Hartree-Fock and post-Hartree-Fock methods

Pierre-François LOOS

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

ENS Lyon — Oct 7th, 2021

The SCF algorithm for Hartree-Fock (HF) calculations (p. 146)

- Specify molecule $\{R_A\}$ and $\{Z_A\}$ and basis set $\{\phi_\mu\}$
- **2** Calculate integrals $S_{\mu\nu}$, $H_{\mu\nu}$ and $\langle \mu\nu | \lambda\sigma \rangle$
- 3 Diagonalize S and compute $X = S^{-1/2}$
- Obtain guess density matrix for P
 - 1. Calculate J and K, then F = H + J + K
 - 2. Compute $\mathbf{F}' = \mathbf{X}^{\dagger} \cdot \mathbf{F} \cdot \mathbf{X}$
 - 3. Diagonalize F' to obtain C' and E
 - 4. Calculate $C = X \cdot C'$
 - 5. Form a new density matrix $P = C \cdot C^{\dagger}$
 - 6. Am I converged? If not go back to 1.
- **6** Calculate stuff that you want, like E_{HF} for example

Motivations & Assumptions

- We consider the time-independent Schrödinger equation
- HF is an ab initio method, i.e., there's no parameter
- We don't care about relativistic effects
- HF is an independent-particle model, i.e., the motion of one electron is considered to be independent of
 the dynamics of all other electrons
 interactions are taken into account in an average fashion
- HF is the starting point of pretty much anything!

In the Schrödinger equation

$$\mathcal{H}\Phi(\{\mathbf{r}_i\}, \{\mathbf{R}_A\}) = \mathcal{E}\Phi(\{\mathbf{r}_i\}, \{\mathbf{R}_A\}) \tag{1}$$

the total Hamiltonian is

$$\mathcal{H} = \mathcal{T}_{n} + \mathcal{T}_{e} + \mathcal{V}_{ne} + \mathcal{V}_{ee} + \mathcal{V}_{nn}$$
 (2)

What are all these terms?

- \mathcal{T}_n is the kinetic energy of the nuclei
- \mathcal{T}_e is the kinetic energy of the electrons
- ullet $\mathcal{V}_{\mathsf{ne}}$ is the Coulomb attraction between nuclei and electrons
- V_{ee} is the Coulomb repulsion between electrons
- V_{nn} is the Coulomb repulsion between nuclei

In atomic units ($m = e = \hbar = 1$)

$$\mathcal{T}_{n} = -\sum_{A=1}^{M} \frac{\nabla_{A}^{2}}{2M_{A}}$$
 (3a)

$$\mathcal{T}_{\mathbf{e}} = -\sum_{i=1}^{N} \frac{\nabla_i^2}{2} \tag{3b}$$

$$V_{\text{ne}} = -\sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_A}{r_{iA}}$$
 (3c)

$$\mathcal{V}_{ee} = \sum_{i < j}^{N} \frac{1}{r_{ij}} \tag{3d}$$

$$V_{\rm nn} = \sum_{A < B}^{M} \frac{Z_A Z_B}{R_{AB}} \tag{3e}$$

- ∇^2 is the Laplace operator (or Laplacian)
- M_A is the mass of nucleus A
- Z_A is the charge of nucleus A
- r_{iA} is the distance between electron i and nucleus A
- r_{ij} is the distance between electrons i and j
- R_{AB} is the distance between nuclei A and B

Figure 2.1 A molecular coordinate system i, j = electrons, A, B = nuclei

Born-Oppenheimer approximation = decoupling nuclei and electrons

Because $M_A \gg 1$, the nuclear coordinates are "parameters" \Rightarrow potential energy surface (PES)

$$\Phi(\{\mathbf{r}_i\}, \{\mathbf{R}_A\}) = \Phi_{\text{nucl}}(\{\mathbf{R}_A\})\Phi_{\text{elec}}(\{\mathbf{r}_i\}, \{\mathbf{R}_A\}) \quad \text{with} \quad \mathcal{E}_{\text{tot}} = \mathcal{E}_{\text{elec}} + \sum_{A < B}^{M} \frac{Z_A Z_B}{R_{AB}}$$
(4)

Nuclear Hamiltonian

The nuclear Hamiltonian is

$$\mathcal{H}_{nucl}\Phi_{nucl} = \mathcal{E}_{nucl}\Phi_{nucl} \quad \text{with} \quad \boxed{\mathcal{H}_{nucl} = \mathcal{T}_n + \mathcal{V}_{nn}} \tag{5}$$

It describes the vibration, rotation and translation of the molecules

Electronic Hamiltonian

The electronic Hamiltonian is

$$\mathcal{H}_{elec}\Phi_{elec} = \mathcal{E}_{elec}\Phi_{elec} \quad \text{with} \quad \boxed{\mathcal{H}_{elec} = \mathcal{T}_{e} + \mathcal{V}_{ne} + \mathcal{V}_{ee}}$$
 (6)

We are interested by electrons which are fermions ⇒ Pauli exclusion principle (cf next slide)

Spin functions:
$$|\sigma\rangle = |s, m_s\rangle$$
 $s^2 |s, m_s\rangle = s(s+1) |s, m_s\rangle$ $s_z |s, m_s\rangle = m_s |s, m_s\rangle$ $|\alpha\rangle = |\frac{1}{2}, \frac{1}{2}\rangle$ spin-up electron $|\beta\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle$ = spin-down electron

$$\int \alpha^*(\omega)\beta(\omega)d\omega = \int \beta^*(\omega)\alpha(\omega)d\omega = 0 \qquad \int \alpha^*(\omega)\alpha(\omega)d\omega = \int \beta^*(\omega)\beta(\omega)d\omega = 1 \qquad (7)$$

$$\langle \alpha|\beta \rangle = \langle \beta|\alpha \rangle \qquad = 0 \qquad \langle \alpha|\alpha \rangle = \langle \beta|\beta \rangle \qquad = 1 \qquad (8)$$

The composite variable x combines spin (ω) and spatial (r) coordinates: $x = (\omega, r)$

Antisymmetry principle

$$\mathcal{H}_{\text{elec}}\Phi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N) = \mathcal{E}_{\text{elec}}\Phi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)$$
(9)

$$\Phi(\mathbf{x}_1,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_N) = -\Phi(\mathbf{x}_1,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_N)$$
(10)

Antisymmetry

Problem:

"Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space"

Problem:

"Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space"

Solution Indistinguishable particles means

$$|\Psi(\mathbf{x}_1, \mathbf{x}_2)|^2 = |\Psi(\mathbf{x}_2, \mathbf{x}_1)|^2 \Rightarrow \Psi(\mathbf{x}_1, \mathbf{x}_2) = \pm \Psi(\mathbf{x}_2, \mathbf{x}_1)$$
 (11)

Problem:

"Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space"

Solution Indistinguishable particles means

$$|\Psi(\mathbf{x}_1, \mathbf{x}_2)|^2 = |\Psi(\mathbf{x}_2, \mathbf{x}_1)|^2 \Rightarrow \Psi(\mathbf{x}_1, \mathbf{x}_2) = \pm \Psi(\mathbf{x}_2, \mathbf{x}_1)$$
 (11)

Bosons mean $\Psi(x_1, x_2) = \Psi(x_2, x_1)$ and Fermions mean $\Psi(x_1, x_2) = -\Psi(x_2, x_1)$

Let's put them at the same spot, i.e. $\mathbf{x} = \mathbf{x}_1 = \mathbf{x}_2$

For Fermions,
$$\Psi(\mathbf{x}, \mathbf{x}) = -\Psi(\mathbf{x}, \mathbf{x}) \Rightarrow |\Psi(\mathbf{x}, \mathbf{x}) = 0|$$
 (12)

The wave function vanishes! \Rightarrow This is called the Fermi hole!

Antisymmetry (Take 2)

Problem:

"Given two one-electron functions $\chi_1(\mathbf{x})$ and $\chi_2(\mathbf{x})$, could you construct a two-electron (fermionic) wave function $\Psi(\mathbf{x}_1, \mathbf{x}_2)$?"

Problem:

"Given two one-electron functions $\chi_1(\mathbf{x})$ and $\chi_2(\mathbf{x})$, could you construct a two-electron (fermionic) wave function $\Psi(\mathbf{x}_1, \mathbf{x}_2)$?"

Solution

A possible solution is

$$\Psi(\mathbf{x}_1, \mathbf{x}_2) = \chi_1(\mathbf{x}_1)\chi_2(\mathbf{x}_2) - \chi_1(\mathbf{x}_2)\chi_2(\mathbf{x}_1)$$
(13)

This has been popularized by Slater:

$$\Psi(\mathbf{x}_1, \mathbf{x}_2) = \begin{vmatrix} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) \end{vmatrix} = \chi_1(\mathbf{x}_1)\chi_2(\mathbf{x}_2) - \chi_1(\mathbf{x}_2)\chi_2(\mathbf{x}_1)$$
(14)

This is called a Slater determinant!

A wave function of the form $\Psi(\mathbf{x}_1, \mathbf{x}_2) = \chi_1(\mathbf{x}_1)\chi_2(\mathbf{x}_2)$ is called a Hartree product

A Slater determinant

$$\Psi_{\mathsf{HF}}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(\mathbf{x}_{1}) & \chi_{2}(\mathbf{x}_{1}) & \cdots & \chi_{N}(\mathbf{x}_{1}) \\ \chi_{1}(\mathbf{x}_{2}) & \chi_{2}(\mathbf{x}_{2}) & \cdots & \chi_{N}(\mathbf{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{1}(\mathbf{x}_{N}) & \chi_{2}(\mathbf{x}_{N}) & \cdots & \chi_{N}(\mathbf{x}_{N}) \end{vmatrix} \equiv |\chi_{1}(\mathbf{x}_{1})\chi_{2}(\mathbf{x}_{2}) \dots \chi_{N}(\mathbf{x}_{N})\rangle
= \mathcal{A}\chi_{1}(\mathbf{x}_{1})\chi_{2}(\mathbf{x}_{2}) \dots \chi_{N}(\mathbf{x}_{N}) = \mathcal{A}\Pi(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{N})$$
(15)

- A is called the antisymetrizer
- $\Pi(x_1, x_2, ..., x_N)$ is a Hartree product
- The many-electron wave function $\Psi_{HF}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$ is an antisymmetrized product of one-electron functions

$$\chi_i(\mathbf{x}) = \sigma(\omega)\psi_i(\mathbf{r}) = \begin{cases} \alpha(\omega) \, \psi_i(\mathbf{r}) \\ \beta(\omega) \, \psi_i(\mathbf{r}) \end{cases} \qquad \psi_i(\mathbf{r}) = \sum_{\mu}^K C_{\mu i} \phi_{\mu}(\mathbf{r})$$

These are restricted spin orbitals ⇒ Restricted Hartree-Fock = RHF

The spin orbitals are orthogonal

$$\langle \chi_i | \chi_j \rangle = \int \chi_i^*(\mathbf{x}) \chi_j(\mathbf{x}) d\mathbf{x} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

The spatial orbitals are orthogonal

$$\langle \psi_i | \psi_j
angle = \int \psi_i^*({m r}) \psi_j({m r}) d{m r} = \delta_{ij}$$
 = Kronecker delta

The basis functions (or atomic orbitals) are, a priori, not orthogonal

$$\langle \phi_{\mu} | \phi_{
u}
angle = \int \phi_{\mu}^*({m r}) \phi_{
u}({m r}) d{m r} = S_{\mu
u}$$
 = Overlap matrix

Comments

- $\{\phi_{\mu}|i=1,\ldots,K\}$ are basis functions or atomic orbitals (AOs)
- $\{\chi_i | i = 1, ..., 2K\}$ are the spin orbitals
- $\{\psi_i|i=1,\ldots,K\}$ are the spatial orbitals or molecular orbitals (MOs)
- With K AOs, one can create K spatial orbitals and 2K spin orbitals
- For the ground state, the first N spin orbitals are occupied and the last 2K N are vacant (unoccupied)
- When a system has 2 electrons in each orbital, it is called a closed-shell system, otherwise it is called a
 open-shell system
- For the ground state of a closed shell, the first N/2 spatial orbitals are <u>doubly-occupied</u> and the last K N/2 are vacant (unoccupied)
- The MOs are build by linear combination of AOs (LCAO)
- The coefficient $C_{\mu i}$ are determined via the HF equations based on variational principle

Figure 2.4 The Hartree-Fock ground state determinant, $|\chi_1\chi_2 \cdot \cdot \chi_a\chi_b \cdot \cdot \cdot \chi_N\rangle$.

