The Hartree-Fock Approximation

Pierre-François LOOS

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

TCCM 2021

How to perform a HF calculation in practice?

The SCF algorithm for Hartree-Fock (HF) calculations (p. 146)

MODERN

 QUANTUM(1) Specify molecule $\left\{\boldsymbol{R}_{A}\right\}$ and $\left\{\boldsymbol{Z}_{A}\right\}$ and basis set $\left\{\phi_{\mu}\right\}$
(2) Calculate integrals $S_{\mu v}, H_{\mu \nu}$ and $\langle\mu \nu \mid \lambda \sigma\rangle$
(3) Diagonalize \boldsymbol{S} and compute $\boldsymbol{X}=\boldsymbol{S}^{-1 / 2}$
(1) Obtain guess density matrix for \boldsymbol{P}

1. Calculate \boldsymbol{J} and \boldsymbol{K}, then $\boldsymbol{F}=\boldsymbol{H}+\boldsymbol{J}+\boldsymbol{K}$
2. Compute $\boldsymbol{F}^{\prime}=\boldsymbol{X}^{\dagger} \cdot \boldsymbol{F} \cdot \boldsymbol{X}$
3. Diagonalize \boldsymbol{F}^{\prime} to obtain \boldsymbol{C}^{\prime} and \boldsymbol{E}
4. Calculate $\boldsymbol{C}=\boldsymbol{X} \cdot \boldsymbol{C}^{\prime}$
5. Form a new density matrix $\boldsymbol{P}=\boldsymbol{C} \cdot \boldsymbol{C}^{\dagger}$
6. Am I converged? If not go back to 1 .

Calculate stuff that you want, like E_{HF} for example Electronic Structure Theory

Attila Szabo and Neil S. Ostlund

Szabo's and Ostlund's book

Motivations \& Assumptions

- We consider the time-independent Schrödinger equation
- HF is an ab initio method, i.e., there's no parameter
- We don't care about relativistic effects
- HF is an independent-particle model, i.e., the motion of one electron is considered to be independent of the dynamics of all other electrons \Rightarrow interactions are taken into account in an average fashion
- HF is the starting point of pretty much anything!

The Hamiltonian

In the Schrödinger equation

$$
\begin{equation*}
\mathcal{H} \Phi\left(\left\{\boldsymbol{r}_{i}\right\},\left\{\boldsymbol{R}_{A}\right\}\right)=\mathcal{E} \Phi\left(\left\{\boldsymbol{r}_{i}\right\},\left\{\boldsymbol{R}_{A}\right\}\right) \tag{1}
\end{equation*}
$$

the total Hamiltonian is

$$
\begin{equation*}
\mathcal{H}=\mathcal{T}_{\mathrm{n}}+\mathcal{T}_{\mathrm{e}}+\mathcal{V}_{\mathrm{ne}}+\mathcal{V}_{\mathrm{ee}}+\mathcal{V}_{\mathrm{nn}} \tag{2}
\end{equation*}
$$

What are all these terms?

- \mathcal{T}_{n} is the kinetic energy of the nuclei
- \mathcal{T}_{e} is the kinetic energy of the electrons
- $\mathcal{V}_{\text {ne }}$ is the Coulomb attraction between nuclei and electrons
- $\mathcal{V}_{\text {ee }}$ is the Coulomb repulsion between electrons
- $\mathcal{V}_{\mathrm{nn}}$ is the Coulomb repulsion between nuclei

The Hamiltonian (Take 2)

In atomic units ($m=e=\hbar=1$)

$$
\begin{align*}
& \mathcal{T}_{\mathrm{n}}=-\sum_{A=1}^{M} \frac{\nabla_{A}^{2}}{2 M_{A}} \tag{3a}\\
& \mathcal{T}_{\mathrm{e}}=-\sum_{i=1}^{N} \frac{\nabla_{i}^{2}}{2} \tag{3b}\\
& \mathcal{V}_{\mathrm{ne}}=-\sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{i A}} \tag{3c}\\
& \mathcal{V}_{\mathrm{ee}}=\sum_{i<j}^{N} \frac{1}{r_{i j}} \tag{3d}\\
& \mathcal{V}_{\mathrm{nn}}=\sum_{A<B}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \tag{3e}
\end{align*}
$$

- ∇^{2} is the Laplace operator (or Laplacian)
- M_{A} is the mass of nucleus A
- Z_{A} is the charge of nucleus A
- $r_{i A}$ is the distance between electron i and nucleus A
- $r_{i j}$ is the distance between electrons i and j
- $R_{A B}$ is the distance between nuclei A and B

Molecular coordinate system

Figure 2.1 A molecular coordnate system $i, j=$ electrons, $A, B=$ nucleı

The Born-Oppenheimer approximation

Born-Oppenheimer approximation = decoupling nuclei and electrons
Because $M_{A} \gg 1$, the nuclear coordinates are "parameters" \Rightarrow potential energy surface (PES)

$$
\begin{equation*}
\Phi\left(\left\{\boldsymbol{r}_{i}\right\},\left\{\boldsymbol{R}_{A}\right\}\right)=\Phi_{\text {nucl }}\left(\left\{\boldsymbol{R}_{A}\right\}\right) \Phi_{\text {elec }}\left(\left\{\boldsymbol{r}_{i}\right\},\left\{\boldsymbol{R}_{A}\right\}\right) \quad \text { with } \quad \mathcal{E}_{\text {tot }}=\mathcal{E}_{\text {elec }}+\sum_{A<B}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \tag{4}
\end{equation*}
$$

Nuclear Hamiltonian

The nuclear Hamiltonian is

$$
\begin{equation*}
\mathcal{H}_{\text {nucl }} \Phi_{\text {nucl }}=\mathcal{E}_{\text {nucl }} \Phi_{\text {nucl }} \quad \text { with } \quad \mathcal{H}_{\text {nucl }}=\mathcal{T}_{\mathrm{n}}+\mathcal{V}_{\mathrm{nn}} \tag{5}
\end{equation*}
$$

It describes the vibration, rotation and translation of the molecules

Electronic Hamiltonian

The electronic Hamiltonian is

$$
\begin{equation*}
\mathcal{H}_{\text {elec }} \Phi_{\text {elec }}=\mathcal{E}_{\text {elec }} \Phi_{\text {elec }} \quad \text { with } \quad \mathcal{H}_{\text {elec }}=\mathcal{T}_{\text {e }}+\mathcal{V}_{\text {ne }}+\mathcal{V}_{\text {ee }} \tag{6}
\end{equation*}
$$

Separability of the Schrödinger equation

Problem:

"Assuming that $\hat{H}=\hat{H}_{A}+\hat{H}_{B}$ with $\hat{H}_{A} \Psi_{A}=E_{A} \Psi_{A}$ and $\hat{H}_{B} \Psi_{B}=E_{B} \Psi_{B}$, find the expression of Ψ and E such that $\hat{H} \Psi=E \Psi "$

Separability of the Schrödinger equation

Problem:

"Assuming that $\hat{H}=\hat{H}_{A}+\hat{H}_{B}$ with $\hat{H}_{A} \Psi_{A}=E_{A} \Psi_{A}$ and $\hat{H}_{B} \Psi_{B}=E_{B} \Psi_{B}$, find the expression of Ψ and E such that $\hat{H} \Psi=E \Psi "$

Solution:

Let's try $\Psi=\Psi_{A} \Psi_{B}$ and see if we're lucky.
Then,

$$
\begin{aligned}
\hat{H} \Psi & =\left(\hat{H}_{A}+\hat{H}_{B}\right) \Psi_{A} \Psi_{B} \\
& =\hat{H}_{A} \Psi_{A} \Psi_{B}+\hat{H}_{B} \Psi_{A} \Psi_{B} \\
& =E_{A} \Psi_{A} \Psi_{B}+E_{B} \Psi_{A} \Psi_{B} \\
& =\underbrace{\left(E_{A}+E_{B}\right)}_{E} \underbrace{\Psi_{A} \Psi_{B}}_{\Psi}
\end{aligned}
$$

Spin of the electron

We are interested by electrons which are fermions \Rightarrow Pauli exclusion principle (cf next slide)
Spin functions: $|\sigma\rangle=\left|s, m_{s}\right\rangle \quad s^{2}\left|s, m_{s}\right\rangle=s(s+1)\left|s, m_{s}\right\rangle \quad s_{z}\left|s, m_{s}\right\rangle=m_{s}\left|s, m_{s}\right\rangle$

$$
|\alpha\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle \text { spin-up electron } \quad|\beta\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\text { spin-down electron }
$$

$$
\begin{align*}
\int \alpha^{*}(\omega) \beta(\omega) d \omega & =\int \beta^{*}(\omega) \alpha(\omega) d \omega & =0 & \int \alpha^{*}(\omega) \alpha(\omega) d \omega & =\int \beta^{*}(\omega) \beta(\omega) d \omega & =1 \tag{7}\\
\langle\alpha \mid \beta\rangle & =\langle\beta \mid \alpha\rangle & =0 & \langle\alpha \mid \alpha\rangle & =\langle\beta \mid \beta\rangle & =1 \tag{8}
\end{align*}
$$

