li atom in terms of the spatial MOs”

Solution:

xi=apr xa=pP1 xs=ay xa=p:
Enr = 2hy + hy + Ji1 + 2)12 — Kz



HF Energy of Atoms

Problem: HF energy of the Li atom
“Find the HF energy of the Li atom in terms of the spatial MOs”

Solution:

xi=apr xa=pP1 xs=ay xa=p:
Enr = 2hy + hy + Ji1 + 2)12 — Kz

Problem: HF energy of the B atom
“Find the HF energy of the B atom’ in terms of the spatial MOs’



HF Energy of Atoms

Problem: HF energy of the Li atom
“Find the HF energy of the Li atom in terms of the spatial MOs”

Solution:

xi=apr xa=pP1 xs=ay xa=p:
Enr = 2hy + hy + Ji1 + 2)12 — Kz

Problem: HF energy of the B atom
“Find the HF energy of the B atom’ in terms of the spatial MOs’

Solution:

Enp = 2h1 + 2hy + h3 + Ji1 + 4)12 + Jo2 — 2K12 + 213 + 2J23 — K13 — K3



From spin to spatial orbitals

. . . X3 Xa
Two-electron example: Hy in minimal basis 1v,) =
In the spin orbital basis, we have X, —¥— ——X2
Enr = (rilhlx) + (xalhlx2) + Ooixalxaxa) = Ooixalxoxs)
= Dalhlxal + [xalhlxal + Daxalxaxal = xxalxaxil
Spin to spatial transformation: X3 Xa
x1(x) = 91(x) = P (r)a(w) x, —F +—x,

x2(x) = Pr1(x) = ¢1(r)B(w)
Enr = [1|hlgna] + [P AlP1] + [hr1ypa|Pria] — (1| Prypa]

Therefore, in the spatial orbital basis, we have —_— W

Eur = 2(1]hlyn) + (rgpalgagpr) = 2(1[AJ1) + (11]11) _4_‘__%



One-electron terms

From spin to spatial orbitals (Take 2)

[xalhlxa] :/x
= [« (@)1 (r)deodr
o] o
=T (Y1l A1)
alhlxal = [ oG 00 h(r)xa(x)dx
— [ B (@)1 (n)h(r) ()1 (r)deodr

~ | [# @

@] | [ 4500w (0

=1 (i1 |hlyr)



From spin to spatial orbitals (Take 3)

Two-electron terms

Xixilxaxa] = IIXT x1) X1 (x1) 3" X5 (x2) X2 (x2) dxydx;
= [ (g (m)a(wn)pr (m)ry' B (@2) ] (r2) B(ws) i (r2) deon dry deydiry
= | [ @int@ndan] | [ 8 @npaden| [[] it vi (o)
=1 =1 (11 [ry)

Dzl =[] a7 oa)xa(a) ' (x2) 31 (x2) dxdx
—ﬂ (@) 7 (r1) Blwn) g1 (r) ' B (w2)§ (r2)a(w2) 1 (r2) dwr dridew, dr

= [ [ o @ip@idan| | [ 5 (wnnt@adan| [[] wiete)ryi (ps(r)ande

=0 =0 (P19 |aygn)




From spin to spatial orbitals (Take 4)

General expression

N N N N/2 N/2N/
Enr =Y lalh|d] + %ZZ ([aa|bb] — [ab|ba]) =2} " (alhla) + ) Z (aa|bb) — (ab|ba)]  (49)
a a p a a p
One- and two-electron terms
N
) lalhla] = Z[a\hl + Z[a\hla] —22 alh|d] (50)
1 N N 1 N/2N/2 N/2N/2 _
22 ([aa|bb] — [ab|ba]) = 2 Y Y ([aa|bb] — [ab|ba]) + Y Y ([aa|bb] — [ab|ba])
a b a b a b
N/2N/2 N/2N/2
+ Y Y ([aa|bb] — [ab|ba]) + Y Y ([aa|bb] — [abba})} (51
a b a b
N/2N/2

I
=[]
=[]

[2(aa|bb) — (ab|ba)]



The Fock matrix

Using the variational principle, one can show that, to minimise the energy, the MOs need to diagonalise the
one-electron Fock operator

N
fQ) =h(1)+ Y [Ta(1) = Ka(1)]
a
—
vHF(1) = Hartree-Fock potential
Fora (i.e. two electrons in each orbital)
N/2