Reference determinant

The electrons are in the *N* lowest orbitals (Aufbau principle): $|\Psi_0\rangle = |\chi_1...\chi_a\chi_b...\chi_N\rangle$ (16)

Singly-excited determinants

Electron in *a* promoted in *r*:
$$|\Psi_a^r\rangle = |\chi_1 \dots \chi_r \chi_b \dots \chi_N\rangle$$
 (17)

Doubly-excited determinants

Electrons in
$$a$$
 and b promoted in r and s : $|\Psi_{ab}^{rs}\rangle = |\chi_1 \dots \chi_r \chi_s \dots \chi_N\rangle$ (18)

The HF energy is

$$\boxed{E_{\text{HF}} = \langle \Psi_{\text{HF}} | \mathcal{H}_{\text{elec}} + \mathcal{V}_{\text{nn}} | \Psi_{\text{HF}} \rangle} \quad \text{where} \quad \mathcal{H}_{\text{elec}} = \mathcal{T}_{\text{e}} + \mathcal{V}_{\text{ne}} + \mathcal{V}_{\text{ee}}$$
(19)

We define a few quantities:

• the one-electron Hamiltonian (or core Hamiltonian) = nice guy!

$$\mathcal{O}_1 = \mathcal{T}_e + \mathcal{V}_{ne} = \sum_{i=1}^{N} h(i) \text{ where } h(i) = -\frac{\nabla_i^2}{2} - \sum_{A=1}^{M} \frac{Z_A}{r_{iA}}$$
 (20)

• the two-electron Hamiltonian (electron-electron repulsion) = nasty guy!

$$\mathcal{O}_2 = \mathcal{V}_{ee} = \sum_{i < j}^N \frac{1}{r_{ij}} \tag{21}$$

Therefore, we have

$$\mathcal{H}_{\text{elec}} = \sum_{i=1}^{N} h(i) + \sum_{i < i}^{N} \frac{1}{r_{ij}}$$
(22)

• Nuclear repulsion:

$$\langle \Psi_{HF} | \mathcal{V}_{nn} | \Psi_{HF} \rangle = V_{nn} \langle \Psi_{HF} | \Psi_{HF} \rangle = V_{nn} \tag{23}$$

• Core Hamiltonian:

$$\langle \Psi_{\mathsf{HF}} | \mathcal{O}_1 | \Psi_{\mathsf{HF}} \rangle = \sum_{a=1}^{N} \langle \chi_a(1) | h(1) | \chi_a(1) \rangle = \sum_{a=1}^{N} h_a \tag{24}$$

Two-electron Hamiltonian:

$$\langle \Psi_{\mathsf{HF}} | \mathcal{O}_{2} | \Psi_{\mathsf{HF}} \rangle = \sum_{a < b}^{N} \left[\langle \chi_{a}(1) \chi_{b}(2) | r_{12}^{-1} | \chi_{a}(1) \chi_{b}(2) \rangle - \langle \chi_{a}(1) \chi_{b}(2) | r_{12}^{-1} | \chi_{b}(1) \chi_{a}(2) \rangle \right]$$

$$= \sum_{a < b}^{N} \left(\underbrace{\mathcal{J}_{ab}}_{\mathsf{Coulomb}} - \underbrace{\mathcal{K}_{ab}}_{\mathsf{Exchange}} \right) = \frac{1}{2} \sum_{a=1}^{N} \sum_{b=1}^{N} \left(\mathcal{J}_{ab} - \mathcal{K}_{ab} \right) \quad \text{because} \quad \boxed{\mathcal{J}_{aa} = \mathcal{K}_{aa}}$$

$$(25)$$

• HF energy:

$$oxed{E_{\mathsf{HF}} = \sum_{a=1}^{N} h_a + \sum_{a < b}^{N} (\mathcal{J}_{ab} - \mathcal{K}_{ab}) + V_{\mathsf{nn}}}$$

Coulomb operator

$$\mathcal{J}_{j}(1)|\chi_{i}(1)\rangle = \langle \chi_{j}(2)|r_{12}^{-1}|\chi_{j}(2)\rangle|\chi_{i}(1)\rangle = \left[\int d\mathbf{x}_{2}\chi_{j}^{*}(\mathbf{x}_{2})r_{12}^{-1}\chi_{j}(\mathbf{x}_{2})\right]|\chi_{i}(\mathbf{x}_{1})\rangle \tag{27}$$

Coulomb matrix elements

$$\mathcal{J}_{ij} = \langle \chi_i(1) | \mathcal{J}_j(1) | \chi_i(1) \rangle = \langle \chi_i(1) \chi_j(2) | r_{12}^{-1} | \chi_i(1) \chi_j(2) \rangle$$

$$= \iint \chi_i^*(\mathbf{x}_1) \chi_j^*(\mathbf{x}_2) r_{12}^{-1} \chi_i(\mathbf{x}_1) \chi_j(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$
(28)

• (non-local) Exchange operator

$$\mathcal{K}_{j}(1)|\chi_{i}(1)\rangle = \left\langle \chi_{j}(2) \middle| r_{12}^{-1} \middle| \chi_{i}(2) \right\rangle \middle| \chi_{j}(1) \right\rangle = \left[\int d\mathbf{x}_{2} \chi_{j}^{*}(\mathbf{x}_{2}) r_{12}^{-1} \chi_{i}(\mathbf{x}_{2}) \right] \middle| \chi_{j}(\mathbf{x}_{2}) \right\rangle$$
(29)

Exchange matrix elements

$$\mathcal{K}_{ij} = \langle \chi_i(1) | \mathcal{K}_j(1) | \chi_i(1) \rangle = \langle \chi_i(1) \chi_j(2) | r_{12}^{-1} | \chi_j(1) \chi_i(2) \rangle
= \iint \chi_i^*(\mathbf{x}_1) \chi_j^*(\mathbf{x}_2) r_{12}^{-1} \chi_j(\mathbf{x}_1) \chi_i(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$
(30)

Spin orbitals

$$[i|h|j] = \langle i|h|j\rangle = \int \chi_i^*(\mathbf{x}_1)h(\mathbf{r}_1)\chi_i(\mathbf{x}_1)d\mathbf{x}_1 \tag{31}$$

$$\langle ij|kl\rangle = \langle \chi_i \chi_j | \chi_k \chi_l \rangle = \iint \chi_i^*(\mathbf{x}_1) \chi_j^*(\mathbf{x}_2) \frac{1}{r_{12}} \chi_k(\mathbf{x}_1) \chi_l(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 = [ik|jl]$$
(32)

$$[ij|kl] = \left[\chi_i \chi_j | \chi_k \chi_l\right] = \iint \chi_i^*(\mathbf{x}_1) \chi_j(\mathbf{x}_1) \frac{1}{r_{12}} \chi_k^*(\mathbf{x}_2) \chi_l(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 = \langle ik|jl\rangle \tag{33}$$

$$\langle ij||kl\rangle = \langle ij|kl\rangle - \langle ij|lk\rangle = \iint \chi_i^*(\mathbf{x}_1)\chi_j^*(\mathbf{x}_2) \frac{1}{r_{12}} (1 - \mathcal{P}_{12})\chi_k(\mathbf{x}_1)\chi_l(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \tag{34}$$

Spatial orbitals

$$(i|h|j) = h_{ij} = (\psi_i|h|\psi_j) = \int \psi_i^*(\mathbf{r}_1)h(\mathbf{r}_1)\psi_i(\mathbf{r}_1)d\mathbf{r}_1$$
 (35)

$$(ij|kl) = (\psi_i \psi_j | \psi_k \psi_l) = \iint \psi_i^*(\mathbf{r}_1) \psi_j(\mathbf{r}_1) \frac{1}{r_{12}} \psi_k^*(\mathbf{r}_2) \psi_l(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$
(36)

Permutation symmetry in physicts' notations

$$\langle ij|kl\rangle = \langle \chi_i \chi_j | \chi_k \chi_l \rangle = \iint \chi_i^*(\mathbf{x}_1) \chi_j^*(\mathbf{x}_2) \frac{1}{r_{12}} \chi_k(\mathbf{x}_1) \chi_l(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$
(37)

Complex-valued integrals:
$$\langle ij|kl\rangle = \langle ji|lk\rangle = \langle kl|ij\rangle^* = \langle lk|ji\rangle^*$$
 (38)

Permutation symmetry in chemists' notations

$$[ij|kl] = \left[\chi_i \chi_j | \chi_k \chi_l\right] = \iint \chi_i^*(\mathbf{x}_1) \chi_j(\mathbf{x}_1) \frac{1}{r_{12}} \chi_k^*(\mathbf{x}_2) \chi_l(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \tag{39}$$

Real-valued integrals:
$$[ij|kl] = [ji|kl] = [ij|lk] = [ji|lk] = [kl|ij] = [kl|ij] = [kl|ji]$$
 (40)

$$\boxed{\mathcal{O}_1 = \sum_{i}^{N} h(i)} \tag{41}$$

Case 1 = differ by zero spinorbital: $|K\rangle = |\dots mn \dots\rangle$

$$\langle K|\mathcal{O}_1|K\rangle = \sum_{m}^{N} \langle m|h|m\rangle$$
 (42)

Case 2 = differ by one spinorbital: $|K\rangle = |...mn...\rangle$ and $|L\rangle = |...pn...\rangle$

$$\langle K|\mathcal{O}_1|L\rangle = \langle m|h|p\rangle$$
 (43)

Case 3 = differ by two spinorbitals: $|K\rangle = |\dots mn \dots \rangle$ and $|L\rangle = |\dots pq \dots \rangle$

$$\langle K|\mathcal{O}_1|L\rangle = 0 \tag{44}$$

Slater-Condon rules: Two-electron operators

$$\mathcal{O}_2 = \sum_{i < j}^N r_{ij}^{-1} \tag{45}$$

Case 1 = differ by zero spinorbital: $|K\rangle = |\dots mn \dots\rangle$

$$\langle K|\mathcal{O}_2|K\rangle = \frac{1}{2} \sum_{n=1}^{N} \langle mn||mn\rangle$$
 (46)

Case 2 = differ by one spinorbital: $|K\rangle = |\dots mn \dots\rangle$ and $|L\rangle = |\dots pn \dots\rangle$

$$\langle K|\mathcal{O}_2|L\rangle = \sum_{n=1}^{N} \langle mn||pn\rangle$$
 (47)

Case 3 = differ by two spinorbitals: $|K\rangle = |\dots mn \dots \rangle$ and $|L\rangle = |\dots pq \dots \rangle$

$$\langle K|\mathcal{O}_2|L\rangle = \langle mn||pq\rangle$$
 (4)

The Hartree-Fock energy: examples

Problem: Normalization of the HF wave function

"Show that the HF wave function built with two (normalized) spin orbitals χ_1 and χ_2 is normalized"

Problem: Normalization of the HF wave function

Remember that $\langle \chi_1(1)\chi_2(2)|\chi_1(1)\chi_2(2)\rangle = \langle \chi_1(1)|\chi_1(1)\rangle \langle \chi_2(2)|\chi_2(2)\rangle$

"Show that the HF wave function built with two (normalized) spin orbitals χ_1 and χ_2 is normalized"

Solution

$$\begin{split} \Psi_{\mathsf{HF}} &= \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_1(1) & \chi_2(1) \\ \chi_1(2) & \chi_2(2) \end{vmatrix} = \frac{\chi_1(1)\chi_2(2) - \chi_1(2)\chi_2(1)}{\sqrt{2}} \\ \langle \Psi_{\mathsf{HF}} | \Psi_{\mathsf{HF}} \rangle &= \frac{1}{2} \left\langle \chi_1(1)\chi_2(2) - \chi_2(1)\chi_1(2) | \chi_1(1)\chi_2(2) - \chi_2(1)\chi_1(2) \right\rangle \\ &= \frac{1}{2} \Big[\left\langle \chi_1(1)\chi_2(2) | \chi_1(1)\chi_2(2) \right\rangle - \left\langle \chi_1(1)\chi_2(2) | \chi_2(1)\chi_1(2) \right\rangle \\ &- \left\langle \chi_2(1)\chi_1(2) | \chi_1(1)\chi_2(2) \right\rangle + \left\langle \chi_2(1)\chi_1(2) | \chi_2(1)\chi_1(2) \right\rangle \Big] \\ &= \frac{1}{2} \Big[1 - 0 - 0 + 1 \Big] = 1 \end{split}$$