The composite variable \mathbf{x} combines spin (ω) and spatial (\boldsymbol{r}) coordinates: $\boldsymbol{x}=(\omega, \boldsymbol{r})$

Antisymmetry principle

$$
\begin{gather*}
\mathcal{H}_{\mathrm{elec}} \Phi\left(\mathbf{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\mathcal{E}_{\mathrm{elec}} \Phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \boldsymbol{x}_{N}\right) \tag{9}\\
\Phi\left(\mathbf{x}_{1}, \ldots, \boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{j}, \ldots, \boldsymbol{x}_{N}\right)=-\Phi\left(\mathbf{x}_{1}, \ldots, \boldsymbol{x}_{j}, \ldots, \boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{N}\right) \tag{10}
\end{gather*}
$$

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

Antisymmetry

Problem:

"Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space"

Antisymmetry

Problem:

"Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space"

Solution

Indistinguishable particles means

$$
\begin{equation*}
\left|\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|^{2}=\left|\Psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)\right|^{2} \Rightarrow \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= \pm \Psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) \tag{11}
\end{equation*}
$$

Antisymmetry

Problem:

"Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space"

Solution

Indistinguishable particles means

$$
\begin{equation*}
\left|\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|^{2}=\left|\Psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)\right|^{2} \Rightarrow \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= \pm \Psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) \tag{11}
\end{equation*}
$$

Bosons mean $\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\Psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ and Fermions mean $\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=-\Psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$

Let's put them at the same spot, i.e. $\boldsymbol{x}=\boldsymbol{x}_{1}=\boldsymbol{x}_{2}$

$$
\begin{equation*}
\text { For Fermions, } \Psi(\mathbf{x}, \mathbf{x})=-\Psi(\mathbf{x}, \mathbf{x}) \Rightarrow \Psi(\boldsymbol{x}, \mathbf{x})=0 \tag{12}
\end{equation*}
$$

The wave function vanishes! \Rightarrow This is called the Fermi hole!

Antisymmetry (Take 2)

Problem:

"Given two one-electron functions $\chi_{1}(\mathbf{x})$ and $\chi_{2}(\mathbf{x})$, could you construct a two-electron (fermionic) wave function $\Psi\left(\mathbf{x}_{1}, \boldsymbol{x}_{2}\right)$?"

Antisymmetry (Take 2)

Problem:

"Given two one-electron functions $\chi_{1}(\mathbf{x})$ and $\chi_{2}(\mathbf{x})$, could you construct a two-electron (fermionic) wave function $\Psi\left(\mathbf{x}_{1}, \boldsymbol{x}_{2}\right)$?"

Solution

A possible solution is

$$
\begin{equation*}
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\chi_{1}\left(\mathbf{x}_{1}\right) \chi_{2}\left(\mathbf{x}_{2}\right)-\chi_{1}\left(\mathbf{x}_{2}\right) \chi_{2}\left(\mathbf{x}_{1}\right) \tag{13}
\end{equation*}
$$

This has been popularized by Slater:

$$
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left|\begin{array}{ll}
\chi_{1}\left(\mathbf{x}_{1}\right) & \chi_{2}\left(\mathbf{x}_{1}\right) \tag{14}\\
\chi_{1}\left(\mathbf{x}_{2}\right) & \chi_{2}\left(\mathbf{x}_{2}\right)
\end{array}\right|=\chi_{1}\left(\mathbf{x}_{1}\right) \chi_{2}\left(\mathbf{x}_{2}\right)-\chi_{1}\left(\mathbf{x}_{2}\right) \chi_{2}\left(\mathbf{x}_{1}\right)
$$

This is called a Slater determinant!

A wave function of the form $\Psi\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\chi_{1}\left(\mathbf{x}_{1}\right) \chi_{2}\left(\mathbf{x}_{2}\right)$ is called a Hartree product

$$
\begin{align*}
\Psi_{\mathrm{HF}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \boldsymbol{x}_{N}\right) & =\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\chi_{1}\left(\mathbf{x}_{1}\right) & \chi_{2}\left(\mathbf{x}_{1}\right) & \cdots & \chi_{N}\left(\mathbf{x}_{1}\right) \\
\chi_{1}\left(\mathbf{x}_{2}\right) & \chi_{2}\left(\mathbf{x}_{2}\right) & \cdots & \chi_{N}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_{1}\left(\mathbf{x}_{N}\right) & \chi_{2}\left(\mathbf{x}_{N}\right) & \cdots & \chi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right| \equiv\left|\chi_{1}\left(\mathbf{x}_{1}\right) \chi_{2}\left(\mathbf{x}_{2}\right) \ldots \chi_{N}\left(\mathbf{x}_{N}\right)\right\rangle \tag{15}\\
& =\mathcal{A} \chi_{1}\left(\mathbf{x}_{1}\right) \chi_{2}\left(\mathbf{x}_{2}\right) \ldots \chi_{N}\left(\mathbf{x}_{N}\right)=\mathcal{A} \Pi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)
\end{align*}
$$

- \mathcal{A} is called the antisymetrizer
- $\Pi\left(\mathbf{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$ is a Hartree product
- The many-electron wave function $\Psi_{\text {HF }}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$ is an antisymmetrized product of one-electron functions

$$
\chi_{i}(\boldsymbol{x})=\sigma(\omega) \psi_{i}(\boldsymbol{r})=\left\{\begin{array}{l}
\alpha(\omega) \psi_{i}(\boldsymbol{r}) \\
\beta(\omega) \psi_{i}(\boldsymbol{r})
\end{array} \quad \psi_{i}(\boldsymbol{r})=\sum_{\mu}^{K} C_{\mu i} \phi_{\mu}(\boldsymbol{r})\right.
$$

These are restricted spin orbitals \Rightarrow Restricted Hartree-Fock $=$ RHF
The spin orbitals are orthogonal

$$
\left\langle\chi_{i} \mid \chi_{j}\right\rangle=\int \chi_{i}^{*}(\mathbf{x}) \chi_{j}(\mathbf{x}) d \mathbf{x}=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

The spatial orbitals are orthogonal

$$
\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\int \psi_{i}^{*}(\boldsymbol{r}) \psi_{j}(\boldsymbol{r}) d \boldsymbol{r}=\delta_{i j}=\text { Kronecker delta }
$$

The basis functions (or atomic orbitals) are, a priori, not orthogonal

$$
\left\langle\phi_{\mu} \mid \phi_{v}\right\rangle=\int \phi_{\mu}^{*}(\boldsymbol{r}) \phi_{v}(\boldsymbol{r}) d \boldsymbol{r}=S_{\mu v}=\text { Overlap matrix }
$$

Spin and spatial orbitals (Take 2)

Comments

- $\left\{\phi_{\mu} \mid i=1, \ldots, K\right\}$ are basis functions or atomic orbitals (AOs)
- $\left\{\chi_{i} \mid i=1, \ldots, 2 K\right\}$ are the spin orbitals
- $\left\{\psi_{i} \mid i=1, \ldots, K\right\}$ are the spatial orbitals or molecular orbitals (MOs)
- With K AOs, one can create K spatial orbitals and $2 K$ spin orbitals
- For the ground state, the first N spin orbitals are occupied and the last $2 K-N$ are vacant (unoccupied)
- When a system has 2 electrons in each orbital, it is called a closed-shell system, otherwise it is called a open-shell system
- For the ground state of a closed shell, the first $N / 2$ spatial orbitals are doubly-occupied and the last $K-N / 2$ are vacant (unoccupied)
- The MOs are build by linear combination of AOs (LCAO)
- The coefficient $C_{\mu i}$ are determined via the HF equations based on variational principle

Ground-state Hartree-Fock determinant

Figure 2.4 The Hartree-Fock ground state determinant, $\left|\chi_{1} \chi_{2} \cdot \chi_{a} \chi_{b} \cdot \chi_{N}\right\rangle$.