F(1) =h(1) + Y [2/a(1) — Ka(1)]  (closed shell)

a

These orbitals are called (= eigenvectors):

LA i) = e i) ]

and ¢; are called the MO energies (= eigenvalues)



Fock matrix elements in the MO basis

Problem:
“ Find the expression of the matrix elements f;; = <)(,-|f‘)(j>”



Fock matrix elements in the MO basis

Problem:
“ Find the expression of the matrix elements f;; = <)(,-|f|)(j>”

Solution:

(xilflx;) = <Xi|h+;(Ja—lCa)|xj>
= (uilklag) + 2 (il Talg) = (il x1))
= (ilhlj) + ;[(ialj@ — (ia|aj)]
= <i\h\j>+; (ial|ja)



Problem:

“ Deduce the expression of ¢;”

«Or «F»r <

it
a
it

DA



MO energies in the MO basis

Problem:
“ Deduce the expression of ¢;”

Solution:

flxi)y=eilxi) = xilflxi) =& {xilxi) = e
= & = (ilhli) +)_[(ialia) — (ialai)]

= g = (ilnli) +)_ (ial|ia)



The variational principle

Problem
“Let’s suppose we know all the functions such as I:I(p; = Eipj, withEy < £y < ... and <(p,<‘(pj> = §jj. Show that,
for any normalized ¥, we have E = (¥|H|¥) > Ey”



The variational principle

Problem
“Let’s suppose we know all the functions such as I:I(pi = Eipj, withEy < £y < ... and <(Pi‘§0j> = §jj. Show that,

for any normalized ¥, we have E = (¥|H|¥) > Ey”

Solution
We expand ¥ in a clever basis

Y= Zci<p,~ with Zc,z =1
i i



The variational principle

Problem
“Let’s suppose we know all the functions such as I:I(pi = Eipj, withEy < £y < ... and <(p,-‘q)j> = §jj. Show that,

for any normalized ¥, we have E = (¥|H|¥) > Ey”

Solution
We expand ¥ in a clever basis

Y= Zc,~<p,~ with Zc,z =1
i i

= (YIHY) = <ZC,<P' ZCJ'(PJ> =Y cici (oilH]@j)
J y
= _ciqE (gilg;) = Y cigEid =} ¢ E > Eo ) ¢ = Eo
i 7 i ‘

1



Ground-state energy of the N-electron system

NEy = Zh + - Z (ab]|ab)

Energy of the (N — 1)-electron system (cation)

NTE =Y he+ - ZZ (ab||ab)

a#c a#c b#c
lonization potential (IP)

Ip=N"Tg. —Ng

1
(ac||ac) — Z (cb||cb)
a b

— {c|h|c) — Z (ac||ac) = —e,

a

N =

— (clhle) =

Koopmans’ theorem

(52)

(53)

(54)



Koopmans’ theorem for electron affinity (EA)

Problem:
“Show that Koopmans’ theorem applies to electron affinities”



Koopmans’ theorem for electron affinity (EA)

Problem:
“Show that Koopmans’ theorem applies to electron affinities”

Solution:

EA = NEO_N+1Er
= (rlhlr) =} (ral|ra) (55)

= —gr



Roothaan-Hall equations: introduction of a basis

Expansion in a basis

K K
¥i(r) = ;Cw-qu(r) i) = ;Cw- )

K AOs gives K MOs: N/2 are occupied MOs and

Roothaan-Hall equations

fliy=eiliy = fY Gilv)=¢) GCilv)
= (ulf Y Gilv) = & (ul)_ Cuilv)
= Y Ciulflv) =) Cuigi (plv)

= ZFHUCL’i = ZSWCW'S,'
v v




Introduction of a basis (Take 2)

Matrix form of the Roothaan-Hall equations

F-C=S-C-E = F.c'=C E (56)
F=x"Fx c=x-C xt.s.x=1 (57)

® Fock matrix Fy = (p|f|v) and Overlap matrix Sy = (p|v)

® We need to determine the C and the orbital energies E
Chi G2 -+ Gk e 0 - 0
Cyn Cpp -+ Gk 0 & -+ 0
c=] . . . E=|. . : (58)
Cki Ck2 -+ Ckk 0 0 - e

Self-consistent field (SCF) procedure

F(C)-C=S-C-E How do we solve these HF equations? (59)