The Hartree-Fock energy: examples (Take 2)

Problem: Core Hamiltonian

"Show that $\langle \Psi_{HF}|\mathcal{O}_1|\Psi_{HF}\rangle=\sum_{a=1}^N h_a$ for the same system"

Problem: Core Hamiltonian

"Show that $\langle \Psi_{HF} | \mathcal{O}_1 | \Psi_{HF} \rangle = \sum_{a=1}^{N} h_a$ for the same system"

Solution

$$\begin{split} \mathcal{O}_1 &= h(1) + h(2) \\ \langle \Psi_{\mathsf{HF}} | h(1) + h(2) | \Psi_{\mathsf{HF}} \rangle \\ &= \frac{1}{2} \langle \chi_1(1) \chi_2(2) - \chi_1(2) \chi_2(1) | h(1) + h(2) | \chi_1(1) \chi_2(2) - \chi_1(2) \chi_2(1) \rangle \\ &= \frac{1}{2} \Big[\langle \chi_1(1) \chi_2(2) | h(1) + h(2) | \chi_1(1) \chi_2(2) \rangle - \langle \chi_1(1) \chi_2(2) | h(1) + h(2) | \chi_2(1) \chi_1(2) \rangle \\ &- \langle \chi_2(1) \chi_1(2) | h(1) + h(2) | \chi_1(1) \chi_2(2) \rangle + \langle \chi_2(1) \chi_1(2) | h(1) + h(2) | \chi_2(1) \chi_1(2) \rangle \Big] \\ &= \frac{1}{2} \Big[h_1 + h_2 - 0 - 0 + h_2 + h_1 \Big] = h_1 + h_2 \end{split}$$

The Hartree-Fock energy: examples (Take 3)

Problem: Two-electron Hamiltonian

"Show that $\langle \Psi_{HF}|\mathcal{O}_2|\Psi_{HF}\rangle=\sum_{a< b}^N\left(\mathcal{J}_{ab}-\mathcal{K}_{ab}\right)$ for the same system and write down the HF energy"

Problem: Two-electron Hamiltonian

"Show that $\langle \Psi_{HF}|\mathcal{O}_2|\Psi_{HF}\rangle=\sum_{a< b}^N\left(\mathcal{J}_{ab}-\mathcal{K}_{ab}\right)$ for the same system and write down the HF energy"

Solution

$$\begin{split} \mathcal{O}_2 &= r_{12}^{-1} \\ \langle \Psi_{\mathsf{HF}} | r_{12}^{-1} | \Psi_{\mathsf{HF}} \rangle &= \frac{1}{2} \langle \chi_1 \chi_2 - \chi_2 \chi_1 | r_{12}^{-1} | \chi_1 \chi_2 - \chi_2 \chi_1 \rangle \\ &= \frac{1}{2} \Big[\langle \chi_1 \chi_2 | r_{12}^{-1} | \chi_1 \chi_2 \rangle - \langle \chi_1 \chi_2 | r_{12}^{-1} | \chi_2 \chi_1 \rangle \\ &- \langle \chi_2 \chi_1 | r_{12}^{-1} | \chi_1 \chi_2 \rangle + \langle \chi_2 \chi_1 | r_{12}^{-1} | \chi_2 \chi_1 \rangle \Big] \\ &= \frac{1}{2} \Big[\mathcal{J}_{12} - \mathcal{K}_{12} - \mathcal{K}_{12} + \mathcal{J}_{12} \Big] = \mathcal{J}_{12} - \mathcal{K}_{12} \end{split}$$

Remember that $\langle \chi_2 \chi_1 | r_{12}^{-1} | \chi_2 \chi_1 \rangle = \langle \chi_1 \chi_2 | r_{12}^{-1} | \chi_1 \chi_2 \rangle$

$$E_{\mathsf{HF}} = h_1 + h_2 + \mathcal{J}_{12} - \mathcal{K}_{12}$$

Three-electron system

"Find the HF energy of a three-electron system composed by the spin orbitals χ_1, χ_2 and χ_3 "

Solution

$$\mathcal{O}_{1} = h(1) + h(2) + h(3)$$

$$\mathcal{O}_{2} = r_{12}^{-1} + r_{13}^{-1} + r_{23}^{-1}$$

$$\vdots$$

$$E_{HF} = h_{1} + h_{2} + h_{3} + \mathcal{J}_{12} + \mathcal{J}_{13} + \mathcal{J}_{23} - \mathcal{K}_{12} - \mathcal{K}_{13} - \mathcal{K}_{23}$$

Singlet $1s^2$ state of the He atom

$$\begin{split} \chi_1 &= \alpha \, \psi_1 \qquad \chi_2 = \beta \, \psi_1 \\ E_{\mathsf{HF}}(\mathsf{singlet}) &= h_1 + h_2 + \mathcal{J}_{12} - \mathcal{K}_{12} = 2h_1 + J_{11} \end{split}$$

$$\mathcal{J}_{12} = \langle \chi_1 \chi_2 | \chi_1 \chi_2 \rangle$$

$$= \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \langle \psi_1 \psi_1 | \psi_1 \psi_1 \rangle = J_{11}$$

$$\mathcal{K}_{12} = \langle \chi_1 \chi_2 | \chi_2 \chi_1 \rangle$$

$$= \langle \alpha | \beta \rangle \langle \beta | \alpha \rangle \langle \psi_1 \psi_1 | \psi_1 \psi_1 \rangle = 0$$

Triplet 1s2s state of the He atom

$$\chi_1 = \alpha \, \psi_1 \qquad \chi_2 = \alpha \, \psi_2$$

$$E_{\mathsf{HF}}(\mathsf{triplet}) = h_1 + h_2 + \mathcal{J}_{12} - \mathcal{K}_{12} = h_1 + h_2 + \mathcal{J}_{12} - \mathcal{K}_{12}$$

Singlet-triplet energy splitting

$$\Delta E_{HF} = \underbrace{E_{HF}(triplet) - E_{HF}(singlet)}_{>0} + \underbrace{(J_{12} - J_{11})}_{<0} - K_{12}$$

HF Energy of Atoms

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

Solution:

$$\chi_1 = \alpha \, \psi_1$$
 $\chi_2 = \beta \, \psi_1$ $\chi_3 = \alpha \, \psi_2$ $\chi_4 = \beta \, \psi_2$ $E_{HF} = 2h_1 + h_2 + J_{11} + 2J_{12} - K_{12}$

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

Solution:

$$\chi_1 = \alpha \, \psi_1$$
 $\chi_2 = \beta \, \psi_1$ $\chi_3 = \alpha \, \psi_2$ $\chi_4 = \beta \, \psi_2$ $E_{\mathsf{HF}} = 2h_1 + h_2 + J_{11} + 2J_{12} - K_{12}$

Problem: HF energy of the B atom

"Find the HF energy of the B atom' in terms of the spatial MOs'

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

Solution:

$$\chi_1 = \alpha \, \psi_1$$
 $\chi_2 = \beta \, \psi_1$ $\chi_3 = \alpha \, \psi_2$ $\chi_4 = \beta \, \psi_2$ $E_{\mathsf{HF}} = 2h_1 + h_2 + J_{11} + 2J_{12} - K_{12}$

Problem: HF energy of the B atom

"Find the HF energy of the B atom' in terms of the spatial MOs'

Solution:

$$E_{HF} = 2h_1 + 2h_2 + h_3 + J_{11} + 4J_{12} + J_{22} - 2K_{12} + 2J_{13} + 2J_{23} - K_{13} - K_{23}$$

Two-electron example: H₂ in minimal basis

In the spin orbital basis, we have

$$E_{HF} = \langle \chi_1 | h | \chi_1 \rangle + \langle \chi_2 | h | \chi_2 \rangle + \langle \chi_1 \chi_2 | \chi_1 \chi_2 \rangle - \langle \chi_1 \chi_2 | \chi_2 \chi_1 \rangle$$

= $[\chi_1 | h | \chi_1] + [\chi_2 | h | \chi_2] + [\chi_1 \chi_1 | \chi_2 \chi_2] - [\chi_1 \chi_2 | \chi_2 \chi_1]$

Spin to spatial transformation:

$$\chi_1(\mathbf{x}) \equiv \psi_1(\mathbf{x}) = \psi_1(\mathbf{r})\alpha(\omega)$$
$$\chi_2(\mathbf{x}) \equiv \bar{\psi}_1(\mathbf{x}) = \psi_1(\mathbf{r})\beta(\omega)$$

$$\textit{E}_{\mathsf{HF}} = [\psi_1 | h | \psi_1] + [\bar{\psi}_1 | h | \bar{\psi}_1] + [\psi_1 \psi_1 | \bar{\psi}_1 \bar{\psi}_1] - [\psi_1 \bar{\psi}_1 | \bar{\psi}_1 \psi_1]$$

Therefore, in the spatial orbital basis, we have

$$E_{\mathsf{HF}} = 2(\psi_1|h|\psi_1) + (\psi_1\psi_1|\psi_1\psi_1) = 2(1|h|1) + (11|11)$$

One-electron terms

$$\begin{split} [\chi_{1}|h|\chi_{1}] &= \int \chi_{1}^{*}(\mathbf{x})h(\mathbf{r})\chi_{1}(\mathbf{x})d\mathbf{x} \\ &= \int \alpha^{*}(\omega)\psi_{1}^{*}(\mathbf{r})h(\mathbf{r})\alpha(\omega)\psi_{1}(\mathbf{r})d\omega d\mathbf{r} \\ &= \underbrace{\left[\int \alpha^{*}(\omega)\alpha(\omega)d\omega\right]}_{=1}\underbrace{\left[\int \psi_{1}^{*}(\mathbf{r})h(\mathbf{r})\psi_{1}(\mathbf{r})d\mathbf{r}\right]}_{(\psi_{1}|h|\psi_{1})} \\ [\chi_{2}|h|\chi_{2}] &= \int \chi_{2}^{*}(\mathbf{x})h(\mathbf{r})\chi_{2}(\mathbf{x})d\mathbf{x} \\ &= \int \beta^{*}(\omega)\psi_{1}^{*}(\mathbf{r})h(\mathbf{r})\beta(\omega)\psi_{1}(\mathbf{r})d\omega d\mathbf{r} \\ &= \underbrace{\left[\int \beta^{*}(\omega)\beta(\omega)d\omega\right]}_{=1}\underbrace{\left[\int \psi_{1}^{*}(\mathbf{r})h(\mathbf{r})\psi_{1}(\mathbf{r})d\mathbf{r}\right]}_{(\psi_{1}|h|\psi_{1})} \end{split}$$

Two-electron terms

$$\begin{split} [\chi_{1}\chi_{1}|\chi_{2}\chi_{2}] &= \iint \chi_{1}^{*}(\boldsymbol{x}_{1})\chi_{1}(\boldsymbol{x}_{1})r_{12}^{-1}\chi_{2}^{*}(\boldsymbol{x}_{2})\chi_{2}(\boldsymbol{x}_{2})d\boldsymbol{x}_{1}d\boldsymbol{x}_{2} \\ &= \iint \alpha^{*}(\omega_{1})\psi_{1}^{*}(\boldsymbol{r}_{1})\alpha(\omega_{1})\psi_{1}(\boldsymbol{r}_{1})r_{12}^{-1}\beta^{*}(\omega_{2})\psi_{1}^{*}(\boldsymbol{r}_{2})\beta(\omega_{2})\psi_{1}(\boldsymbol{r}_{2})d\omega_{1}d\boldsymbol{r}_{1}d\omega_{2}d\boldsymbol{r}_{2} \\ &= \underbrace{\left[\int \alpha^{*}(\omega_{1})\alpha(\omega_{1})d\omega_{1}\right]}_{=1} \underbrace{\left[\int \beta^{*}(\omega_{2})\beta(\omega_{2})d\omega_{2}\right]}_{=1} \underbrace{\left[\iint \psi_{1}^{*}(\boldsymbol{r}_{1})\psi_{1}(\boldsymbol{r}_{1})r_{12}^{-1}\psi_{1}^{*}(\boldsymbol{r}_{2})\psi_{1}(\boldsymbol{r}_{2})d\boldsymbol{r}_{1}d\boldsymbol{r}_{2}\right]}_{(\psi_{1}\psi_{1}|\psi_{1}\psi_{1})} \\ [\chi_{1}\chi_{2}|\chi_{2}\chi_{1}] &= \iint \chi_{1}^{*}(\boldsymbol{x}_{1})\chi_{2}(\boldsymbol{x}_{1})r_{12}^{-1}\chi_{2}^{*}(\boldsymbol{x}_{2})\chi_{1}(\boldsymbol{x}_{2})d\boldsymbol{x}_{1}d\boldsymbol{x}_{2} \\ &= \iint \alpha^{*}(\omega_{1})\psi_{1}^{*}(\boldsymbol{r}_{1})\beta(\omega_{1})\psi_{1}(\boldsymbol{r}_{1})r_{12}^{-1}\beta^{*}(\omega_{2})\psi_{1}^{*}(\boldsymbol{r}_{2})\alpha(\omega_{2})\psi_{1}(\boldsymbol{r}_{2})d\omega_{1}d\boldsymbol{r}_{1}d\omega_{2}d\boldsymbol{r}_{2} \\ &= \underbrace{\left[\int \alpha^{*}(\omega_{1})\beta(\omega_{1})d\omega_{1}\right]}_{=0} \underbrace{\left[\int \beta^{*}(\omega_{2})\alpha(\omega_{2})d\omega_{2}\right]}_{=0} \underbrace{\left[\iint \psi_{1}^{*}(\boldsymbol{r}_{1})\psi_{1}(\boldsymbol{r}_{1})r_{12}^{-1}\psi_{1}^{*}(\boldsymbol{r}_{2})\psi_{1}(\boldsymbol{r}_{2})d\boldsymbol{r}_{1}d\boldsymbol{r}_{2}\right]}_{(\psi_{1}\psi_{1}|\psi_{1}\psi_{1})} \end{split}$$