Excited determinants

Reference determinant

The electrons are in the N lowest orbitals (Aufbau principle): $\quad\left|\Psi_{0}\right\rangle=\left|\chi_{1} \ldots \chi_{a} \chi_{b} \ldots \chi_{N}\right\rangle$

Singly-excited determinants

$$
\begin{equation*}
\text { Electron in a promoted in } r: \quad\left|\Psi_{a}^{r}\right\rangle=\left|\chi_{1} \ldots \chi_{r} \chi_{b} \ldots \chi_{N}\right\rangle \tag{17}
\end{equation*}
$$

Doubly-excited determinants

Electrons in a and b promoted in r and $s: \quad\left|\Psi_{a b}^{r s}\right\rangle=\left|\chi_{1} \ldots \chi_{r} \chi_{s} \ldots \chi_{N}\right\rangle$

The HF energy is

$$
\begin{equation*}
E_{\mathrm{HF}}=\left\langle\Psi_{\mathrm{HF}}\right| \mathcal{H}_{\mathrm{elec}}+\mathcal{V}_{\mathrm{nn}}\left|\Psi_{\mathrm{HF}}\right\rangle \quad \text { where } \quad \mathcal{H}_{\mathrm{elec}}=\mathcal{T}_{\mathrm{e}}+\mathcal{V}_{\mathrm{ne}}+\mathcal{V}_{\mathrm{ee}} \tag{19}
\end{equation*}
$$

We define a few quantities:

- the one-electron Hamiltonian (or core Hamiltonian) = nice guy!

$$
\begin{equation*}
\mathcal{O}_{1}=\mathcal{T}_{\mathrm{e}}+\mathcal{V}_{\text {ne }}=\sum_{i=1}^{N} h(i) \quad \text { where } \quad h(i)=-\frac{\nabla_{i}^{2}}{2}-\sum_{A=1}^{M} \frac{Z_{A}}{r_{i A}} \tag{20}
\end{equation*}
$$

- the two-electron Hamiltonian (electron-electron repulsion) = nasty guy!

$$
\begin{equation*}
\mathcal{O}_{2}=\mathcal{V}_{\mathrm{ee}}=\sum_{i<j}^{N} \frac{1}{r_{i j}} \tag{21}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\mathcal{H}_{\text {elec }}=\sum_{i=1}^{N} h(i)+\sum_{i<j}^{N} \frac{1}{r_{i j}} \tag{22}
\end{equation*}
$$

The Hartree-Fock energy (Take 2)

- Nuclear repulsion:

$$
\begin{equation*}
\left\langle\Psi_{\mathrm{HF}}\right| \mathcal{V}_{\mathrm{nn}}\left|\Psi_{\mathrm{HF}}\right\rangle=V_{\mathrm{nn}}\left\langle\Psi_{\mathrm{HF}} \mid \Psi_{\mathrm{HF}}\right\rangle=V_{\mathrm{nn}} \tag{23}
\end{equation*}
$$

- Core Hamiltonian:

$$
\begin{equation*}
\left\langle\Psi_{\mathrm{HF}}\right| \mathcal{O}_{1}\left|\Psi_{\mathrm{HF}}\right\rangle=\sum_{a=1}^{N}\left\langle\chi_{a}(1)\right| h(1)\left|\chi_{a}(1)\right\rangle=\sum_{a=1}^{N} h_{a} \tag{24}
\end{equation*}
$$

- Two-electron Hamiltonian:

$$
\begin{align*}
\left\langle\Psi_{\mathrm{HF}}\right| \mathcal{O}_{2}\left|\Psi_{\mathrm{HF}}\right\rangle & =\sum_{a<b}^{N}\left[\left\langle\chi_{a}(1) \chi_{b}(2)\right| r_{12}^{-1}\left|\chi_{a}(1) \chi_{b}(2)\right\rangle-\left\langle\chi_{a}(1) \chi_{b}(2)\right| r_{12}^{-1}\left|\chi_{b}(1) \chi_{a}(2)\right\rangle\right] \\
& =\sum_{a<b}^{N}(\underbrace{\mathcal{J}_{a b}}_{\text {Coulomb }}-\underbrace{\mathcal{K}_{a b}}_{\text {Exchange }})=\frac{1}{2} \sum_{a=1}^{N} \sum_{b=1}^{N}\left(\mathcal{J}_{a b}-\mathcal{K}_{a b}\right) \text { because } \mathcal{J}_{a a}=\mathcal{K}_{a a} \tag{25}
\end{align*}
$$

- HF energy:

$$
\begin{equation*}
E_{\mathrm{HF}}=\sum_{a=1}^{N} h_{a}+\sum_{a<b}^{N}\left(\mathcal{J}_{a b}-\mathcal{K}_{a b}\right)+V_{\mathrm{nn}} \tag{26}
\end{equation*}
$$

The Hartree-Fock energy (Take 3)

- Coulomb operator

$$
\begin{equation*}
\mathcal{J}_{j}(1)\left|\chi_{i}(1)\right\rangle=\left\langle\chi_{j}(2)\right| r_{12}^{-1}\left|\chi_{j}(2)\right\rangle\left|\chi_{i}(1)\right\rangle=\left[\int d \mathbf{x}_{2} \chi_{j}^{*}\left(\mathbf{x}_{2}\right) r_{12}^{-1} \chi_{j}\left(\mathbf{x}_{2}\right)\right]\left|\chi_{i}\left(\mathbf{x}_{1}\right)\right\rangle \tag{27}
\end{equation*}
$$

- Coulomb matrix elements

$$
\begin{align*}
\mathcal{J}_{i j} & =\left\langle\chi_{i}(1)\right| \mathcal{J}_{j}(1)\left|\chi_{i}(1)\right\rangle=\left\langle\chi_{i}(1) \chi_{j}(2)\right| r_{12}^{-1}\left|\chi_{i}(1) \chi_{j}(2)\right\rangle \\
& =\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}^{*}\left(\mathbf{x}_{2}\right) r_{12}^{-1} \chi_{i}\left(\mathbf{x}_{1}\right) \chi_{j}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \tag{28}
\end{align*}
$$

- (non-local) Exchange operator

$$
\begin{equation*}
\mathcal{K}_{j}(1)\left|\chi_{i}(1)\right\rangle=\left\langle\chi_{j}(2)\right| r_{12}^{-1}\left|\chi_{i}(2)\right\rangle\left|\chi_{j}(1)\right\rangle=\left[\int d \mathbf{x}_{2} \chi_{j}^{*}\left(\mathbf{x}_{2}\right) r_{12}^{-1} \chi_{i}\left(\mathbf{x}_{2}\right)\right]\left|\chi_{j}\left(\mathbf{x}_{2}\right)\right\rangle \tag{29}
\end{equation*}
$$

- Exchange matrix elements

$$
\begin{align*}
\mathcal{K}_{i j} & =\left\langle\chi_{i}(1)\right| \mathcal{K}_{j}(1)\left|\chi_{i}(1)\right\rangle=\left\langle\chi_{i}(1) \chi_{j}(2)\right| r_{12}^{-1}\left|\chi_{j}(1) \chi_{i}(2)\right\rangle \\
& =\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}^{*}\left(\mathbf{x}_{2}\right) r_{12}^{-1} \chi_{j}\left(\mathbf{x}_{1}\right) \chi_{i}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \tag{30}
\end{align*}
$$

Integral notations

Spin orbitals

$$
\begin{align*}
& {[i|h| j] }=\langle i| h|j\rangle=\int \chi_{i}^{*}\left(\mathbf{x}_{1}\right) h\left(\boldsymbol{r}_{1}\right) \chi_{i}\left(\mathbf{x}_{1}\right) d \mathbf{x}_{1} \tag{31}\\
&\langle i j \mid k l\rangle=\left\langle\chi_{i} \chi_{j} \mid \chi_{k} \chi_{l}\right\rangle=\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}^{*}\left(\mathbf{x}_{2}\right) \frac{1}{r_{12}} \chi_{k}\left(\mathbf{x}_{1}\right) \chi_{l}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2}=[i k \mid j l] \tag{32}\\
& {[i j \mid k l]=\left[\chi_{i} \chi_{j} \mid \chi_{k} \chi_{l}\right]=\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}\left(\mathbf{x}_{1}\right) \frac{1}{r_{12}} \chi_{k}^{*}\left(\mathbf{x}_{2}\right) \chi_{l}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2}=\langle i k \mid j l\rangle } \tag{33}\\
&\langle i j||k l\rangle=\langle i j \mid k l\rangle-\langle i j \mid l k\rangle=\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}^{*}\left(\mathbf{x}_{2}\right) \frac{1}{r_{12}}\left(1-\mathcal{P}_{12}\right) \chi_{k}\left(\mathbf{x}_{1}\right) \chi_{l}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \tag{34}
\end{align*}
$$