Expression of the Fock matrix

Problem:
“Find the expression of the Fock matrix in terms of the one- and two-electron integrals”



Expression of the Fock matrix

Problem:
“Find the expression of the Fock matrix in terms of the one- and two-electron integrals”

Solution:

Fuv = ( |h+2 Ka)lv) wa+2 | T — Kalv)
= Hu + Z( (xalry' lvxa) — (uxalmy'|xav))

N
= HvarZZCAaCM( (Al |ve) — (uAlry' |ov))

a Ao

= Hy 4+ Y Pro ((uA|vo) — (uA|ov)) = Hyy + Pro (uA||vo) = Hyy + Guy
I3 " I 14
Ao

1
Fuv = Hyy + Y Pag({pA|vo) — E(y)\|0v>) (closed shell)
Ao



One- and two-electron integrals (Appendix A)

FrE

One-electron integrals: overlap & core Hamiltonian
Suv = (plv) = /fPZ(r)(Pv(r)dr (60)
Huw = (lFE ) = [ ()R (1) 6
Chemist/Mulliken notation for two-electron integrals
(11A0) = [ 97 (r1)u(11) 2= 93 (r2) o (r2)
(wvliAc) = (WIM) = (uo|Av)
Physicist/Dirac notation for two-electron integrals

(wvlAo) = [{ @i(r)e;(r2) fPA(ﬁ)Gba(rz)dﬁdrz

(wvlirc) = <W|M> = {uvloA)

(62)

(63)

(64)

(65)



Computation of the Fock matrix and energy
Density matrix (closed-shell system)

N/2
Puw=2Y CuaCra or [P=2C-C' (66)
a

Fock matrix in the AO basis (closed-shell system)

1
Fuv = Huw + Y Pao(pvlAe) =5 3 Pro (ue|Av) (67)
Ao Ao
Jyw= Coulomb Kyy= exchange

HF energy in the AO basis (closed-shell system)

(4o|Av) | Pro or EHF:%Tr[P-(H—i—F)] (68)

1 1
Enr = ZPva;w + > 2 Puy | (nv|Ac) — >

v WA




Expression of the HF energy

Problem:
“Find the expression of the HF energy in terms of the one- and two-electron integrals”



Expression of the HF energy

Problem:
“Find the expression of the HF energy in terms of the one- and two-electron integrals”

Solution:

N N
1
Eur = 2 hg + > E (Tap — Kap)  (cf few slides ago)
a ab

o)1 (o) (o)) ()

1
Hyl/ + E ZP/\O' (VA| |VU>:|
Ao

h

N
=) <; CuaPy

= ZP;H/
nv




The SCF algorithm

{Ra} and {Zx} and basis set {¢, }

@ Calculate integrals Sy, Hyy and (uv|Ac)

® Diagonalize S and compute X
@ Obtain guess density matrix for P

1.

Calculate G and then F=H + G

2. Compute F/ = X' . F.X

U A w

Diagonalize F’ to obtain C’ and E
Calculate C = X - C’

Form a new density matrix P = C - C*
Am | converged? If not go back to 1.

@ Calculate stuff that you want, like Eyr for example

How to perform a HF calculation in practice?



Orthogonalization matrix

We are looking for a matrix in order to orthogonalize the AO basis, i.e. X' - S - X =1

Symmetric (or Lowdin) orthogonalization

o 1/2 gy /2 gyt :
X=S =U-s U" is one solution... (69) (o) Schmidt

Is it working?
xt.s. x=s"2.5g.sV2=_gV2.g.67V2=1 v (70

Canonical orthogonalization
(b) symmetric

X = U-s~ "% is another solution (when you have linear dependencies)... ¢
(71)
Is it working?
(¢) cananical
X'-sx=s"2U"s.us2=1 v (72)

~—
s



How to obtain a good guess for the MOs or density matrix?

Possible initial density matrix

©® WecansetP=0=F = H ( ):
= Usually a poor guess but easy to implement

® Use EHT or semi-empirical methods:
= Out of fashion

® Using tabulated atomic densities:
= “SAD” guess in QChem

® Read the MOs of a previous calculation:
= Very common and very useful



How do | know | have converged (or not)?