General expression

$$E_{\mathsf{HF}} = \sum_{a}^{N} [a|h|a] + \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([aa|bb] - [ab|ba]) = 2 \sum_{a}^{N/2} (a|h|a) + \sum_{a}^{N/2} \sum_{b}^{N/2} [2(aa|bb) - (ab|ba)]$$
(49)

One- and two-electron terms

$$\sum_{a}^{N} [a|h|a] = \sum_{a}^{N/2} [a|h|a] + \sum_{a}^{N/2} [\bar{a}|h|\bar{a}] = 2 \sum_{a}^{N/2} [a|h|a]$$

$$\frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([aa|bb] - [ab|ba]) = \frac{1}{2} \left\{ \sum_{a}^{N/2} \sum_{b}^{N/2} ([aa|bb] - [ab|ba]) + \sum_{a}^{N/2} \sum_{b}^{N/2} ([aa|\bar{b}\bar{b}] - [a\bar{b}|\bar{b}\bar{a}])
+ \sum_{a}^{N/2} \sum_{b}^{N/2} ([\bar{a}\bar{a}|bb] - [\bar{a}b|b\bar{a}]) + \sum_{a}^{N/2} \sum_{b}^{N/2} ([\bar{a}\bar{a}|\bar{b}\bar{b}] - [\bar{a}\bar{b}|\bar{b}\bar{a}]) \right\}$$

$$= \sum_{a}^{N/2} \sum_{b}^{N/2} [2(aa|bb) - (ab|ba)]$$
(50)

Using the variational principle, one can show that, to minimise the energy, the MOs need to diagonalise the one-electron Fock operator

$$f(1) = h(1) + \sum_{a}^{N} [\mathcal{J}_{a}(1) - \mathcal{K}_{a}(1)]$$

$$v^{HF}(1) = \text{Hartree-Fock potential}$$

For a closed-shell system (i.e. two electrons in each orbital)

$$f(1) = h(1) + \sum_{a}^{N/2} [2J_a(1) - K_a(1)]$$
 (closed shell)

These orbitals are called canonical molecular orbitals (= eigenvectors):

$$f(1)\,\psi_i(1)=\varepsilon_i\,\psi_i(1)$$

and ε_i are called the MO energies (= eigenvalues)

Fock matrix elements in the MO basis

Problem:

" Find the expression of the matrix elements $f_{ij} = \langle \chi_i | f | \chi_j
angle$ "

Problem:

" Find the expression of the matrix elements $f_{ij} = \langle \chi_i | f | \chi_i \rangle$ "

Solution:

$$\langle \chi_{i}|f|\chi_{j}\rangle = \langle \chi_{i}|h + \sum_{a} (\mathcal{J}_{a} - \mathcal{K}_{a})|\chi_{j}\rangle$$

$$= \langle \chi_{i}|h|\chi_{j}\rangle + \sum_{a} (\langle \chi_{i}|\mathcal{J}_{a}|\chi_{j}\rangle - \langle \chi_{i}|\mathcal{K}_{a}|\chi_{j}\rangle)$$

$$= \langle i|h|j\rangle + \sum_{a} [\langle ia|ja\rangle - \langle ia|aj\rangle]$$

$$= \langle i|h|j\rangle + \sum_{a} \langle ia||ja\rangle$$

MO energies in the MO basis

Problem:

" Deduce the expression of ε_i "

Problem:

" Deduce the expression of ε_i "

Solution:

$$f|\chi_{i}\rangle = \varepsilon_{i}|\chi_{i}\rangle \Rightarrow \langle \chi_{i}|f|\chi_{i}\rangle = \varepsilon_{i}\langle \chi_{i}|\chi_{i}\rangle = \varepsilon_{i}$$

$$\Rightarrow \varepsilon_{i} = \langle i|h|i\rangle + \sum_{a} [\langle ia|ia\rangle - \langle ia|ai\rangle]$$

$$\Rightarrow \varepsilon_{i} = \langle i|h|i\rangle + \sum_{a} \langle ia||ia\rangle$$

The variational principle

Problem

"Let's suppose we know all the functions such as $\hat{H}\varphi_i = E_i\varphi_i$, with $E_0 < E_1 < \dots$ and $\langle \varphi_i | \varphi_j \rangle = \delta_{ij}$. Show that, for any normalized Ψ , we have $E = \langle \Psi | \hat{H} | \Psi \rangle \geq E_0$ "

Problem

"Let's suppose we know all the functions such as $\hat{H}\varphi_i = E_i\varphi_i$, with $E_0 < E_1 < \dots$ and $\langle \varphi_i | \varphi_j \rangle = \delta_{ij}$. Show that, for any normalized Ψ , we have $E = \langle \Psi | \hat{H} | \Psi \rangle \geq E_0$ "

Solution

We expand Ψ in a clever basis

$$\Psi = \sum_{i}^{\infty} c_i \, \varphi_i$$
 with $\sum_{i}^{\infty} c_i^2 = 1$

Problem

"Let's suppose we know all the functions such as $\hat{H}\varphi_i = E_i\varphi_i$, with $E_0 < E_1 < \dots$ and $\langle \varphi_i | \varphi_j \rangle = \delta_{ij}$. Show that, for any normalized Ψ , we have $E = \langle \Psi | \hat{H} | \Psi \rangle \geq E_0$ "

Solution

We expand Ψ in a clever basis

$$\Psi = \sum_{i}^{\infty} c_{i} \varphi_{i} \quad \text{with} \quad \sum_{i}^{\infty} c_{i}^{2} = 1$$

$$E = \langle \Psi | \hat{H} | \Psi \rangle = \left\langle \sum_{i} c_{i} \varphi_{i} \middle| \hat{H} \middle| \sum_{j} c_{j} \varphi_{j} \right\rangle = \sum_{ij} c_{i} c_{j} \left\langle \varphi_{i} \middle| \hat{H} \middle| \varphi_{j} \right\rangle$$

$$= \sum_{ij} c_{i} c_{j} E_{j} \left\langle \varphi_{i} \middle| \varphi_{j} \right\rangle = \sum_{ij} c_{i} c_{j} E_{j} \delta_{ij} = \sum_{i} c_{i}^{2} E_{i} \geq E_{0} \sum_{i} c_{i}^{2} = E_{0}$$

Ground-state energy of the *N*-electron system

$${}^{N}E_{0} = \sum_{a} h_{a} + \frac{1}{2} \sum_{b} \langle ab | | ab \rangle \tag{52}$$

Energy of the (N-1)-electron system (cation)

$$^{N-1}E_c = \sum_{a \neq c} h_a + \frac{1}{2} \sum_{a \neq c} \sum_{b \neq c} \langle ab | | ab \rangle$$
 (53)

Ionization potential (IP)

$$IP = {}^{N-1}E_c - {}^{N}E_0$$

$$= -\langle c|h|c\rangle - \frac{1}{2}\sum_{a}\langle ac||ac\rangle - \frac{1}{2}\sum_{b}\langle cb||cb\rangle$$

$$= -\langle c|h|c\rangle - \sum_{a}\langle ac||ac\rangle = -\varepsilon_c$$
(54)

Koopmans' theorem for electron affinity (EA)

Problem:

"Show that Koopmans' theorem applies to electron affinities"

Koopmans' theorem for electron affinity (EA)

Problem:

"Show that Koopmans' theorem applies to electron affinities"

Solution:

$$EA = {}^{N}E_{0} - {}^{N+1}E^{r}$$

$$= -\langle r|h|r\rangle - \sum_{a} \langle ra||ra\rangle$$

$$= -\varepsilon_{r}$$
(55)

Expansion in a basis

$$\psi_i(\mathbf{r}) = \sum_{\mu}^{K} C_{\mu i} \phi_{\mu}(\mathbf{r}) \qquad \equiv \qquad |i\rangle = \sum_{\mu}^{K} C_{\mu i} |\mu\rangle$$

K AOs gives K MOs: N/2 are occupied MOs and K - N/2 are vacant/virtual MOs

Roothaan-Hall equations

$$f|i\rangle = \varepsilon_{i}|i\rangle \quad \Rightarrow \quad f\sum_{\nu} C_{\nu i}|\nu\rangle = \varepsilon_{i}\sum_{\nu} C_{\nu i}|\nu\rangle$$

$$\Rightarrow \quad \langle \mu|f\sum_{\nu} C_{\nu i}|\nu\rangle = \varepsilon_{i}\langle \mu|\sum_{\nu} C_{\nu i}|\nu\rangle$$

$$\Rightarrow \quad \sum_{\nu} C_{\nu i}\langle \mu|f|\nu\rangle = \sum_{\nu} C_{\nu i}\varepsilon_{i}\langle \mu|\nu\rangle$$

$$\Rightarrow \quad \left[\sum_{\nu} F_{\mu\nu}C_{\nu i} = \sum_{\nu} S_{\mu\nu}C_{\nu i}\varepsilon_{i}\right]$$

Matrix form of the Roothaan-Hall equations

$$F \cdot C = S \cdot C \cdot E \qquad \Leftrightarrow \qquad F' \cdot C' = C' \cdot E \qquad (56)$$

$$F' = X^{\dagger} \cdot F \cdot X \qquad C = X \cdot C' \qquad X^{\dagger} \cdot S \cdot X = I \qquad (57)$$

- Fock matrix $F_{\mu\nu} = \langle \mu | f | \nu \rangle$ and Overlap matrix $S_{\mu\nu} = \langle \mu | \nu \rangle$
- We need to determine the coefficient matrix C and the orbital energies E

$$\mathbf{C} = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1K} \\ C_{21} & C_{22} & \cdots & C_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ C_{K1} & C_{K2} & \cdots & C_{KK} \end{pmatrix} \qquad \mathbf{E} = \begin{pmatrix} \varepsilon_1 & 0 & \cdots & 0 \\ 0 & \varepsilon_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \varepsilon_K \end{pmatrix}$$
(58)

Self-consistent field (SCF) procedure

Expression of the Fock matrix

Problem:

"Find the expression of the Fock matrix in terms of the one- and two-electron integrals"

Problem:

"Find the expression of the Fock matrix in terms of the one- and two-electron integrals"