Spatial orbitals

$$
\begin{gather*}
(i|h| j)=h_{i j}=\left(\psi_{i}|h| \psi_{j}\right)=\int \psi_{i}^{*}\left(\boldsymbol{r}_{1}\right) h\left(\boldsymbol{r}_{1}\right) \psi_{i}\left(\boldsymbol{r}_{1}\right) d \boldsymbol{r}_{1} \tag{35}\\
(i j \mid k l)=\left(\psi_{i} \psi_{j} \mid \psi_{k} \psi_{l}\right)=\iint \psi_{i}^{*}\left(\boldsymbol{r}_{1}\right) \psi_{j}\left(\boldsymbol{r}_{1}\right) \frac{1}{r_{12}} \psi_{k}^{*}\left(\boldsymbol{r}_{2}\right) \psi_{l}\left(\boldsymbol{r}_{2}\right) d \boldsymbol{r}_{1} d \boldsymbol{r}_{2} \tag{36}
\end{gather*}
$$

Permutation symmetry in physicts' notations

$$
\begin{equation*}
\langle i j \mid k l\rangle=\left\langle\chi_{i} \chi_{j} \mid \chi_{k} \chi_{l}\right\rangle=\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}^{*}\left(\mathbf{x}_{2}\right) \frac{1}{r_{12}} \chi_{k}\left(\mathbf{x}_{1}\right) \chi_{l}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\text { Complex-valued integrals: } \quad\langle i j \mid k l\rangle=\langle j i \mid l k\rangle=\langle k l \mid i j\rangle^{*}=\langle l k \mid j i\rangle^{*} \tag{38}
\end{equation*}
$$

Permutation symmetry in chemists' notations

$$
\begin{equation*}
[i j \mid k l]=\left[\chi_{i} \chi_{j} \mid \chi_{k} \chi_{l}\right]=\iint \chi_{i}^{*}\left(\mathbf{x}_{1}\right) \chi_{j}\left(\mathbf{x}_{1}\right) \frac{1}{r_{12}} \chi_{k}^{*}\left(\mathbf{x}_{2}\right) \chi_{l}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \tag{39}
\end{equation*}
$$

Real-valued integrals: $\quad[i j \mid k l]=[j i \mid k l]=[i j \mid l k]=[j i \mid l k]=[k l \mid i j]=[l k \mid i j]=[k l \mid j i]=[l k \mid j i]$

$$
\begin{equation*}
\mathcal{O}_{1}=\sum_{i}^{N} h(i) \tag{41}
\end{equation*}
$$

$$
\begin{align*}
\text { Case } 1=\text { differ by zero spinorbital: }|K\rangle= & |\ldots m n \ldots\rangle \\
& \langle K| \mathcal{O}_{1}|K\rangle=\sum_{m}^{N}\langle m| h|m\rangle \tag{42}
\end{align*}
$$

Case 2 = differ by one spinorbital: $|K\rangle=|\ldots m n \ldots\rangle$ and $|L\rangle=\mid \ldots$ pn $\ldots\rangle$

$$
\begin{equation*}
\langle K| \mathcal{O}_{1}|L\rangle=\langle m| h|p\rangle \tag{43}
\end{equation*}
$$

Case $3=$ differ by two spinorbital: $:|K\rangle=|\ldots m n \ldots\rangle$ and $|L\rangle=|\ldots p q \ldots\rangle$
$\langle K| \mathcal{O}_{1}|L\rangle=0$

$$
\begin{equation*}
\mathcal{O}_{2}=\sum_{i<j}^{N} r_{i j}^{-1} \tag{45}
\end{equation*}
$$

Case $1=$ differ by zero spinorbital: $|K\rangle=|\ldots m n \ldots\rangle$

$$
\begin{equation*}
\langle K| \mathcal{O}_{2}|K\rangle=\frac{1}{2} \sum_{m n}^{N}\langle m n||m n\rangle \tag{46}
\end{equation*}
$$

Case $2=$ differ by one spinorbital: $|K\rangle=|\ldots m n \ldots\rangle$ and $|L\rangle=|\ldots p n \ldots\rangle$

$$
\begin{equation*}
\langle K| \mathcal{O}_{2}|L\rangle=\sum_{n}^{N}\langle m n \| p n\rangle \tag{47}
\end{equation*}
$$

$$
\begin{align*}
\text { differ by two spinorbitals: }|K\rangle= & |\ldots m n \ldots\rangle \text { and }|L\rangle=|\ldots p q \ldots\rangle \\
& \langle K| \mathcal{O}_{2}|L\rangle=\langle m n \| p q\rangle \tag{48}
\end{align*}
$$

The Hartree-Fock energy: examples

Problem: Normalization of the HF wave function
"Show that the HF wave function built with two (normalized) spin orbitals χ_{1} and χ_{2} is normalized"

Problem: Normalization of the HF wave function

"Show that the HF wave function built with two (normalized) spin orbitals χ_{1} and χ_{2} is normalized"

Solution

$$
\begin{aligned}
\Psi_{\mathrm{HF}} & =\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\chi_{1}(1) & \chi_{2}(1) \\
\chi_{1}(2) & \chi_{2}(2)
\end{array}\right|=\frac{\chi_{1}(1) \chi_{2}(2)-\chi_{1}(2) \chi_{2}(1)}{\sqrt{2}} \\
\left\langle\Psi_{\mathrm{HF}} \mid \Psi_{\mathrm{HF}}\right\rangle & =\frac{1}{2}\left\langle\chi_{1}(1) \chi_{2}(2)-\chi_{2}(1) \chi_{1}(2) \mid \chi_{1}(1) \chi_{2}(2)-\chi_{2}(1) \chi_{1}(2)\right\rangle \\
& =\frac{1}{2}\left[\left\langle\chi_{1}(1) \chi_{2}(2) \mid \chi_{1}(1) \chi_{2}(2)\right\rangle-\left\langle\chi_{1}(1) \chi_{2}(2) \mid \chi_{2}(1) \chi_{1}(2)\right\rangle\right. \\
& \left.-\left\langle\chi_{2}(1) \chi_{1}(2) \mid \chi_{1}(1) \chi_{2}(2)\right\rangle+\left\langle\chi_{2}(1) \chi_{1}(2) \mid \chi_{2}(1) \chi_{1}(2)\right\rangle\right] \\
& =\frac{1}{2}[1-0-0+1]=1
\end{aligned}
$$

Remember that $\left\langle\chi_{1}(1) \chi_{2}(2) \mid \chi_{1}(1) \chi_{2}(2)\right\rangle=\left\langle\chi_{1}(1) \mid \chi_{1}(1)\right\rangle\left\langle\chi_{2}(2) \mid \chi_{2}(2)\right\rangle$

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

Problem: Core Hamiltonian

"Show that $\left\langle\Psi_{H F}\right| \mathcal{O}_{1}\left|\Psi_{H F}\right\rangle=\sum_{a=1}^{N} h_{a}$ for the same system"

Problem: Core Hamiltonian

"Show that $\left\langle\Psi_{H F}\right| \mathcal{O}_{1}\left|\Psi_{H F}\right\rangle=\sum_{a=1}^{N} h_{a}$ for the same system"

Solution

$$
\mathcal{O}_{1}=h(1)+h(2)
$$

$$
\begin{aligned}
& \left\langle\Psi_{\mathrm{HF}}\right| h(1)+h(2)\left|\Psi_{\mathrm{HF}}\right\rangle \\
& \quad=\frac{1}{2}\left\langle\chi_{1}(1) \chi_{2}(2)-\chi_{1}(2) \chi_{2}(1)\right| h(1)+h(2)\left|\chi_{1}(1) \chi_{2}(2)-\chi_{1}(2) \chi_{2}(1)\right\rangle \\
& \quad=\frac{1}{2}\left[\left\langle\chi_{1}(1) \chi_{2}(2)\right| h(1)+h(2)\left|\chi_{1}(1) \chi_{2}(2)\right\rangle-\left\langle\chi_{1}(1) \chi_{2}(2)\right| h(1)+h(2)\left|\chi_{2}(1) \chi_{1}(2)\right\rangle\right. \\
& \left.\quad-\left\langle\chi_{2}(1) \chi_{1}(2)\right| h(1)+h(2)\left|\chi_{1}(1) \chi_{2}(2)\right\rangle+\left\langle\chi_{2}(1) \chi_{1}(2)\right| h(1)+h(2)\left|\chi_{2}(1) \chi_{1}(2)\right\rangle\right] \\
& \quad=\frac{1}{2}\left[h_{1}+h_{2}-0-0+h_{2}+h_{1}\right]=h_{1}+h_{2}
\end{aligned}
$$

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

The Hartree-Fock energy: examples (Take 3)