Convergence in SCF calculations

® You can check the :
= The energy/density should not change at convergence

® You can check the commutator F-P-S —

P-F
= At convergence, we have F-P-S —S-P-F

S- :

P.F=0

® The DIIS (direct inversion in the iterative subspace) method is usually used to speed up convergence:
= Extrapolation of the Fock matrix using previous iterations

m

Fni1= Y, cF;

i=m—k



Dipole moments

Classical vs Quantum

n= (ﬂXnyvVZ) = Zqiri
g

classical definition

N M
N:(yx'ﬂy']’lz): <T0|7Zri“lj0>+ZZARA7 ZP.“V r‘]/l +ZZARA
i A

i uv
—_—

electrons nuclei

Vector components

Hx = — Y P (v]x|p0) +ZzAxA with (v]x|p) :/w(r)x%(r)dr

uv N—_——
one-electron integrals

(73)

(74)

(75)



Charge analysis

Electron density
Z¢ﬂ 'D}“/(PV ) with /p(r)dr =N = N= ZPVVSV;I = Z(P's)llﬂ = TI’(P'S) (76)
wv H

Mulliken population analysis

Assuming that the basis functions are atom-centered
gtker =z, — Y (P-S)uy 77
——

HEA
net charge on A

Léwdin population analysis
Because Tr(A - B) = Tr(B - A), we have, for any a, N = 2;4 (s* ~P-S1*"‘)W

For o = 1/2, we get: N:Z(SVZ-P-SVz)W = qLOWd'”—ZA—2(51/2~P-S1/2)W (78)
I HEA



Unrestricted HF (UHF)

How to model open-shell systems?
® RHF is made to describe closed-shell systems and we have used restricted spin orbitals:

RHF () = ) (@) $i(r)
) {ﬁ(wm(r)

It does not describe open-shell systems

® For open-shell systems we can use unrestricted spin orbitals
a(w) Pr(r)

X/UHF(X) = Iﬁ
Blw) y; (r)

® RHF = Restricted Hartree-Fock <+ Roothaan-Hall equations
® UHF = Unrestricted Hartree-Fock <+ Pople-Nesbet equations

Restricted Open-shell Hartree-Fock (ROHF) do exist but we won’t talk about it



RHF, ROHF and UHF

f

P o

RHF ROHF UHF
singlet doublet doublet

F F
r.

4
+

® RHF = Restricted Hartree-Fock
® UHF = Unrestricted Hartree-Fock
® ROHF = Restricted Open-shell Hartree-Fock



Unrestricted Hartree-Fock equations

UHF equations for unrestricted spin orbitals

To minimize the UHF energy, the unrestricted spin orbitals must be eigenvalues of the « and B Fock operators:

| £ 9L ) =€ gf () (79)
where
N© NB 5
=h(1)+ Y[ EDWAQ! (80)
NP ; N&
Py =h()+ YUY —KE]+ Y (81)

The Coulomb and Exchange operators are

) = [ 97 @iy 2)dr, 0 = | [ 9@ @]y 6



Unrestricted Hartree-Fock equations (Take 2)

UHF energy

The UHF energy is composed by three contributions:

Eunr = + Efie + Elfar (83)
which yields
Eunr = +th + - Zjﬁ/’ KPP +ZZ]“" (84)
The matrix elements are given by
= (97 |hly) = (wred |vre?) K= (yryl ey ) )

Note that Kgﬁ = 0 & there is no exchange between opposite-spin electrons



Problem

“Write down the UHF energy of the doublet state of the lithium atom”

«Or «F»r <

it
a
it

DA



UHF energy of the Li atom

Problem
“Write down the UHF energy of the doublet state of the lithium atom”

Solution

Eunr = W + By + B + 183 — K + /1P 4 5P



The Pople-Nesbet Equations

Expansion of the unrestricted spin orbitals in a basis

K K
=) Clhigu(r) TACED A A0 (86)

p=1 p=1

The Pople-Nesbet equations
F.ct=S.C" . E* FB.cP=s.cP.EP (87)
£ = o+ L PAI0A) — (i) + Lo (vl (59)
},1 = Hyuy + 2 [(uv|oA) — (uAlov)] + Y Py, (uvlor) (89)
Ao

F* and FP are both functions of C* and C# = There’s a coupling between & and § MOs!