Solution:

$$\begin{split} F_{\mu\nu} &= \langle \mu | h + \sum_{a}^{N} (\mathcal{J}_{a} - \mathcal{K}_{a}) | \nu \rangle = H_{\mu\nu} + \sum_{a}^{N} \langle \mu | \mathcal{J}_{a} - \mathcal{K}_{a} | \nu \rangle \\ &= H_{\mu\nu} + \sum_{a}^{N} (\langle \mu \chi_{a} | r_{12}^{-1} | \nu \chi_{a} \rangle - \langle \mu \chi_{a} | r_{12}^{-1} | \chi_{a} \nu \rangle) \\ &= H_{\mu\nu} + \sum_{a}^{N} \sum_{\lambda\sigma} C_{\lambda a} C_{\sigma a} (\langle \mu \lambda | r_{12}^{-1} | \nu \sigma \rangle - \langle \mu \lambda | r_{12}^{-1} | \sigma \nu \rangle) \\ &= H_{\mu\nu} + \sum_{\lambda\sigma} P_{\lambda\sigma} (\langle \mu \lambda | \nu \sigma \rangle - \langle \mu \lambda | \sigma \nu \rangle) = H_{\mu\nu} + \sum_{\lambda\sigma} P_{\lambda\sigma} \langle \mu \lambda | | \nu \sigma \rangle = H_{\mu\nu} + G_{\mu\nu} \\ &F_{\mu\nu} = H_{\mu\nu} + \sum_{\lambda\sigma} P_{\lambda\sigma} (\langle \mu \lambda | \nu \sigma \rangle - \frac{1}{2} \langle \mu \lambda | \sigma \nu \rangle) \quad \text{(closed shell)} \end{split}$$

One- and two-electron integrals (Appendix A)

One-electron integrals: overlap & core Hamiltonian

$$S_{\mu\nu} = \langle \mu | \nu \rangle = \int \phi_{\mu}^{*}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) d\mathbf{r}$$
 (60)

$$H_{\mu\nu} = \langle \mu | \hat{H}^{c} | \nu \rangle = \int \phi_{\mu}^{*}(\mathbf{r}) \hat{H}^{c}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) d\mathbf{r}$$
 (61)

Chemist/Mulliken notation for two-electron integrals

$$(\mu\nu|\lambda\sigma) = \iint \phi_{\mu}^*(\mathbf{r}_1)\phi_{\nu}(\mathbf{r}_1)\frac{1}{r_{12}}\phi_{\lambda}^*(\mathbf{r}_2)\phi_{\sigma}(\mathbf{r}_2)d\mathbf{r}_1d\mathbf{r}_2$$
 (62)

$$(\mu \nu || \lambda \sigma) = (\mu \nu |\lambda \sigma) - (\mu \sigma |\lambda \nu) \tag{63}$$

Physicist/Dirac notation for two-electron integrals

$$\langle \mu \nu | \lambda \sigma \rangle = \iint \phi_{\mu}^{*}(\mathbf{r}_{1}) \phi_{\nu}^{*}(\mathbf{r}_{2}) \frac{1}{r_{12}} \phi_{\lambda}(\mathbf{r}_{1}) \phi_{\sigma}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

$$(64)$$

$$\langle \mu \nu | | \lambda \sigma \rangle = \langle \mu \nu | \lambda \sigma \rangle - \langle \mu \nu | \sigma \lambda \rangle$$

(65)

Density matrix (closed-shell system)

$$P_{\mu\nu} = 2\sum_{a}^{N/2} C_{\mu a} C_{\nu a} \quad \text{or} \quad \boxed{P = 2C \cdot C^{\dagger}}$$
 (66)

Fock matrix in the AO basis (closed-shell system)

$$F_{\mu\nu} = H_{\mu\nu} + \underbrace{\sum_{\lambda\sigma} P_{\lambda\sigma}(\mu\nu | \lambda\sigma)}_{J_{\mu\nu} = \text{Coulomb}} - \underbrace{\frac{1}{2} \sum_{\lambda\sigma} P_{\lambda\sigma}(\mu\sigma | \lambda\nu)}_{K_{\mu\nu} = \text{exchange}}$$
(67)

HF energy in the AO basis (closed-shell system)

$$E_{\mathsf{HF}} = \sum_{\mu\nu} P_{\mu\nu} H_{\mu\nu} + \frac{1}{2} \sum_{\nu\nu\lambda\sigma} P_{\mu\nu} \left[(\mu\nu|\lambda\sigma) - \frac{1}{2} (\mu\sigma|\lambda\nu) \right] P_{\lambda\sigma} \quad \text{or} \quad \boxed{E_{\mathsf{HF}} = \frac{1}{2} \mathsf{Tr} [\mathbf{P} \cdot (\mathbf{H} + \mathbf{F})]}$$
(68)

Expression of the HF energy

Problem:

"Find the expression of the HF energy in terms of the one- and two-electron integrals"

Problem:

"Find the expression of the HF energy in terms of the one- and two-electron integrals"

Solution:

$$\begin{split} E_{\mathsf{HF}} &= \sum_{a}^{N} h_{a} + \frac{1}{2} \sum_{ab}^{N} (\mathcal{J}_{ab} - \mathcal{K}_{ab}) \quad \text{(cf few slides ago)} \\ &= \sum_{a}^{N} \left\langle \sum_{\mu} C_{\mu a} \phi_{\mu} \left| h \middle| \sum_{\nu} C_{\nu a} \phi_{\nu} \right\rangle + \frac{1}{2} \sum_{ab}^{N} \left\langle \left(\sum_{\mu} C_{\mu a} \phi_{\mu} \right) \left(\sum_{\lambda} C_{\lambda b} \phi_{\lambda} \right) \middle| \left| \left(\sum_{\nu} C_{\nu a} \phi_{\nu} \right) \left(\sum_{\sigma} C_{\sigma b} \phi_{\sigma} \right) \right\rangle \\ &= \sum_{\mu \nu} P_{\mu \nu} \left[H_{\mu \nu} + \frac{1}{2} \sum_{\lambda \sigma} P_{\lambda \sigma} \left\langle \mu \lambda \middle| | \nu \sigma \right\rangle \right] \end{split}$$

The SCF algorithm

- **1** Specify molecule $\{R_A\}$ and $\{Z_A\}$ and basis set $\{\phi_\mu\}$
- **2** Calculate integrals $S_{\mu\nu}$, $H_{\mu\nu}$ and $\langle \mu\nu | \lambda\sigma \rangle$
- Obtain guess density matrix for P
 - 1. Calculate G and then F = H + G
 - 2. Compute $\mathbf{F}' = \mathbf{X}^{\dagger} \cdot \mathbf{F} \cdot \mathbf{X}$
 - 3. Diagonalize \mathbf{F}' to obtain \mathbf{C}' and \mathbf{E}
 - 4. Calculate $C = X \cdot C'$
 - 5. Form a new density matrix $P = C \cdot C^{\dagger}$
 - 6. Am I converged? If not go back to 1.
- **6** Calculate stuff that you want, like E_{HF} for example

We are looking for a matrix in order to orthogonalize the AO basis, i.e. $X^{\dagger} \cdot S \cdot X = I$

Symmetric (or Löwdin) orthogonalization

$$\mathbf{X} = \mathbf{S}^{-1/2} = \mathbf{U} \cdot \mathbf{s}^{-1/2} \cdot \mathbf{U}^{\dagger} \text{ is one solution...}$$
 (69)

Is it working?

$$X^{\dagger} \cdot S \cdot X = S^{-1/2} \cdot S \cdot S^{-1/2} = S^{-1/2} \cdot S \cdot S^{-1/2} = I \quad \checkmark$$
 (70)

Canonical orthogonalization

 $\mathbf{X} = \mathbf{U} \cdot \mathbf{s}^{-1/2}$ is another solution (when you have linear dependencies)... (71)

Is it working?

$$\mathbf{X}^{\dagger} \cdot \mathbf{S} \cdot \mathbf{X} = \mathbf{s}^{-1/2} \cdot \underbrace{\mathbf{U}^{\dagger} \cdot \mathbf{S} \cdot \mathbf{U}}_{\mathbf{S}} \cdot \mathbf{s}^{-1/2} = \mathbf{I} \quad \checkmark$$
 (72)

How to obtain a good guess for the MOs or density matrix?

Possible initial density matrix

- We can set P = 0 ⇒ F = H (core Hamiltonian approximation):
 ⇒ Usually a poor guess but easy to implement
- Use EHT or semi-empirical methods:⇒ Out of fashion
- Using tabulated atomic densities:⇒ "SAD" guess in QChem
- Read the MOs of a previous calculation:
 - \Rightarrow Very common and very useful

Convergence in SCF calculations

- You can check the energy and/or the density matrix:
 ⇒ The energy/density should not change at convergence
- **②** You can check the commutator $F \cdot P \cdot S S \cdot P \cdot F$: ⇒ At convergence, we have $F \cdot P \cdot S - S \cdot P \cdot F = 0$
- The DIIS (direct inversion in the iterative subspace) method is usually used to speed up convergence:
 ⇒ Extrapolation of the Fock matrix using previous iterations

$$\mathbf{F}_{m+1} = \sum_{i=m-k}^{m} c_i \mathbf{F}_i$$

Classical vs Quantum

$$\mu = (\mu_x, \mu_y, \mu_z) = \sum_{i} q_i r_i$$
classical definition (73)

$$\mu = (\mu_x, \mu_y, \mu_z) = \underbrace{\langle \Psi_0 | -\sum_{i}^{N} r_i | \Psi_0 \rangle}_{\text{electrons}} + \underbrace{\sum_{A}^{M} Z_A R_A}_{\text{nuclei}} = -\sum_{\mu\nu} P_{\mu\nu}(\nu | \mathbf{r} | \mu) + \sum_{A}^{M} Z_A R_A$$
(74)

Vector components

$$\mu_{x} = -\sum_{\mu\nu} P_{\mu\nu}(\nu|\mathbf{x}|\mu) + \sum_{A}^{M} Z_{A} X_{A} \quad \text{with} \quad \underbrace{(\nu|\mathbf{x}|\mu)}_{\text{one-electron integrals}} = \int \phi_{\nu}^{*}(\mathbf{r}) \, \mathbf{x} \, \phi_{\mu}(\mathbf{r}) d\mathbf{r}$$
 (75)

Electron density

$$\rho(\mathbf{r}) = \sum_{\mu\nu} \phi_{\mu}(\mathbf{r}) P_{\mu\nu} \phi_{\nu}(\mathbf{r}) \quad \text{with} \quad \int \rho(\mathbf{r}) d\mathbf{r} = N \quad \Rightarrow \quad N = \sum_{\mu\nu} P_{\mu\nu} S_{\nu\mu} = \sum_{\mu} (\mathbf{P} \cdot \mathbf{S})_{\mu\mu} = \text{Tr}(\mathbf{P} \cdot \mathbf{S}) \quad (76)$$

Mulliken population analysis

Assuming that the basis functions are atom-centered

$$\underbrace{q_A^{\text{Mulliken}}}_{\text{net charge on } A} = Z_A - \sum_{\mu \in A} (\mathbf{P} \cdot \mathbf{S})_{\mu\mu} \tag{77}$$

Löwdin population analysis

Because ${\rm Tr}({\pmb A}\cdot{\pmb B})={\rm Tr}({\pmb B}\cdot{\pmb A}),$ we have, for any $\alpha,$ $N=\sum_{\mu}({\pmb S}^{\alpha}\cdot{\pmb P}\cdot{\pmb S}^{1-\alpha})_{\mu\mu}$

For
$$\alpha = 1/2$$
, we get: $N = \sum_{\mu} (S^{1/2} \cdot P \cdot S^{1/2})_{\mu\mu} \Rightarrow q_A^{\text{L\"owdin}} = Z_A - \sum_{\mu \in A} (S^{1/2} \cdot P \cdot S^{1/2})_{\mu\mu}$ (78)

How to model open-shell systems?