Problem: Two-electron Hamiltonian

"Show that $\left\langle\Psi_{H F}\right| \mathcal{O}_{2}\left|\Psi_{H F}\right\rangle=\sum_{a<b}^{N}\left(\mathcal{J}_{a b}-\mathcal{K}_{a b}\right)$ for the same system and write down the HF energy"

Problem: Two-electron Hamiltonian

"Show that $\left\langle\Psi_{H F}\right| \mathcal{O}_{2}\left|\Psi_{H F}\right\rangle=\sum_{a<b}^{N}\left(\mathcal{J}_{a b}-\mathcal{K}_{a b}\right)$ for the same system and write down the HF energy"

Solution

$$
\begin{aligned}
& \mathcal{O}_{2}=r_{12}^{-1} \\
&\left\langle\Psi_{\mathrm{HF}}\right| r_{12}^{-1}\left|\Psi_{\mathrm{HF}}\right\rangle= \frac{1}{2}\left\langle\chi_{1} \chi_{2}-\chi_{2} \chi_{1}\right| r_{12}^{-1}\left|\chi_{1} \chi_{2}-\chi_{2} \chi_{1}\right\rangle \\
&=\frac{1}{2}\left[\left\langle\chi_{1} \chi_{2}\right| r_{12}^{-1}\left|\chi_{1} \chi_{2}\right\rangle-\left\langle\chi_{1} \chi_{2}\right| r_{12}^{-1}\left|\chi_{2} \chi_{1}\right\rangle\right. \\
&\left.-\left\langle\chi_{2} \chi_{1}\right| r_{12}^{-1}\left|\chi_{1} \chi_{2}\right\rangle+\left\langle\chi_{2} \chi_{1}\right| r_{12}^{-1}\left|\chi_{2} \chi_{1}\right\rangle\right] \\
&=\frac{1}{2}\left[\mathcal{J}_{12}-\mathcal{K}_{12}-\mathcal{K}_{12}+\mathcal{J}_{12}\right]=\mathcal{J}_{12}-\mathcal{K}_{12}
\end{aligned}
$$

Remember that $\left\langle\chi_{2} \chi_{1}\right| r_{12}^{-1}\left|\chi_{2} \chi_{1}\right\rangle=\left\langle\chi_{1} \chi_{2}\right| r_{12}^{-1}\left|\chi_{1} \chi_{2}\right\rangle$

$$
E_{\mathrm{HF}}=h_{1}+h_{2}+\mathcal{J}_{12}-\mathcal{K}_{12}
$$

Three-electron system

"Find the HF energy of a three-electron system composed by the spin orbitals χ_{1}, χ_{2} and χ_{3} "

Solution

$$
\begin{gathered}
\mathcal{O}_{1}=h(1)+h(2)+h(3) \\
\mathcal{O}_{2}=r_{12}^{-1}+r_{13}^{-1}+r_{23}^{-1} \\
\vdots \\
E_{\mathrm{HF}}=h_{1}+h_{2}+h_{3}+\mathcal{J}_{12}+\mathcal{J}_{13}+\mathcal{J}_{23}-\mathcal{K}_{12}-\mathcal{K}_{13}-\mathcal{K}_{23}
\end{gathered}
$$

Singlet $1 s^{2}$ state of the He atom

$$
\begin{gathered}
\chi_{1}=\alpha \psi_{1} \quad \chi_{2}=\beta \psi_{1} \\
E_{\mathrm{HF}}(\text { singlet })=h_{1}+h_{2}+\mathcal{J}_{12}-\mathcal{K}_{12}=2 h_{1}+J_{11}
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{J}_{12} & =\left\langle\chi_{1} \chi_{2} \mid \chi_{1} \chi_{2}\right\rangle \\
& =\langle\alpha \mid \alpha\rangle\langle\beta \mid \beta\rangle\left\langle\psi_{1} \psi_{1} \mid \psi_{1} \psi_{1}\right\rangle=J_{11} \\
\mathcal{K}_{12} & =\left\langle\chi_{1} \chi_{2} \mid \chi_{2} \chi_{1}\right\rangle \\
& =\langle\alpha \mid \beta\rangle\langle\beta \mid \alpha\rangle\left\langle\psi_{1} \psi_{1} \mid \psi_{1} \psi_{1}\right\rangle=0
\end{aligned}
$$

Triplet $1 s 2 s$ state of the He atom

$$
\begin{gathered}
\chi_{1}=\alpha \psi_{1} \quad \chi_{2}=\alpha \psi_{2} \\
E_{\mathrm{HF}}(\text { triplet })=h_{1}+h_{2}+\mathcal{J}_{12}-\mathcal{K}_{12}=h_{1}+h_{2}+J_{12}-K_{12}
\end{gathered}
$$

Singlet-triplet energy splitting

$$
\begin{aligned}
\Delta E_{\mathrm{HF}} & =E_{\mathrm{HF}}(\text { triplet })-E_{\mathrm{HF}}(\text { singlet }) \\
& =\underbrace{\left(h_{2}-h_{1}\right)}_{>0}+\underbrace{\left(J_{12}-J_{11}\right)}_{<0}-K_{12}
\end{aligned}
$$

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

HF Energy of Atoms

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

HF Energy of Atoms

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs "

Solution:

$$
\begin{gathered}
\chi_{1}=\alpha \psi_{1} \quad \chi_{2}=\beta \psi_{1} \quad \chi_{3}=\alpha \psi_{2} \quad \chi_{4}=\beta \psi_{2} \\
E_{\mathrm{HF}}=2 h_{1}+h_{2}+J_{11}+2 J_{12}-K_{12}
\end{gathered}
$$

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

Solution:

$$
\begin{gathered}
\chi_{1}=\alpha \psi_{1} \quad \chi_{2}=\beta \psi_{1} \quad \chi_{3}=\alpha \psi_{2} \quad \chi_{4}=\beta \psi_{2} \\
E_{\mathrm{HF}}=2 h_{1}+h_{2}+J_{11}+2 J_{12}-K_{12}
\end{gathered}
$$

Problem: HF energy of the B atom

"Find the HF energy of the B atom' in terms of the spatial MOs'

HF Energy of Atoms

Problem: HF energy of the Li atom

"Find the HF energy of the Li atom in terms of the spatial MOs"

Solution:

$$
\begin{gathered}
\chi_{1}=\alpha \psi_{1} \quad \chi_{2}=\beta \psi_{1} \quad \chi_{3}=\alpha \psi_{2} \quad \chi_{4}=\beta \psi_{2} \\
E_{\mathrm{HF}}=2 h_{1}+h_{2}+J_{11}+2 J_{12}-K_{12}
\end{gathered}
$$

Problem: HF energy of the B atom

"Find the HF energy of the B atom' in terms of the spatial MOs'

Solution:

$$
E_{\mathrm{HF}}=2 h_{1}+2 h_{2}+h_{3}+J_{11}+4 J_{12}+J_{22}-2 K_{12}+2 J_{13}+2 J_{23}-K_{13}-K_{23}
$$

From spin to spatial orbitals

Two-electron example: H_{2} in minimal basis
In the spin orbital basis, we have

$$
\begin{aligned}
E_{\mathrm{HF}} & =\left\langle\chi_{1}\right| h\left|\chi_{1}\right\rangle+\left\langle\chi_{2}\right| h\left|\chi_{2}\right\rangle+\left\langle\chi_{1} \chi_{2} \mid \chi_{1} \chi_{2}\right\rangle-\left\langle\chi_{1} \chi_{2} \mid \chi_{2} \chi_{1}\right\rangle \\
& =\left[\chi_{1}|h| \chi_{1}\right]+\left[\chi_{2}|h| \chi_{2}\right]+\left[\chi_{1} \chi_{1} \mid \chi_{2} \chi_{2}\right]-\left[\chi_{1} \chi_{2} \mid \chi_{2} \chi_{1}\right]
\end{aligned}
$$

Spin to spatial transformation:

$$
\begin{gathered}
\chi_{1}(\boldsymbol{x}) \equiv \psi_{1}(\boldsymbol{x})=\psi_{1}(\boldsymbol{r}) \alpha(\omega) \\
\chi_{2}(\boldsymbol{x}) \equiv \bar{\psi}_{1}(\boldsymbol{x})=\psi_{1}(\boldsymbol{r}) \beta(\omega) \\
E_{\mathrm{HF}}=\left[\psi_{1}|h| \psi_{1}\right]+\left[\bar{\psi}_{1}|h| \bar{\psi}_{1}\right]+\left[\psi_{1} \psi_{1} \mid \bar{\psi}_{1} \bar{\psi}_{1}\right]-\left[\psi_{1} \bar{\psi}_{1} \mid \bar{\psi}_{1} \psi_{1}\right]
\end{gathered}
$$