Spin-up and spin-down density matrices

Nl(
I);;l = Z Cﬁaclvxa < P
a=1

Properties of the density (0 = a or )
p7(r) =} u(r) Pypu(r)
12%
Total and Spin density matrices

Pl =p PP
~—

Charge density

Unrestricted Density Matrices

NE
Pl =Y chich, = PP
a=1

/wmmzw

pS  =p PP

~—~
Spin density

(90)

©1n

92)



How to perform a UHF calculation in practice?

The SCF algorithm

o {R4} and {Z4} and basis set {(PH} (same as RHF)
@ Calculate integrals Syy, Hyy and (uv|Ac) (same as RHF)
® Diagonalize S and compute X (same as RHF)

© Obtain guess density matrix for P* and pP

la. Calculate G* and then F* = H + G*

1b. Calculate GP and then FP = H + G#
2. Compute (F*)’ = X' . F*. X and (FF) = X" - FP.X

3a. Diagonalize (F*)’ to obtain (C*)" and E*

3b. Diagonalize (FP)’ to obtain (CP)’ and EP
4. Calculate C* = X - (C*)" and CP = X - (CP)’
5. Form the new new density matrix P* and PP, and compute PT = P* 4 PP
6. Am | converged? If not go back to 1.

@ Calculate stuff that you want, like Eypr for example



The correlation energy

HF replaces the e-e interaction by an averaged interaction

The error in the HF method is called the correlation energy

The correlation energy is small

HF energy roughly 99% of total but chemistry very sensitive to remaining 1%
The correlation energy is always negative

Computing E. is one of the central problem of quantum chemistry

In quantum chemistry, we usually “freeze” the core electrons for correlated calculations



@ Configuration Interaction (CID, CIS, CISD, QCISD)

® Coupled Cluster (CCD, CCSD, CCSD(T), CCSDT)

® Moller-Plesset perturbation theory (MP2, MP3, MP4)

© Multireference methods (MCSCF, CASSCF, RASSCF, MRCC, CASPT2)

@ Explicitly correlated F12 methods (MP2-F12, CCSD-F12, CAS-F12)

0 Density-functional theory (DFT, TDDFT)

@ Stochastic Quantum Monte Carlo methods (VMC, DMC, FCIQMC)

Correlation methods



Configuration Interaction (Cl)

This is the oldest and perhaps the easiest method to understand
Cl is based on the (like HF)
The Cl wave function is a linear combination of determinants

Cl methods use excited determinants to “improve” the HF wave function

|@o) = co[¥o) + ) cf [¥5) + ) i [¥5)) + + Y YR e 03)
ia i<j i<j<k<l
a<b a<b<c<d



Cl method and Excited determinants

Excited determinants

3331
337+ 1
b3 14
33131
FTHH1 T
F1+17%
ANES =t

S-type S-type D-type D-type T-type

Cl wave function

[1®o) = co [HF) +cs [S) + e [D) +er [T) + ca Q) + ... | (94)




When |S) (singles) are taken into account: CIS
‘(D(]s) = |HF> + cs |S>

NB: CIS is an excited state method
When |D) (doubles) are taken into account: CID

‘CDC]D> = Q ‘HF> + D ‘D>

NB: CID is the cheapest Cl method
When |S) and |D) are taken into account: CISD

NB: CISD is the Cl method
When |S), |D) and |T) (triples) are taken into account: CISDT

|Pcispr) = o |HF) +¢s|S) + cp [D) + 7 [T)

CISDTQ, etc.

Truncated ClI

(95)

(96)

©7)

(98)



When all possible excitations are taken into account, this is called a Full CI calculation (FCI)
‘(I)FCI) = C0|HF> + Cs|S> + CD‘D> + CT‘T> + CQ‘Q> +...

FCI gives the exact solution of the Schrodinger equation within a given basis
FCl is becoming more and more fashionable these days (e.g. FCIQMC and SCI methods)
So, why do we care about other methods?

Because FCl is super computationally expensive!

Full CI

(99)



Size of Cl Matrix

“Assume we have 10 electrons in 38 spin MOs: 10 are occupied and 28 are empty”

® There is Cfo possible ways of selecting k electrons out of the 10
occupied orbitals

Num. of excitations
1

280

17,010

393,120

4,299,750
24,766,560
79,115,400
142,084,800
139,864,725
69,069,000
13,123,110

Tot. 472,733,756

n!
k= —— -
" K (n—k)!