• RHF is made to describe closed-shell systems and we have used restricted spin orbitals:

$$\chi_i^{\mathsf{RHF}}(\mathbf{x}) = egin{cases} \alpha(\omega) \, \psi_i(\mathbf{r}) \\ \beta(\omega) \, \psi_i(\mathbf{r}) \end{cases}$$

- It does **not** describe open-shell systems
- For open-shell systems we can use unrestricted spin orbitals

$$\chi_i^{\mathsf{UHF}}(\mathbf{x}) = egin{cases} lpha(\omega) \, \psi_i^{lpha}(\mathbf{r}) \ eta(\omega) \, \psi_i^{eta}(\mathbf{r}) \end{cases}$$

- RHF = Restricted Hartree-Fock ↔ Roothaan-Hall equations
- UHF = Unrestricted Hartree-Fock → Pople-Nesbet equations
- Restricted Open-shell Hartree-Fock (ROHF) do exist but we won't talk about it

- RHF = Restricted Hartree-Fock
- UHF = Unrestricted Hartree-Fock
- ROHF = Restricted Open-shell Hartree-Fock

UHF equations for unrestricted spin orbitals

To minimize the UHF energy, the unrestricted spin orbitals must be eigenvalues of the α and β Fock operators:

$$f^{\alpha}(1) \psi_{i}^{\alpha}(1) = \varepsilon_{i}^{\alpha} \psi_{j}^{\alpha}(1)$$

$$f^{\beta}(1) \psi_{i}^{\beta}(1) = \varepsilon_{i}^{\beta} \psi_{j}^{\beta}(1)$$
 (79)

where

$$f^{\alpha}(1) = h(1) + \sum_{a}^{N^{\alpha}} [J_{a}^{\alpha}(1) - K_{a}^{\alpha}(1)] + \sum_{a}^{N^{\beta}} J_{a}^{\beta}(1)$$
 (80)

$$f^{\beta}(1) = h(1) + \sum_{a}^{N^{\beta}} [J_{a}^{\beta}(1) - K_{a}^{\beta}(1)] + \sum_{a}^{N^{\alpha}} J_{a}^{\alpha}(1)$$
 (81)

The Coulomb and Exchange operators are

$$J_{i}^{\sigma}(1) = \int \psi_{i}^{\sigma}(2) r_{12}^{-1} \psi_{i}^{\sigma}(2) d\mathbf{r}_{2} \qquad \qquad K_{i}^{\sigma}(1) \psi_{j}^{\sigma}(1) = \left[\int \psi_{i}^{\sigma}(2) r_{12}^{-1} \psi_{j}^{\sigma}(2) d\mathbf{r}_{2} \right] \psi_{i}^{\sigma}(1)$$
(82)

UHF energy

The UHF energy is composed by three contributions:

$$E_{\text{UHF}} = E_{\text{UHF}}^{\alpha\alpha} + E_{\text{UHF}}^{\beta\beta} + E_{\text{UHF}}^{\alpha\beta} \tag{83}$$

which yields

$$E_{\text{UHF}} = \sum_{a}^{N^{\alpha}} h_{i}^{\alpha} + \frac{1}{2} \sum_{ab}^{N^{\alpha}} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha}) + \sum_{a}^{N^{\beta}} H_{a}^{\beta} + \frac{1}{2} \sum_{ab}^{N^{\beta}} (J_{ab}^{\beta\beta} - K_{ab}^{\beta\beta}) + \sum_{a}^{N^{\alpha}} \sum_{b}^{N^{\beta}} J_{ab}^{\alpha\beta}$$
(84)

The matrix elements are given by

$$h_{i}^{\sigma} = \langle \psi_{i}^{\sigma} | h | \psi_{i}^{\sigma} \rangle \qquad \qquad J_{ij}^{\sigma \sigma'} = \langle \psi_{i}^{\sigma} \psi_{j}^{\sigma'} | \psi_{i}^{\sigma} \psi_{j}^{\sigma'} \rangle \qquad \qquad K_{ij}^{\sigma \sigma} = \langle \psi_{i}^{\sigma} \psi_{j}^{\sigma} | \psi_{j}^{\sigma} \psi_{j}^{\sigma} \rangle$$
(85)

Note that $K_{ii}^{\alpha\beta} = 0 \Leftrightarrow$ there is no exchange between opposite-spin electrons

UHF energy of the Li atom

Problem

"Write down the UHF energy of the doublet state of the lithium atom"

Problem

"Write down the UHF energy of the doublet state of the lithium atom"

Solution

$$E_{\text{UHF}} = h_1^{\alpha} + h_1^{\beta} + h_2^{\alpha} + J_{12}^{\alpha\alpha} - K_{12}^{\alpha\alpha} + J_{11}^{\alpha\beta} + J_{21}^{\alpha\beta}$$

Expansion of the unrestricted spin orbitals in a basis

$$\psi_i^{\alpha}(\mathbf{r}) = \sum_{\mu=1}^K C_{\mu i}^{\alpha} \phi_{\mu}(\mathbf{r}) \qquad \qquad \psi_i^{\beta}(\mathbf{r}) = \sum_{\mu=1}^K C_{\mu i}^{\beta} \phi_{\mu}(\mathbf{r})$$
(86)

The Pople-Nesbet equations

$$\mathbf{F}^{\alpha} \cdot \mathbf{C}^{\alpha} = \mathbf{S} \cdot \mathbf{C}^{\alpha} \cdot \mathbf{E}^{\alpha} \qquad \qquad \mathbf{F}^{\beta} \cdot \mathbf{C}^{\beta} = \mathbf{S} \cdot \mathbf{C}^{\beta} \cdot \mathbf{E}^{\beta}$$
(87)

$$F^{\alpha}_{\mu\nu} = H_{\mu\nu} + \sum_{\lambda\sigma} P^{\alpha}_{\lambda\sigma} [(\mu\nu|\sigma\lambda) - (\mu\lambda|\sigma\nu)] + \sum_{\lambda\sigma} P^{\beta}_{\lambda\sigma} (\mu\nu|\sigma\lambda)$$
 (88)

$$F^{\beta}_{\mu\nu} = H_{\mu\nu} + \sum_{\lambda\sigma} P^{\beta}_{\lambda\sigma} [(\mu\nu|\sigma\lambda) - (\mu\lambda|\sigma\nu)] + \sum_{\lambda\sigma} P^{\alpha}_{\lambda\sigma} (\mu\nu|\sigma\lambda)$$
 (89)

 \mathbf{F}^{α} and \mathbf{F}^{β} are both functions of \mathbf{C}^{α} and $\mathbf{C}^{\beta} \Rightarrow$ There's a coupling between α and β MOs!

Spin-up and spin-down density matrices

$$egin{aligned} m{P}^{lpha}_{\mu
u} &= \sum_{a=1}^{N^{lpha}} C^{lpha}_{\mu a} C^{lpha}_{
u a} & \Leftrightarrow & m{P}^{lpha} \end{aligned}$$

Properties of the density ($\sigma = \alpha$ or β)

$$ho^{\sigma}({m r}) = \sum_{\mu
u} \phi_{\mu}({m r}) P^{\sigma}_{\mu
u} \phi_{
u}({m r})$$

$$\int \rho^{\sigma}(\mathbf{r})d\mathbf{r} = N^{\sigma} \tag{91}$$

Total and Spin density matrices

$$\mathbf{P}^{\mathsf{T}} = \mathbf{P}^{\alpha} + \mathbf{P}^{\beta}$$
Charge density

$$\underbrace{\mathbf{P}^{S}}_{\text{Spin density}} = \mathbf{P}^{\alpha} - \mathbf{P}^{\beta} \tag{92}$$

The SCF algorithm

- Specify molecule $\{R_A\}$ and $\{Z_A\}$ and basis set $\{\phi_\mu\}$ (same as RHF)
- **2** Calculate integrals $S_{\mu\nu}$, $H_{\mu\nu}$ and $\langle \mu\nu | \lambda\sigma \rangle$ (same as RHF)
- **4** Obtain guess density matrix for P^{α} and P^{β}
 - 1a. Calculate G^{α} and then $F^{\alpha} = H + G^{\alpha}$
 - 1b. Calculate $m{G}^eta$ and then $m{F}^eta = m{H} + m{G}^eta$
 - 2. Compute $(\mathbf{F}^{\alpha})' = \mathbf{X}^{\dagger} \cdot \mathbf{F}^{\alpha} \cdot \mathbf{X}$ and $(\mathbf{F}^{\beta})' = \mathbf{X}^{\dagger} \cdot \mathbf{F}^{\beta} \cdot \mathbf{X}$
 - 3a. Diagonalize $(\mathbf{F}^{\alpha})'$ to obtain $(\mathbf{C}^{\alpha})'$ and \mathbf{E}^{α}
 - 3b. Diagonalize $(\mathbf{F}^{\beta})'$ to obtain $(\mathbf{C}^{\beta})'$ and \mathbf{E}^{β}
 - 4. Calculate $C^{\alpha} = X \cdot (C^{\alpha})'$ and $C^{\beta} = X \cdot (C^{\beta})'$
 - 5. Form the new new density matrix P^{α} and P^{β} , and compute $P^{T} = P^{\alpha} + P^{\beta}$
 - 6. Am I converged? If not go back to 1.
- 6 Calculate stuff that you want, like E_{UHF} for example

- HF replaces the e-e interaction by an averaged interaction
- The error in the HF method is called the correlation energy

$$E_c = E - E_{\mathsf{HF}}$$

- The correlation energy is small but cannot but neglected!
- HF energy roughly 99% of total but chemistry very sensitive to remaining 1%
- The correlation energy is always negative
- Computing E_c is one of the central problem of quantum chemistry
- In quantum chemistry, we usually "freeze" the core electrons for correlated calculations

- Configuration Interaction (CID, CIS, CISD, QCISD)
- Coupled Cluster (CCD, CCSD, CCSD(T), CCSDT)
- **3** Møller-Plesset perturbation theory (MP2, MP3, MP4)
- Multireference methods (MCSCF, CASSCF, RASSCF, MRCC, CASPT2)
- 6 Explicitly correlated F12 methods (MP2-F12, CCSD-F12, CAS-F12)
- 6 Density-functional theory (DFT, TDDFT)
- Stochastic Quantum Monte Carlo methods (VMC, DMC, FCIQMC)

Configuration Interaction (CI)

- This is the oldest and perhaps the easiest method to understand
- CI is based on the variational principle (like HF)
- The CI wave function is a linear combination of determinants
- CI methods use excited determinants to "improve" the HF wave function

$$|\Phi_{0}\rangle = c_{0} |\Psi_{0}\rangle + \sum_{ia} c_{i}^{a} |\Psi_{i}^{a}\rangle + \sum_{\substack{i < j \\ a < b}} c_{ij}^{ab} |\Psi_{ij}^{ab}\rangle + \sum_{\substack{i < j < k \\ a < b < c}} c_{ijk}^{abc} |\Psi_{ijk}^{abc}\rangle + \sum_{\substack{i < j < k < l \\ a < b < c < d}} c_{ijkl}^{abcd} |\Psi_{ijkl}^{abcd}\rangle + \dots$$
(93)

Excited determinants

CI wave function

$$||\Phi_{0}\rangle = c_{0}||HF\rangle + c_{S}||S\rangle + c_{D}||D\rangle + c_{T}||T\rangle + c_{Q}||Q\rangle + \dots|$$
(94)

• When $|S\rangle$ (singles) are taken into account: **CIS**

$$|\Phi_{\text{CIS}}\rangle = c_0 |\text{HF}\rangle + c_{\text{S}} |\text{S}\rangle$$
 (95)

NB: CIS is an excited state method

• When |D| (doubles) are taken into account: CID

$$|\Phi_{\text{CID}}\rangle = c_0 |\text{HF}\rangle + c_{\text{D}} |\text{D}\rangle$$
 (96)

NB: CID is the cheapest CI method

• When $|S\rangle$ and $|D\rangle$ are taken into account: **CISD**

$$|\Phi_{\text{CISD}}\rangle = c_0 |\text{HF}\rangle + c_S |S\rangle + c_D |D\rangle$$
 (97)

NB: CISD is the most commonly-used CI method

• When $|S\rangle$, $|D\rangle$ and $|T\rangle$ (triples) are taken into account: **CISDT**

$$|\Phi_{\text{CISDT}}\rangle = c_0 |\text{HF}\rangle + c_S |S\rangle + c_D |D\rangle + c_T |T\rangle$$
 (98)

CISDTQ, etc.

When all possible excitations are taken into account, this is called a Full CI calculation (FCI)

$$|\Phi_{\text{FCI}}\rangle = c_0|\text{HF}\rangle + c_S|S\rangle + c_D|D\rangle + c_T|T\rangle + c_Q|Q\rangle + \dots$$
 (99)

- FCI gives the exact solution of the Schrödinger equation within a given basis
- FCI is becoming more and more fashionable these days (e.g. FCIQMC and SCI methods)
- So, why do we care about other methods?
- Because FCI is super computationally expensive!

"Assume we have 10 electrons in 38 spin MOs: 10 are occupied and 28 are empty"

• There is C_{10}^k possible ways of selecting k electrons out of the 10 occupied orbitals

$$C_n^k = \frac{n!}{k!(n-k)!}$$

- There is C_{28}^k ways of distributing them out in the 28 virtual orbitals
- For a given excitation level k, there is $C_{10}^k C_{28}^k$ excited determinants
- The total number of possible excited determinant is

$$\sum_{k=0}^{10} C_{10}^k C_{28}^k = C_{38}^{10} = 472,733,756$$

• This is a lot...