Therefore, in the spatial orbital basis, we have

$$
E_{\mathrm{HF}}=2\left(\psi_{1}|h| \psi_{1}\right)+\left(\psi_{1} \psi_{1} \mid \psi_{1} \psi_{1}\right)=2(1|h| 1)+(11 \mid 11)
$$

From spin to spatial orbitals (Take 2)

One-electron terms

$$
\begin{aligned}
{\left[\chi_{1}|h| \chi_{1}\right] } & =\int \chi_{1}^{*}(\mathbf{x}) h(\boldsymbol{r}) \chi_{1}(\mathbf{x}) d \boldsymbol{x} \\
& =\int \alpha^{*}(\omega) \psi_{1}^{*}(\boldsymbol{r}) h(\boldsymbol{r}) \alpha(\omega) \psi_{1}(\boldsymbol{r}) d \omega d \boldsymbol{r} \\
& =\underbrace{\left[\int \alpha^{*}(\omega) \alpha(\omega) d \omega\right]}_{=1} \underbrace{\left[\int \psi_{1}^{*}(\boldsymbol{r}) h(\boldsymbol{r}) \psi_{1}(\boldsymbol{r}) d \boldsymbol{r}\right]}_{\left(\psi_{1}|h| \psi_{1}\right)} \\
{\left[\chi_{2}|h| \chi_{2}\right] } & =\int \chi_{2}^{*}(\mathbf{x}) h(\boldsymbol{r}) \chi_{2}(\mathbf{x}) d \mathbf{x} \\
& =\int \beta^{*}(\omega) \psi_{1}^{*}(\boldsymbol{r}) h(\boldsymbol{r}) \beta(\omega) \psi_{1}(\boldsymbol{r}) d \omega d \boldsymbol{r} \\
& =\underbrace{\left[\int \beta^{*}(\omega) \beta(\omega) d \omega\right]}_{=1} \underbrace{\left[\int \psi_{1}^{*}(\boldsymbol{r}) h(\boldsymbol{r}) \psi_{1}(\boldsymbol{r}) d \boldsymbol{r}\right]}_{\left(\psi_{1}|h| \psi_{1}\right)}
\end{aligned}
$$

Two-electron terms

$$
\begin{aligned}
{\left[\chi_{1} \chi_{1} \mid \chi_{2} \chi_{2}\right] } & =\iint \chi_{1}^{*}\left(\mathbf{x}_{1}\right) \chi_{1}\left(\mathbf{x}_{1}\right) r_{12}^{-1} \chi_{2}^{*}\left(\mathbf{x}_{2}\right) \chi_{2}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \\
& =\iint \alpha^{*}\left(\omega_{1}\right) \psi_{1}^{*}\left(\boldsymbol{r}_{1}\right) \alpha\left(\omega_{1}\right) \psi_{1}\left(\boldsymbol{r}_{1}\right) r_{12}^{-1} \beta^{*}\left(\omega_{2}\right) \psi_{1}^{*}\left(\boldsymbol{r}_{2}\right) \beta\left(\omega_{2}\right) \psi_{1}\left(\boldsymbol{r}_{2}\right) d \omega_{1} d \boldsymbol{r}_{1} d \omega_{2} d \boldsymbol{r}_{2} \\
& =\underbrace{\left[\int \alpha^{*}\left(\omega_{1}\right) \alpha\left(\omega_{1}\right) d \omega_{1}\right]}_{=1} \underbrace{\left[\int \beta^{*}\left(\omega_{2}\right) \beta\left(\omega_{2}\right) d \omega_{2}\right]}_{\left(\psi_{1} \psi_{1} \mid \psi_{1} \psi_{1}\right)} \underbrace{\left.\iint \psi_{1}^{*}\left(\boldsymbol{r}_{1}\right) \psi_{1}\left(\boldsymbol{r}_{1}\right) r_{12}^{-1} \psi_{1}^{*}\left(\boldsymbol{r}_{2}\right) \psi_{1}\left(\boldsymbol{r}_{2}\right) d \boldsymbol{r}_{1} d \boldsymbol{r}_{2}\right]}_{=1}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\chi_{1} \chi_{2} \mid \chi_{2} \chi_{1}\right] } & =\iint \chi_{1}^{*}\left(\mathbf{x}_{1}\right) \chi_{2}\left(\mathbf{x}_{1}\right) r_{12}^{-1} \chi_{2}^{*}\left(\mathbf{x}_{2}\right) \chi_{1}\left(\mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \\
& =\iint \alpha^{*}\left(\omega_{1}\right) \psi_{1}^{*}\left(\boldsymbol{r}_{1}\right) \beta\left(\omega_{1}\right) \psi_{1}\left(\boldsymbol{r}_{1}\right) r_{12}^{-1} \beta^{*}\left(\omega_{2}\right) \psi_{1}^{*}\left(\boldsymbol{r}_{2}\right) \alpha\left(\omega_{2}\right) \psi_{1}\left(\boldsymbol{r}_{2}\right) d \omega_{1} d \mathbf{r}_{1} d \omega_{2} d \boldsymbol{r}_{2} \\
& =\underbrace{\left[\int \alpha^{*}\left(\omega_{1}\right) \beta\left(\omega_{1}\right) d \omega_{1}\right]}_{=0} \underbrace{\left[\int \beta^{*}\left(\omega_{2}\right) \alpha\left(\omega_{2}\right) d \omega_{2}\right]}_{\left(\psi_{1} \psi_{1} \mid \psi_{1} \psi_{1}\right)} \underbrace{\left[\iint \psi_{1}^{*}\left(\boldsymbol{r}_{1}\right) \psi_{1}\left(\boldsymbol{r}_{1}\right) r_{12}^{-1} \psi_{1}^{*}\left(\boldsymbol{r}_{2}\right) \psi_{1}\left(\boldsymbol{r}_{2}\right) d \boldsymbol{r}_{1} d \boldsymbol{r}_{2}\right]}_{=0}
\end{aligned}
$$

From spin to spatial orbitals (Take 4)

General expression

$$
\begin{equation*}
E_{\mathrm{HF}}=\sum_{a}^{N}[a|h| a]+\frac{1}{2} \sum_{a}^{N} \sum_{b}^{N}([a a \mid b b]-[a b \mid b a])=2 \sum_{a}^{N / 2}(a|h| a)+\sum_{a}^{N / 2} \sum_{b}^{N / 2}[2(a a \mid b b)-(a b \mid b a)] \tag{49}
\end{equation*}
$$

One- and two-electron terms

$$
\begin{equation*}
\sum_{a}^{N}[a|h| a]=\sum_{a}^{N / 2}[a|h| a]+\sum_{a}^{N / 2}[\bar{a}|h| \bar{a}]=2 \sum_{a}^{N / 2}[a|h| a] \tag{50}
\end{equation*}
$$

$$
\frac{1}{2} \sum_{a}^{N} \sum_{b}^{N}([a a \mid b b]-[a b \mid b a])=\frac{1}{2}\left\{\sum_{a}^{N / 2} \sum_{b}^{N / 2}([a a \mid b b]-[a b \mid b a])+\sum_{a}^{N / 2} \sum_{b}^{N / 2}([a a \mid \bar{b} \bar{b}]-[a \bar{b} \mid \bar{b} a])\right.
$$

$$
\begin{equation*}
\left.+\sum_{a}^{N / 2} \sum_{b}^{N / 2}([\bar{a} \bar{a} \mid b b]-[\bar{a} b \mid b \bar{a}])+\sum_{a}^{N / 2} \sum_{b}^{N / 2}([\bar{a} \bar{a} \mid \bar{b} \bar{b}]-[\bar{a} \bar{b} \mid \bar{b} \bar{a}])\right\} \tag{51}
\end{equation*}
$$

$$
=\sum_{a}^{N / 2} \sum_{b}^{N / 2}[2(a a \mid b b)-(a b \mid b a)]
$$

The Fock matrix

Using the variational principle, one can show that, to minimise the energy, the MOs need to diagonalise the one-electron Fock operator

$$
f(1)=h(1)+\underbrace{\sum_{a}^{N}\left[\mathcal{J}_{a}(1)-\mathcal{K}_{a}(1)\right]}_{\nu^{\mathrm{HF}}(1)=\text { Hartree-Fock potential }}
$$

For a closed-shell system (i.e. two electrons in each orbital)

$$
f(1)=h(1)+\sum_{a}^{N / 2}\left[2 J_{a}(1)-K_{a}(1)\right] \quad(\text { closed shell })
$$

These orbitals are called canonical molecular orbitals (= eigenvectors):

$$
f(1) \psi_{i}(1)=\varepsilon_{i} \psi_{i}(1)
$$

and ε_{i} are called the MO energies (= eigenvalues)