® There is C& ways of distributing them out in the 28 virtual orbitals

® For a given excitation level k, there is CfOCﬁ; excited determinants

The total number of possible excited determinant is

O LU A WN o O x

10
Y ¢k ek = cif = 472,733,756
k=0

_
(=}

This is a lot...



The FCI matrix

[®0) = &|HF) +¢5|S) + o |D) + er[T) + cq|Q) +
Before pruning:
[HF) IS) D) M) Q)

(HF|  (HF|A[HF)  (HF|A|S) (HF|A|D) (HF|AIT) (HF|A|Q)
(s| (S|H[HF)  (s|H|s)  (s|AID)  (S|H|T)  (S|H|Q)

(D] (D|AHF)  (D[#[s)  (DIA[D) ~ (D[AT)  (D[H|Q)
(t|  (TlAHF) - (TlAls)  (TIAD)  (TIAT)  (TIA|Q)
(Q <Q\H|HF> <Q|H|5) (Qlfjp)  (alAT)  (alAlQ)
After pruning:
HF) S) D) ) Q)
(HF|  (HF|H|HF) 0 (HF|F|D) 0 0
(sl 0 (S|A[s) ~ (S|H[D)  (S|HIT) 0
(DI (DIfi[HF) ~ (D[A[s)  (D[A|D) ~ (D[H|T) (D|A|Q)
(T| 0 (TIH[S) <(T\H|D) <<T|H|T> (TIH|Q)

Q| 0 0 QlAD)  (QlAIT)  (Qlf|Q)



Rules & Observations

© No coupling between HF ground state |HF) and single excitations |S)
=> Brillouin’s theorem
(HF|A|S) =0

@® No coupling between |HF) and triples |T) , quadruples |Q) , etc.
= Slater-Condon rules
(HF|A|T) = (HF|H|Q) =...=0

(SIHIQ) =...=0
® |S) have small effect but mix indirectly with |D)

© |D) have large effect and |Q) more important than |T)
= CID gives most of the correlation energy

(HF|H|D) > (HF|H|Q) > (HF|H|T)



Weights of excited configurations

for Ne

Excit. level

Weight

NN A WN = O

9.6 X
9.8 X
3.4 %
3.7 X
4.5 X
1.9 X
1.7 X
1.4 X
1.1 X

1071
1074
1072
1074
1074
1073
107
1077
107°

Correlation energy of Be and Method scaling

Method AE, % Scaling
HF 0 0 K*
CIS 0 0 K°
CISD 0.075277  96.05 K
CISDT 0.075465  96.29 K38
CISDTQ  0.078372 100 K1
FCI 0.078372 100 K

Example



Size consistency and size extensivity

Truncated Cl methods are size inconsistent i.e.

2E.(Hp) # Ec(Hp-Hy)

Size consistent defines for non-interacting fragment
Size extensivity refers to the scaling of E. with the number of electrons

NB: FCl is size consistent and size extensive



Rayleigh-Schrodinger perturbation theory

Let’s assume we want to find ¥y and Ey, such as
(A + AHDYY) = By ¥,

and that we know

Let’s expand ¥y and Ej in term of A:

o= A"E) + A ES) + A EP A ED

¥y = "% el 2wl e

such as (intermediate normalization)

FOy =1 Oy —0 k=1,2,...

(100)

(101)

(102)

(103)

(104)



Rayleigh-Schrodinger perturbation theory (Part 1)

Gathering terms with respect to the power of A:

,:I(o)\lf(()()) _ Eéo)‘lf((f’) (105)
A HOY 4 O = f0 (Y gDl (106)
A HOwR 4 O = Fw® 4 gD 4 g (107)
A O 4 ) = O (V) @) ) (108)
Using the intermediate normalization, we have
£ = (e 1O () (109)
A B = EO ) (110)
A2 B = (w0 HOe)Y  Wigner's (2n+1) rule! 111)
A = IO ) = or O - £V ) (112)



Rayleigh-Schrodinger perturbation theory (Part 2)

Expanding ‘I’(()U in the basis ‘I’E,O) withn=10,1,2,...,00

) =L e ey = 6 =) (113)
n
Therefore,
") = ¥ 1w 1) (1149)
n#0
Using results from the previous slide, one can show that
(0)) 7y 1 (0)y2
2 (Yo '|H[¥n”)
B =L Sl )
H#O EO - En
B =y (R (E P2 (F | ) i 5= () ) a6
0 £ _ o)y g0) _ plo) 0 EO) _ F0)y2
n,m70 (Eg n ) (Ep m ) 7o (Ep )