For N = 10 and K = 38:

k	Num. of excitations
0	1
1	280
2	17,010
3	393,120
4	4,299,750
5	24,766,560
6	79,115,400
7	142,084,800
8	139,864,725
9	69,069,000
10	13,123,110
Tot.	472,733,756

$$|\Phi_0
angle = c_0 |\mathsf{HF}
angle + c_\mathrm{S} |\mathsf{S}
angle + c_\mathrm{D} |\mathsf{D}
angle + c_\mathrm{T} |\mathsf{T}
angle + c_\mathrm{Q} |\mathsf{Q}
angle + \dots$$

Before pruning:

After pruning:

- No coupling between HF ground state |HF⟩ and single excitations |S⟩
 ⇒ Brillouin's theorem
 - $\langle \mathsf{HF}|\hat{H}|\mathsf{S}\rangle = 0$
- 2 No coupling between $|HF\rangle$ and triples $|T\rangle$, quadruples $|Q\rangle$, etc.
 - ⇒ Slater-Condon rules

$$\begin{split} \langle \mathsf{HF}|\hat{H}|\mathsf{T}\rangle &= \langle \mathsf{HF}|\hat{H}|\mathbf{Q}\rangle = \ldots = 0 \\ \langle \mathsf{S}|\hat{H}|\mathbf{Q}\rangle &= \ldots = 0 \end{split}$$

- $oldsymbol{0}$ $|S\rangle$ have small effect but mix indirectly with $|D\rangle$
 - \Rightarrow CID \neq CISD

$$\langle HF|\hat{\mathcal{H}}|S \rangle = 0$$
 but $\langle S|\hat{\mathcal{H}}|D \rangle \neq 0$

- (a) $|D\rangle$ have large effect and $|Q\rangle$ more important than $|T\rangle$
 - ⇒ CID gives most of the correlation energy

$$\langle \mathsf{HF}|\hat{H}|\mathsf{D}\rangle \gg \langle \mathsf{HF}|\hat{H}|\mathsf{Q}\rangle \gg \langle \mathsf{HF}|\hat{H}|\mathsf{T}\rangle$$

Weights of excited configurations for Ne

Weight
9.6×10^{-1}
9.8×10^{-4}
3.4×10^{-2}
3.7×10^{-4}
4.5×10^{-4}
1.9×10^{-5}
1.7×10^{-6}
1.4×10^{-7}
1.1×10^{-9}

Correlation energy of Be and Method scaling

Method	ΔE_c	%	Scaling
HF	0	0	K^4
CIS	0	0	K^5
CISD	0.075277	96.05	K^6
CISDT	0.075465	96.29	K^8
CISDTQ	0.078372	100	K^{10}
FCI	0.078372	100	e^K

Size consistency and size extensivity

Truncated CI methods are size inconsistent i.e.

$$2E_c(H_2) \neq E_c(H_2 \cdots H_2)$$

- Size consistent defines for non-interacting fragment
- Size extensivity refers to the scaling of E_c with the number of electrons
- NB: FCI is size consistent and size extensive

Let's assume we want to find Ψ_0 and E_0 , such as

$$(\hat{H}^{(0)} + \lambda \hat{H}^{(1)}) \Psi_0 = E_0 \Psi_0 \tag{100}$$

and that we know

$$\hat{H}^{(0)}\Psi_n^{(0)} = E_n^{(0)}\Psi_n^{(0)}, \quad n = 0, 1, 2, \dots, \infty$$
 (101)

Let's expand Ψ_0 and E_0 in term of λ :

$$E_0 = \lambda^0 E_0^{(0)} + \lambda^1 E_0^{(1)} + \lambda^2 E_0^{(2)} + \lambda^3 E_0^{(3)} + \dots$$
 (102)

$$\Psi_0 = \frac{\lambda^0}{\lambda^0} \Psi_0^{(0)} + \frac{\lambda^1}{\lambda^1} \Psi_0^{(1)} + \frac{\lambda^2}{\lambda^2} \Psi_0^{(2)} + \lambda^3 \Psi_0^{(3)} + \dots$$
 (103)

such as (intermediate normalization)

$$\langle \Psi_0^{(0)} | \Psi_0^{(0)} \rangle = 1 \qquad \langle \Psi_0^{(0)} | \Psi_0^{(k)} \rangle = 0, \quad k = 1, 2, \dots, \infty$$
 (104)

Gathering terms with respect to the power of λ :

$$\lambda^0: \qquad \hat{H}^{(0)} \Psi_0^{(0)} = E_0^{(0)} \Psi_0^{(0)} \tag{105}$$

$$\lambda^{1}: \qquad \hat{H}^{(0)}\Psi_{0}^{(1)} + \hat{H}^{(1)}\Psi_{0}^{(0)} = E_{0}^{(0)}\Psi_{0}^{(1)} + E_{0}^{(1)}\Psi_{0}^{(0)}$$
(106)

$$\lambda^{2}: \qquad \hat{H}^{(0)}\Psi_{0}^{(2)} + \hat{H}^{(1)}\Psi_{0}^{(1)} = E_{0}^{(0)}\Psi_{0}^{(2)} + E_{0}^{(1)}\Psi_{0}^{(1)} + E_{0}^{(2)}$$
(107)

$$\lambda^{3}: \qquad \hat{H}^{(0)}\Psi_{0}^{(3)} + \hat{H}^{(1)}\Psi_{0}^{(2)} = E_{0}^{(0)}\Psi_{0}^{(3)} + E_{0}^{(1)}\Psi_{0}^{(2)} + E_{0}^{(2)}\Psi_{0}^{(1)} + E_{0}^{(3)}$$
(108)

Using the intermediate normalization, we have

$$\lambda^{0}: \qquad E_{0}^{(0)} = \langle \Psi_{0}^{(0)} | \hat{H}^{(0)} | \Psi_{0}^{(0)} \rangle \tag{109}$$

$$\lambda^{1}: \qquad E_{0}^{(1)} = \langle \Psi_{0}^{(0)} | \hat{H}^{(1)} | \Psi_{0}^{(0)} \rangle \tag{110}$$

$$\lambda^2$$
: $E_0^{(2)} = \langle \Psi_0^{(0)} | \hat{H}^{(1)} | \Psi_0^{(1)} \rangle$ Wigner's (2n+1) rule! (111)

$$\lambda^{3}: \qquad E_{0}^{(3)} = \langle \Psi_{0}^{(0)} | \hat{H}^{(1)} | \Psi_{0}^{(2)} \rangle = \langle \Psi_{0}^{(1)} | \hat{H}^{(1)} - E_{0}^{(1)} | \Psi_{0}^{(1)} \rangle \tag{112}$$

Expanding $\Psi_0^{(1)}$ in the basis $\Psi_n^{(0)}$ with $n=0,1,2,\ldots,\infty$

$$|\Psi_0^{(1)}\rangle = \sum_n c_n^{(1)} |\Psi_n^{(0)}\rangle \quad \Rightarrow \quad c_n^{(1)} = \langle \Psi_n^{(0)} | \Psi_0^{(1)}\rangle$$
 (113)

Therefore,

$$|\Psi_0^{(1)}\rangle = \sum_{n \neq 0} |\Psi_n^{(0)}\rangle \langle \Psi_n^{(0)}|\Psi_0^{(1)}\rangle \tag{114}$$

Using results from the previous slide, one can show that

$$E_0^{(2)} = \sum_{n \neq 0} \frac{\langle \Psi_0^{(0)} | \hat{H}_1 | \Psi_n^{(0)} \rangle^2}{E_0^{(0)} - E_n^{(0)}}$$
(115)

$$E_0^{(3)} = \sum_{n,m\neq 0} \frac{\langle \Psi_0^{(0)} | \hat{H}_1 | \Psi_n^{(0)} \rangle \langle \Psi_n^{(0)} | \hat{H}_1 | \Psi_m^{(0)} \rangle \langle \Psi_m^{(0)} | \hat{H}_1 | \Psi_0^{(0)} \rangle}{(E_0^{(0)} - E_n^{(0)})(E_0^{(0)} - E_m^{(0)})} - E_0^{(1)} \sum_{n\neq 0} \frac{\langle \Psi_0^{(0)} | \hat{H}_1 | \Psi_n^{(0)} \rangle^2}{(E_0^{(0)} - E_n^{(0)})^2}$$
(116)

In Møller-Plesset perturbation theory, the partition is

$$\hat{H}^{(0)} = \sum_{i=1}^{N} f(i) = \sum_{i=1}^{N} [h(i) + v^{\mathsf{HF}}(i)], \qquad \hat{H}^{(1)} = \sum_{i < j} \frac{1}{r_{ij}} - \sum_{i} v^{\mathsf{HF}}(i)$$
(117)

Therefore,

$$E_0^{(0)} = \sum_{i}^{\text{occ}} \varepsilon_i, \qquad E_0^{(1)} = -\frac{1}{2} \sum_{ij}^{\text{occ}} \langle ij || ij \rangle \quad \Rightarrow \quad \boxed{E_{\text{HF}} = E_0^{(0)} + E_0^{(1)}}$$
 (118)

The first information about the correlation energy is given by the 2nd-order energy

$$E_0^{(2)} = \sum_{i \le j}^{\text{occ}} \sum_{a \le b}^{\text{virt}} \frac{\langle ij || ab \rangle^2}{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b}$$
 This is the MP2 energy!! (119)

The third-order correction is a bit ugly...

$$E_{0}^{(3)} = \frac{1}{8} \sum_{ijkl} \sum_{ab} \frac{\langle ij||ab\rangle\langle kl||ij\rangle\langle ab||kl\rangle}{(\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{k} + \varepsilon_{l} - \varepsilon_{a} - \varepsilon_{b})}$$

$$+ \frac{1}{8} \sum_{ij} \sum_{abcd} \frac{\langle ij||ab\rangle\langle ab||cd\rangle\langle cd||ij\rangle}{(\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{c} - \varepsilon_{d})}$$

$$+ \sum_{ijk} \sum_{abc} \frac{\langle ij||ab\rangle\langle kb||cj\rangle\langle ac||ik\rangle}{(\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{i} + \varepsilon_{k} - \varepsilon_{a} - \varepsilon_{c})}$$

NB:

MP2 and MP3 only requires only doubly excited determinants MP4 does need singly, doubly, triply and quadruply excited determinant!

Correlation energy of Be in a 4s2p basis set

Scaling	Level	ΔE_c	%	Level	ΔE_c	%
K^5	MP2	0.053174	67.85			
K^6	MP3	0.067949	86.70	CISD	0.075277	96.05
K^7	MP4	0.074121	94.58			
K^8	MP5	0.076918	98.15	CISDT	0.075465	96.29
K^9	MP6	0.078090	99.64			
K^{10}	MP7	0.078493	100.15	CISDTQ	0.078372	100

- MPn is not a variational method, i.e. you can get an energy lower than the true ground state energy!
- MPn fails for systems with small HOMO-LUMO gap
- The MPn series can oscillate around the exact energy
- MP*n* is size-consistent!

Idea behind CC

"Perturbation methods add all types of corrections (S, D, T, Q, etc.) to the reference wave function to a given order (2, 3, 4, etc.). The idea in CC methods is to include all corrections of a given type to infinite order.