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

Problem:

"Find the expression of the matrix elements $f_{i j}=\left\langle\chi_{i}\right| f\left|\chi_{j}\right\rangle "$

Problem:

"Find the expression of the matrix elements $f_{i j}=\left\langle\chi_{i}\right| f\left|\chi_{j}\right\rangle "$

Solution:

$$
\begin{aligned}
\left\langle\chi_{i}\right| f\left|\chi_{j}\right\rangle & =\left\langle\chi_{i}\right| h+\sum_{a}\left(\mathcal{J}_{a}-\mathcal{K}_{a}\right)\left|\chi_{j}\right\rangle \\
& =\left\langle\chi_{i}\right| h\left|\chi_{j}\right\rangle+\sum_{a}\left(\left\langle\chi_{i}\right| \mathcal{J}_{a}\left|\chi_{j}\right\rangle-\left\langle\chi_{i}\right| \mathcal{K}_{a}\left|\chi_{j}\right\rangle\right) \\
& =\langle i| h|j\rangle+\sum_{a}[\langle i a \mid j a\rangle-\langle i a \mid a j\rangle] \\
& =\langle i| h|j\rangle+\sum_{a}\langle i a||j a\rangle
\end{aligned}
$$

MO energies in the MO basis

Problem:

" Deduce the expression of ε_{i} "

Problem:

" Deduce the expression of ε_{i} "

Solution:

$$
\begin{aligned}
f\left|\chi_{i}\right\rangle=\varepsilon_{i}\left|\chi_{i}\right\rangle & \Rightarrow \quad\left\langle\chi_{i}\right| f\left|\chi_{i}\right\rangle=\varepsilon_{i}\left\langle\chi_{i} \mid \chi_{i}\right\rangle=\varepsilon_{i} \\
& \Rightarrow \varepsilon_{i}=\langle i| h|i\rangle+\sum_{a}[\langle i a \mid i a\rangle-\langle i a \mid a i\rangle] \\
& \Rightarrow \varepsilon_{i}=\langle i| h|i\rangle+\sum_{a}\langle i a||i a\rangle
\end{aligned}
$$

Problem

"Let's suppose we know all the functions such as $\hat{H} \varphi_{i}=E_{i} \varphi_{i}$, with $E_{0}<E_{1}<\ldots$ and $\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j}$. Show that, for any normalized Ψ, we have $E=\langle\Psi| \hat{H}|\Psi\rangle \geq E_{0}{ }^{\prime}$

The variational principle

Problem

"Let's suppose we know all the functions such as $\hat{H} \varphi_{i}=E_{i} \varphi_{i}$, with $E_{0}<E_{1}<\ldots$ and $\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j}$. Show that, for any normalized Ψ, we have $E=\langle\Psi| \hat{H}|\Psi\rangle \geq E_{0}{ }^{\text {" }}$

Solution

We expand Ψ in a clever basis

$$
\Psi=\sum_{i}^{\infty} c_{i} \varphi_{i} \quad \text { with } \quad \sum_{i}^{\infty} c_{i}^{2}=1
$$

The variational principle

Problem

"Let's suppose we know all the functions such as $\hat{H} \varphi_{i}=E_{i} \varphi_{i}$, with $E_{0}<E_{1}<\ldots$ and $\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j}$. Show that, for any normalized Ψ, we have $E=\langle\Psi| \hat{H}|\Psi\rangle \geq E_{0}{ }^{\text {" }}$

Solution

We expand Ψ in a clever basis

$$
\begin{gathered}
\Psi=\sum_{i}^{\infty} c_{i} \varphi_{i} \text { with } \sum_{i}^{\infty} c_{i}^{2}=1 \\
E=\langle\Psi| \hat{H}|\Psi\rangle=\left\langle\sum_{i} c_{i} \varphi_{i}\right| \hat{H}\left|\sum_{j} c_{j} \varphi_{j}\right\rangle=\sum_{i j} c_{i} c_{j}\left\langle\varphi_{i}\right| \hat{H}\left|\varphi_{j}\right\rangle \\
=\sum_{i j} c_{i} c_{j} E_{j}\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\sum_{i j} c_{i} c_{j} E_{j} \delta_{i j}=\sum_{i} c_{i}^{2} E_{i} \geq E_{0} \sum_{i} c_{i}^{2}=E_{0}
\end{gathered}
$$

Koopmans' theorem

Ground-state energy of the N-electron system

$$
\begin{equation*}
{ }^{N} E_{0}=\sum_{a} h_{a}+\frac{1}{2} \sum_{a b}\langle a b \| a b\rangle \tag{52}
\end{equation*}
$$

Energy of the ($N-1$)-electron system (cation)

$$
\begin{equation*}
{ }^{N-1} E_{c}=\sum_{a \neq c} h_{a}+\frac{1}{2} \sum_{a \neq c} \sum_{b \neq c}\langle a b \| a b\rangle \tag{53}
\end{equation*}
$$

Ionization potential (IP)

$$
\begin{align*}
\mathrm{IP} & ={ }^{N-1} E_{c}-{ }^{N} E_{0} \\
& =-\langle c| h|c\rangle-\frac{1}{2} \sum_{a}\langle a c||a c\rangle-\frac{1}{2} \sum_{b}\langle c b \| c b\rangle \tag{54}\\
& =-\langle c| h|c\rangle-\sum_{a}\langle a c \| a c\rangle=-\varepsilon_{c}
\end{align*}
$$

The electronic problem HE approximation Roothan-Hall equations Unrestricted HF Books

Koopmans' theorem for electron affinity (EA)

Problem:

"Show that Koopmans' theorem applies to electron affinities"

Problem:

"Show that Koopmans' theorem applies to electron affinities"

Solution:

$$
\begin{align*}
\mathrm{EA} & ={ }^{N} E_{0}-{ }^{N+1} E^{r} \\
& =-\langle r| h|r\rangle-\sum_{a}\langle r a||r a\rangle \tag{55}\\
& =-\varepsilon_{r}
\end{align*}
$$

Roothaan-Hall equations: introduction of a basis

Expansion in a basis

$$
\psi_{i}(\boldsymbol{r})=\sum_{\mu}^{K} C_{\mu i} \phi_{\mu}(\boldsymbol{r}) \quad \equiv \quad|i\rangle=\sum_{\mu}^{K} C_{\mu i}|\mu\rangle
$$

K AOs gives K MOs: $N / 2$ are occupied MOs and $K-N / 2$ are vacant/virtual MOs

Roothaan-Hall equations

$$
\begin{aligned}
f|i\rangle=\varepsilon_{i}|i\rangle & \Rightarrow f \sum_{v} C_{v i}|v\rangle=\varepsilon_{i} \sum_{v} C_{v i}|v\rangle \\
& \Rightarrow\langle\mu| f \sum_{v} C_{v i}|v\rangle=\varepsilon_{i}\langle\mu| \sum_{v} C_{v i}|v\rangle \\
& \Rightarrow \sum_{v} C_{v i}\langle\mu| f|v\rangle=\sum_{v} C_{v i} \varepsilon_{i}\langle\mu \mid v\rangle \\
& \Rightarrow \sum_{v} F_{\mu v} C_{v i}=\sum_{v} S_{\mu v} C_{v i} \varepsilon_{i}
\end{aligned}
$$

Introduction of a basis (Take 2)

Matrix form of the Roothaan-Hall equations

$$
\begin{align*}
\boldsymbol{F} \cdot \boldsymbol{C} & =\boldsymbol{S} \cdot \boldsymbol{C} \cdot \boldsymbol{E} & \Leftrightarrow & \boldsymbol{F}^{\prime} \cdot \boldsymbol{C}^{\prime}
\end{align*}=\boldsymbol{C}^{\prime} \cdot \boldsymbol{E}
$$

- Fock matrix $F_{\mu \nu}=\langle\mu| f|v\rangle$ and Overlap matrix $S_{\mu \nu}=\langle\mu \mid v\rangle$
- We need to determine the coefficient matrix \boldsymbol{C} and the orbital energies \boldsymbol{E}

$$
\boldsymbol{C}=\left(\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 K} \tag{58}\\
C_{21} & C_{22} & \cdots & C_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
C_{K 1} & C_{K 2} & \cdots & C_{K K}
\end{array}\right) \quad \boldsymbol{E}=\left(\begin{array}{cccc}
\varepsilon_{1} & 0 & \cdots & 0 \\
0 & \varepsilon_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \varepsilon_{K}
\end{array}\right)
$$

Self-consistent field (SCF) procedure

$$
\begin{equation*}
F(C) \cdot C=S \cdot C \cdot E \quad \text { How do we solve these HF equations? } \tag{59}
\end{equation*}
$$