In Mgller-Plesset perturbation theory, the partition is

Meller-Plesset (MP) perturbation theory

N N .
MO = Y f) = Y Ih@) + M) B =Y ) (117)
i=1 i=1 i<j 'y i
Therefore,
occ 1 9¢c¢
£)=Ye B =— Yl = (118)
i ]

The first information about the correlation energy is given by the 2nd-order energy

Eéz) _ occ virt <lj||ab>2

,»<ja<b€i+ﬁj*€a*€b

This is the MP2 energy!! (119)



The third-order correction is a bit ugly...

(ij]|ab) (k]| ij) {abl | k)

1
EB) —
ijkl ab

0 _gz (ei+ej—eqa—ep)(ex+e —ea—ep)

(ij||ab) (ab||ed) (cd] | i)

Yy

ij abcd

(ei+ej—ea—ep)(eit+e—ec—eq)

(ij| |ab) {kb|| cj) {ac] |ik)

“YY

ijk abc

+ej—eq—ep)(ej e —ea—ec)

MP2 and MP3 only requires only doubly excited determinants
MP4 does need singly, doubly, triply and quadruply excited determinant!

MP3 energy



Correlation energy of Be in a 4s2p basis set

Illustration for the Be atom

Scaling  Level AE, % AE. %
K° MP2  0.053174  67.85

K MP3  0.067949  86.70 0.075277  96.05
K’ MP4  0.074121  94.58

K8 MP5  0.076918  98.15 0.075465  96.29
K° MP6  0.078090  99.64

K1 MP7  0.078493  100.15 0.078372 100

MPn is not a variational method, i.e. you can get an energy lower than the true ground state energy!

MPn fails for systems with small HOMO-LUMO gap

The MPn series

MPn is size-consistent!

around the exact energy



Idea behind CC

Coupled Cluster wave function

“Perturbation methods add all types of corrections (S, D, T, Q etc.) to the reference wave function to a given
order (2, 3, 4, etc.). The idea in CC methods is to include all corrections of a given type to infinite order.

T=T+NL+h+T+... +1Ty

Action on the HF wave function

Cl wave function

CC wave function

Yo =) t1¥¢
ia

Yee = e Yo

7\—2?0 = Z tgb‘f:;b

i<j
a<b

>
ol

[
agh

T
(=]

»‘\P
= =

(120)

(121)

(122)

(123)



Coupled Cluster wave function

o -7-2
7oA A A 1
e71+1+<7’z+7>+ +(

PO R Y ER
Tt BT+ =+ )4

— 124
2 24 (124)

singles = T3

doubles = connected doubles T, + disconnected doubles 72

Ty = four electrons interacting simultaneously

72 = two non-interacting pairs of interacting electrons

Compared to Cl, CC contains additional terms arising from products of excitations at each excitation

level
= CC is size consistent!! but

CISD lacks T2 =



Coupled Cluster energy

® Schrodinger equation for CC wave function

H[¥ce) = Ecc|¥ee) = HleT¥o) = Eccle! ¥o) (125)
.
(YolH|e™¥o) = Ecc (Yol ¥o) (126)
Ecc = (Yol f1|eT¥o)
= (Yol AI¥o) + (Yol A Ti¥o) + (Yol M T2¥o) + 2 (Yol | T3¥0)
(127)

= Eo+ Yt/ (Yol A[YE) + Y (18" + tft) — t)t) (Fo | HIFE)
ia ijab

= Eo+ Y (18" + tft) — tPt0) (if| | ab)
ijab



Coupled Cluster equations

® Projection onto singly, doubly, triply, etc., excited determinants

¥e e The!  [¥,) =0 128
< I| . | 0> ( )
similarity transform
(¥l THe %) = 0 (129)
(¥ocle THe [¥o) =0 (130)
e ¢ T isa deexcitation operator
“t_s ?+7'2 ?’3+T4+
e ' =1— R
2 6 24
(131)



Truncated Coupled Cluster methods

CCSD

e e (e TN (e T\ (T BT T
h+h — 14 7 T 1 T 1 f2 20 N .
e +1+(2+2)+(21+6 + 2+ 2 +24 +
How do determine the CCSD amplitudes?