Excitation operator

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \hat{T}_4 + \ldots + \hat{T}_N \tag{120}$$

Action on the HF wave function

$$\hat{T}_1 \Psi_0 = \sum_{ia} t_i^a \Psi_i^a \qquad \qquad \hat{T}_2 \Psi_0 = \sum_{\substack{i < j \\ a < b}} t_{ij}^{ab} \Psi_{ij}^{ab}$$
(121)

CI wave function

$$\Psi_{\text{CI}} = (\hat{1} + \hat{T})\Psi_0 \tag{122}$$

CC wave function

$$\Psi_{CC} = e^{\hat{T}} \Psi_0 \qquad e^{\hat{T}} = \hat{1} + \hat{T} + \frac{\hat{T}^2}{2} + \frac{\hat{T}^3}{6} + \dots = \sum_{k=0}^{\infty} \frac{\hat{T}^k}{k!}$$
 (123)

$$e^{\hat{T}} = \hat{1} + \hat{T}_1 + \left(\hat{T}_2 + \frac{\hat{T}_1^2}{2}\right) + \left(\hat{T}_3 + \hat{T}_2\hat{T}_1 + \frac{\hat{T}_1^3}{6}\right) + \left(\hat{T}_4 + \hat{T}_3\hat{T}_1 + \frac{\hat{T}_2^2}{2} + \frac{\hat{T}_2\hat{T}_1^2}{2} + \frac{\hat{T}_1^4}{24}\right) + \dots$$
(124)

- singles = \hat{T}_1
- doubles = connected doubles \hat{T}_2 + disconnected doubles \hat{T}_1^2
- \hat{T}_4 = four electrons interacting simultaneously
- \hat{T}_2^2 = two non-interacting pairs of interacting electrons
- Compared to CI, CC contains additional terms arising from products of excitations at each excitation level
 - ⇒ CC is size consistent!! but not variational!
- CISD lacks $\hat{T}_2^2 \Rightarrow \text{not size consistent}$

Schrödinger equation for CC wave function

$$\hat{H}|\Psi_{CC}\rangle = E_{CC}|\Psi_{CC}\rangle \Rightarrow \hat{H}|e^{\hat{T}}\Psi_{0}\rangle = E_{CC}|e^{\hat{T}}\Psi_{0}\rangle$$
 (125)

Projection onto Ψ₀

$$\langle \Psi_0 | \hat{H} | e^{\hat{T}} \Psi_0 \rangle = E_{\text{CC}} \langle \Psi_0 | e^{\hat{T}} \Psi_0 \rangle \tag{126}$$

$$E_{CC} = \langle \Psi_{0} | \hat{H} | e^{\hat{T}} \Psi_{0} \rangle$$

$$= \langle \Psi_{0} | \hat{H} | \Psi_{0} \rangle + \langle \Psi_{0} | \hat{H} | \hat{T}_{1} \Psi_{0} \rangle + \langle \Psi_{0} | \hat{H} | \hat{T}_{2} \Psi_{0} \rangle + \frac{1}{2} \langle \Psi_{0} | \hat{H} | \hat{T}_{1}^{2} \Psi_{0} \rangle$$

$$= E_{0} + \sum_{ia} t_{i}^{a} \langle \Psi_{0} | \hat{H} | \Psi_{i}^{a} \rangle + \sum_{ijab} (t_{ij}^{ab} + t_{i}^{a} t_{j}^{b} - t_{i}^{b} t_{j}^{a}) \langle \Psi_{0} | \hat{H} | \Psi_{ij}^{ab} \rangle$$

$$= E_{0} + \sum_{ijab} (t_{ij}^{ab} + t_{i}^{a} t_{j}^{b} - t_{i}^{b} t_{j}^{a}) \langle ij | |ab \rangle$$
(127)

Projection onto singly, doubly, triply, etc., excited determinants

$$\langle \Psi_i^a | \underbrace{e^{-\hat{\tau}} \hat{H} e^{\hat{\tau}}}_{\text{similarity transform}} | \Psi_0 \rangle = 0$$
 (128)

$$\langle \Psi_{ij}^{ab} | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \Psi_0 \rangle = 0 \tag{129}$$

$$\langle \Psi_{ijk}^{abc} | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \Psi_0 \rangle = 0 \tag{130}$$

• $e^{-\hat{T}}$ is a deexcitation operator

$$e^{-\hat{T}} = \hat{1} - \hat{T} + \frac{\hat{T}^2}{2} - \frac{\hat{T}^3}{6} + \frac{\hat{T}^4}{24} + \dots$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{\hat{T}^k}{k!}$$
(131)

CCSD

$$e^{\hat{T}_1+\hat{T}_2} = \hat{1} + \hat{T}_1 + \left(\hat{T}_2 + \frac{\hat{T}_1^2}{2}\right) + \left(\hat{T}_2\hat{T}_1 + \frac{\hat{T}_1^3}{6}\right) + \left(\frac{\hat{T}_2^2}{2} + \frac{\hat{T}_2\hat{T}_1^2}{2} + \frac{\hat{T}_1^4}{24}\right) + \dots$$

How do determine the CCSD amplitudes?

$$\langle \Psi_{i}^{a}(\hat{1} - \hat{T}_{1})|\hat{H}|\left[\hat{1} + \hat{T}_{1} + \left(\hat{T}_{2} + \frac{\hat{T}_{1}^{2}}{2}\right) + \left(\hat{T}_{2}\hat{T}_{1} + \frac{\hat{T}_{1}^{3}}{6}\right)\right]\Psi_{0}\rangle = 0$$

$$\langle \Psi_{ij}^{ab}\left[\hat{1} - \hat{T}_{1} - \left(\hat{T}_{2} - \frac{\hat{T}_{1}^{2}}{2}\right)\right]|\hat{H}|\left[\hat{1} + \hat{T}_{1} + \left(\hat{T}_{2} + \frac{\hat{T}_{1}^{2}}{2}\right) + \left(\hat{T}_{2}\hat{T}_{1} + \frac{\hat{T}_{1}^{3}}{6}\right) + \left(\frac{\hat{T}_{2}^{2}}{2} + \frac{\hat{T}_{2}\hat{T}_{1}^{2}}{2} + \frac{\hat{T}_{1}^{4}}{24}\right)\right]|\Psi_{0}\rangle = 0$$

$$(132)$$

- All the matrix elements can be evaluated in terms of MO integrals
- · Coupled non-linear equations for the singles and doubles amplitudes
- Must be solved iteratively (quartic in the amplitudes)

$$e^{\hat{\tau}} = \hat{1} + \hat{\tau}_1 + \left(\hat{\tau}_2 + \frac{\hat{\tau}_1^2}{2}\right) + \left(\hat{\tau}_3 + \hat{\tau}_2\hat{\tau}_1 + \frac{\hat{\tau}_1^3}{6}\right) + \left(\hat{\tau}_4 + \hat{\tau}_3\hat{\tau}_1 + \frac{\hat{\tau}_2^2}{2} + \frac{\hat{\tau}_2\hat{\tau}_1^2}{2} + \frac{\hat{\tau}_1^4}{24}\right) + \cdots$$

- Each parenthesis generates all the excited determinants of the given type
- \hat{T}_1 is small $\Rightarrow \hat{T}_1^2, \hat{T}_1^3, \hat{T}_1^4, \hat{T}_1\hat{T}_2 \dots$ are small
- \hat{T}_2 is large, and $\hat{T}_3 \gg \hat{T}_2 \hat{T}_1 \gg \hat{T}_1^3$
- $\hat{\mathcal{T}}_2$ is large $\Rightarrow \hat{\mathcal{T}}_2^2 > \hat{\mathcal{T}}_4$ and the rest is small because $\hat{\mathcal{T}}_1 \ll 0$
- \hat{T}_m with m > 4 expected to have small effects
- CISD lacks $\hat{T}_2^2 \Rightarrow \text{not size consistent}$
- \hat{T}_2^2 becomes large when number of electrons increases \Rightarrow Davidson correction

$$E_c(\text{CISD+Q}) = E_c(\text{CISD}) + (1 - c_0^2)E_c(\text{CISD})$$

$$e^{\hat{T}} = \hat{1} + \hat{T}_1 + \left(\hat{T}_2 + \frac{\hat{T}_1^2}{2}\right) + \left(\hat{T}_3 + \hat{T}_2\hat{T}_1 + \frac{\hat{T}_1^3}{6}\right) + \left(\hat{T}_4 + \hat{T}_3\hat{T}_1 + \frac{\hat{T}_2^2}{2} + \frac{\hat{T}_2\hat{T}_1^2}{2} + \frac{\hat{T}_1^4}{24}\right) + \dots$$

- MP2 and MP3 uses only doubles
- MP4 uses singles, doubles, triples (\hat{T}_3) and quadruples (\hat{T}_2^2)
- CCD \approx MP4(DQ) and CCSD \approx MP4(SDQ)
- MP2, MP3 and MP4(SDQ) can be obtained in 1st CCSD iteration
- CCSD lacks connected triples \hat{T}_3
 - OCSDT but very expensive!
 - OCCSD(T) where triples comes from MP4 (non-iterative)
 - 3 CCSD(T) = gold standard of quantum chemistry (for ground state and weakly correlated systems)

Correlation energy of Be in a 4s2p basis set

Scaling	Level	ΔE_c	%	Level	ΔE_c	%	Level	ΔE_c	%
K^5	MP2	0.053174	67.85						
K^6	MP3	0.067949	86.70	CISD	0.075277	96.05	CCSD	0.078176	99.75
K^7	MP4	0.074121	94.58				CCSD(T)	0.078361	99.99
K^8	MP5	0.076918	98.15	CISDT	0.075465	96.29	CCSDT	0.078364	99.99
K^9	MP6	0.078090	99.64						
K ¹⁰	MP7	0.078493	100.15	CISDTQ	0.078372	100	CCSDTQ	0.078372	100

As a rule of thumb:

 $HF \ll MP2 < CISD < MP4(SDQ) \sim CCSD < MP4 < CCSD(T)$

- Monte Carlo is a numerical integration method
- It is used in problems where it is too difficult or impossible to obtain analytical expressions or the dimensionality of the integral is large
- The method consists in repeating random sampling many times to obtain numerical results:

 ⇒ this is a non-deterministic or stochastic method.
- MC converges as $N^{-1/2}$ where N is the number of MC step
- In 1946, Stanislaw Ulam was the first mathematician to dignify this approach with a name, in honor of his uncle having a little issue with gambling
- Nicolas Metropolis also made important contributions (Metropolis algorithm)

Monte Carlo computation of π

$$\int_{-1}^{1} \int_{-1}^{1} f(x, y) \, dx \, dy = \pi \quad \text{with} \quad f(x, y) = \begin{cases} 1, & x^2 + y^2 \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- Within quantum chemistry, VMC is used to obtain expectation values (mainly energies)
- In VMC, the expectation value of the Hamiltonian with respect to a trial wave function Ψ_T is obtained using a stochastic integration technique
- The VMC energy is an upper bound to the exact ground state energy

$$E_{VMC} = \frac{\int \Psi_{\mathsf{T}}(\mathbf{R}) \, \hat{H} \Psi_{\mathsf{T}}(\mathbf{R}) \, d\mathbf{R}}{\int \Psi_{\mathsf{T}}(\mathbf{R})^2 \, d\mathbf{R}} = \frac{\int \frac{\hat{H} \Psi_{\mathsf{T}}(\mathbf{R})}{\Psi_{\mathsf{T}}(\mathbf{R})^2} \Psi_{\mathsf{T}}(\mathbf{R})^2 \, d\mathbf{R}}{\int \Psi_{\mathsf{T}}(\mathbf{R})^2 \, d\mathbf{R}} = \frac{\int E_{\mathsf{L}}(\mathbf{R}) \Psi_{\mathsf{T}}(\mathbf{R})^2 \, d\mathbf{R}}{\int \Psi_{\mathsf{T}}(\mathbf{R})^2 \, d\mathbf{R}}$$
(134)

where

$$E_{L}(\mathbf{R}) = \frac{\hat{H} \Psi_{T}(\mathbf{R})}{\Psi_{T}(\mathbf{R})} \quad \text{is the local energy and } \mathbf{R} = (\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{n})$$
 (135)

Time-dependent Schrödinger equation written in imaginary time:

$$\frac{\partial \Phi(\mathbf{R}, \tau)}{\partial \tau} = (\hat{H} - S)\Phi(\mathbf{R}, \tau)$$
(136)

- For $\tau \to \infty$, the solution is the exact ground state wave function $\Phi(R)$
- DMC generates **configurations** (or **walkers**) distributed according to the density $\rho(R, \tau) = \Psi_T(R) \Phi(R, \tau)$

$$\frac{\partial \rho(\mathbf{R}, \tau)}{d\tau} = \underbrace{\frac{1}{2} \nabla^2 \rho(\mathbf{R}, \tau)}_{\text{diffusion}} + \underbrace{\nabla \cdot [F(\mathbf{R})\rho(\mathbf{R}, \tau)]}_{\text{drift}} - \underbrace{[E_{\mathsf{L}}(\mathbf{R}) - E_{\mathsf{T}}]\rho(\mathbf{R}, \tau)}_{\text{branching}}$$
(137)

where

$$F(\mathbf{R}) = \frac{\nabla \Psi_{\mathsf{T}}(\mathbf{R})}{\Psi_{\mathsf{T}}(\mathbf{R})} \quad \text{is the quantum force}$$
 (138)

If $\Psi_T(\mathbf{R})$ has exact **nodes**, DMC energy = exact energy (fixed-node error)

• Introduction to Computational Chemistry (Jensen)

Essentials of Computational Chemistry (Cramer)

Modern Quantum Chemistry (Szabo & Ostlund)

• Molecular Electronic Structure Theory (Helgaker, Jorgensen & Olsen)