s oaipils s P aa T3
<T?(1_T1)‘H‘{1+T1+(Tz+71)+<T2T1+?1)}‘F0>=0 (132)
TR < LT 72 hi
yab Ali+h+(h+ 2 Hfh+ DRI ) ) =0
(¥ ||{+1+<2+2>+(21+6 HF 5|1

(133)
All the matrix elements can be evaluated in terms of MO integrals
Coupled non-linear equations for the singles and doubles amplitudes

Must be solved iteratively (quartic in the amplitudes)



Connections between Cl, CC and MP (Part 1)

Foa s L T2 15 T2T2 T
e =1+T1+ Ter? + + T4+T3T1+*+ +a + -

Each parenthesis generates all the excited determinants of the given type
71 is small = 72, 7']3, 7'14, 717, ...are small

7'2 is large, and 7'3 > ?'27'1 > 7'13

T, is large = 7'22 > T, and the rest is small because T; < 0

Tin with m > 4 expected to have small effects

CISD lacks '7'22 =

72 becomes large when number of electrons increases = Davidson correction

E.(CISD+Q) = E.(CISD) + (1 — ¢2)E.(CISD)



Connections between Cl, CC and MP

b e s (. T2 s as 13 DIT T
e =1+Ti+ (Tt )+ H( T+ B+ 2+ S+ )+

MP2 and MP3 uses only doubles

MP4 uses singles, doubles, triples (T3) and quadruples (72)

CCD =~ MP4(DQ) and CCSD ~ MP4(SDQ)

MP2, MP3 and MP4(SDQ) can be obtained in 1st CCSD iteration

@ CCSDT but very expensive!
® CCSD(T) where triples comes from MP4 (non-iterative)
©® CCSD(T) = gold standard of quantum chemistry (for ground state and weakly correlated systems)



Illustration for the Be atom

Correlation energy of Be in a 4s2p basis set

Scaling  Level AE, % Level AE, % Level AE, %
K> MP2 0.053174 67.85

K® MP3 0.067949 86.70 CISD 0.075277 96.05 CCSD 0.078176 99.75
K’ MP4 0.074121 94.58 CCSD(T) 0.078361 99.99
K8 MP5 0.076918 98.15 CISDT 0.075465 96.29 CCSDT 0.078364 99.99
K° MP6  0.078090  99.64

K™ MP7 0.078493 100.15 CISDTQ  0.078372 100 CCSDTQ  0.078372 100

As a rule of thumb:
HF < MP2 < CISD < MP4(SDQ) ~ CCSD < MP4 < CCSD(T)



Monte Carlo (MC) method

Monte Carlo is a

It is used in problems where it is too difficult or impossible to obtain analytical expressions or the
dimensionality of the integral is large

The method consists in repeating random sampling many times to obtain numerical results:
= this is a non-deterministic or stochastic method.

where N is the number of MC step

In 1946, Stanislaw Ulam was the first mathematician to dignify this approach with a name, in honor of
his uncle having a little issue with gambling

Nicolas Metropolis also made important contributions (Metropolis algorithm)



Monte Carlo computation of 7T

L, x*+yr<,

0, otherwise.

3962 __ ~ 1948 __
263 — 3.1696 A T8 31792




Variational Monte Carlo (VMC)

® Within quantum chemistry, VMC is used to obtain expectation values (mainly energies)

® In VMC, the expectation value of the Hamiltonian with respect to a trial wave function ¥y is obtained
using a

® The VMC energy is an upper bound to the exact ground state energy

. A Y1 (R)
fo YR YR AR _ ) () Fr( _JAR 2dR (134)
vme [¥1(R)2dR [¥7(R)2dR f‘-FT 2 dR

where ~
HY1(R
E(R) = H¥r(R) is the local energy and R = (r1,r2,...,ry) (135)
¥1(R)



Diffusion Monte Carlo (DMC)

Time-dependent Schrodinger equation written in imaginary time:

dP(R, T)

5 = (A—S5)®(R,T) (136)

® For T — oo, the solution is the exact ground state wave function ®(R)

® DMC generates configurations (or walkers) distributed according to the

L(:% I - V(R T)+ V- [F(R)p(R, 7)) ~ [EL(R) — Fr] p(R. T) (137)
diffusion drift
where
F(R) = %‘(5)) is the quantum force (138)

If ¥1(R) has exact nodes, DMC energy = exact energy ( )
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