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

Expression of the Fock matrix

Problem:

"Find the expression of the Fock matrix in terms of the one- and two-electron integrals"

Problem:

"Find the expression of the Fock matrix in terms of the one- and two-electron integrals"

Solution:

$$
\begin{aligned}
F_{\mu v} & =\langle\mu| h+\sum_{a}^{N}\left(\mathcal{J}_{a}-\mathcal{K}_{a}\right)|v\rangle=H_{\mu v}+\sum_{a}^{N}\langle\mu| \mathcal{J}_{a}-\mathcal{K}_{a}|v\rangle \\
& =H_{\mu v}+\sum_{a}^{N}\left(\left\langle\mu \chi_{a}\right| r_{12}^{-1}\left|v \chi_{a}\right\rangle-\left\langle\mu \chi_{a}\right| r_{12}^{-1}\left|\chi_{a} v\right\rangle\right) \\
& =H_{\mu v}+\sum_{a}^{N} \sum_{\lambda \sigma} C_{\lambda a} C_{\sigma a}\left(\langle\mu \lambda| r_{12}^{-1}|v \sigma\rangle-\langle\mu \lambda| r_{12}^{-1}|\sigma v\rangle\right) \\
& =H_{\mu v}+\sum_{\lambda \sigma} P_{\lambda \sigma}(\langle\mu \lambda \mid v \sigma\rangle-\langle\mu \lambda \mid \sigma v\rangle)=H_{\mu v}+\sum_{\lambda \sigma} P_{\lambda \sigma}\langle\mu \lambda||v \sigma\rangle=H_{\mu v}+G_{\mu v} \\
& F_{\mu v}=H_{\mu v}+\sum_{\lambda \sigma} P_{\lambda \sigma}\left(\langle\mu \lambda \mid v \sigma\rangle-\frac{1}{2}\langle\mu \lambda \mid \sigma v\rangle\right) \quad \text { (closed shell) }
\end{aligned}
$$

One- and two-electron integrals (Appendix A)

One-electron integrals: overlap \& core Hamiltonian

$$
\begin{align*}
S_{\mu v}=\langle\mu \mid v\rangle & =\int \phi_{\mu}^{*}(r) \phi_{v}(r) d r \tag{60}\\
H_{\mu v}=\langle\mu| \hat{H}^{\mathrm{c}}|v\rangle & =\int \phi_{\mu}^{*}(r) \hat{H}^{\mathrm{c}}(r) \phi_{v}(r) d r \tag{61}
\end{align*}
$$

Chemist/Mulliken notation for two-electron integrals

$$
\begin{gather*}
(\mu v \mid \lambda \sigma)=\iint \phi_{\mu}^{*}\left(\boldsymbol{r}_{1}\right) \phi_{v}\left(\boldsymbol{r}_{1}\right) \frac{1}{r_{12}} \phi_{\lambda}^{*}\left(\boldsymbol{r}_{2}\right) \phi_{\sigma}\left(\boldsymbol{r}_{2}\right) d \boldsymbol{r}_{1} d \boldsymbol{r}_{2} \tag{62}\\
(\mu v \mid \lambda \sigma)=(\mu v \mid \lambda \sigma)-(\mu \sigma \mid \lambda v) \tag{63}
\end{gather*}
$$

Physicist/Dirac notation for two-electron integrals

$$
\begin{gather*}
\langle\mu \nu \mid \lambda \sigma\rangle=\iint \phi_{\mu}^{*}\left(\boldsymbol{r}_{1}\right) \phi_{v}^{*}\left(\boldsymbol{r}_{2}\right) \frac{1}{r_{12}} \phi_{\lambda}\left(\boldsymbol{r}_{1}\right) \phi_{\sigma}\left(\boldsymbol{r}_{2}\right) d \boldsymbol{r}_{1} d \mathbf{r}_{2} \tag{64}\\
\langle\mu \nu||\lambda \sigma\rangle=\langle\mu \nu \mid \lambda \sigma\rangle-\langle\mu \nu \mid \sigma \lambda\rangle \tag{65}
\end{gather*}
$$

Computation of the Fock matrix and energy

Density matrix (closed-shell system)

$$
\begin{equation*}
P_{\mu v}=2 \sum_{a}^{N / 2} C_{\mu a} C_{v a} \text { or } \quad \boldsymbol{P}=2 \boldsymbol{C} \cdot \boldsymbol{C}^{\dagger} \tag{66}
\end{equation*}
$$

Fock matrix in the AO basis (closed-shell system)

$$
\begin{equation*}
F_{\mu \nu}=H_{\mu \nu}+\underbrace{\sum_{\lambda \sigma} P_{\lambda \sigma}(\mu \nu \mid \lambda \sigma)}_{J_{\mu v}=\text { Coulomb }} \underbrace{-\frac{1}{2} \sum_{\lambda \sigma} P_{\lambda \sigma}(\mu \sigma \mid \lambda \nu)}_{K_{\mu \nu}=\text { exchange }} \tag{67}
\end{equation*}
$$

HF energy in the AO basis (closed-shell system)

$$
\begin{equation*}
E_{\mathrm{HF}}=\sum_{\mu \nu} P_{\mu \nu} H_{\mu \nu}+\frac{1}{2} \sum_{\mu \nu \lambda \sigma} P_{\mu \nu}\left[(\mu \nu \mid \lambda \sigma)-\frac{1}{2}(\mu \sigma \mid \lambda \nu)\right] P_{\lambda \sigma} \quad \text { or } \quad E_{\mathrm{HF}}=\frac{1}{2} \operatorname{Tr}[\boldsymbol{P} \cdot(\boldsymbol{H}+\boldsymbol{F})] \tag{68}
\end{equation*}
$$

The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

Expression of the HF energy

Problem:

"Find the expression of the HF energy in terms of the one- and two-electron integrals"

Problem:

"Find the expression of the HF energy in terms of the one- and two-electron integrals"

Solution:

$$
\begin{aligned}
E_{\mathrm{HF}} & =\sum_{a}^{N} h_{a}+\frac{1}{2} \sum_{a b}^{N}\left(\mathcal{J}_{a b}-\mathcal{K}_{a b}\right) \quad(\text { cf few slides ago }) \\
& =\sum_{a}^{N}\left\langle\sum_{\mu} C_{\mu a} \phi_{\mu}\right| h\left|\sum_{v} C_{v a} \phi_{v}\right\rangle+\frac{1}{2} \sum_{a b}^{N}\left\langle\left(\sum_{\mu} C_{\mu a} \phi_{\mu}\right)\left(\sum_{\lambda} C_{\lambda b} \phi_{\lambda}\right) \|\left(\sum_{v} C_{v a} \phi_{v}\right)\left(\sum_{\sigma} C_{\sigma b} \phi_{\sigma}\right)\right\rangle \\
& =\sum_{\mu v} P_{\mu v}\left[H_{\mu v}+\frac{1}{2} \sum_{\lambda \sigma} P_{\lambda \sigma}\langle\mu \lambda \| v \sigma\rangle\right]
\end{aligned}
$$

How to perform a HF calculation in practice?

The SCF algorithm

(1) Specify molecule $\left\{\boldsymbol{R}_{A}\right\}$ and $\left\{Z_{A}\right\}$ and basis set $\left\{\phi_{\mu}\right\}$
(2) Calculate integrals $S_{\mu \nu}, H_{\mu \nu}$ and $\langle\mu \nu \mid \lambda \sigma\rangle$
(3) Diagonalize \boldsymbol{S} and compute \boldsymbol{X}
(1) Obtain guess density matrix for \boldsymbol{P}

1. Calculate \boldsymbol{G} and then $\boldsymbol{F}=\boldsymbol{H}+\boldsymbol{G}$
2. Compute $\boldsymbol{F}^{\prime}=\boldsymbol{X}^{\dagger} \cdot \boldsymbol{F} \cdot \boldsymbol{X}$
3. Diagonalize \boldsymbol{F}^{\prime} to obtain \boldsymbol{C}^{\prime} and \boldsymbol{E}
4. Calculate $\boldsymbol{C}=\boldsymbol{X} \cdot \boldsymbol{C}^{\prime}$
5. Form a new density matrix $\boldsymbol{P}=\boldsymbol{C} \cdot \boldsymbol{C}^{\dagger}$
6. Am I converged? If not go back to 1 .
(3) Calculate stuff that you want, like E_{HF} for example

Orthogonalization matrix

We are looking for a matrix in order to orthogonalize the AO basis, i.e. $\boldsymbol{X}^{\dagger} \cdot \boldsymbol{S} \cdot \boldsymbol{X}=\boldsymbol{I}$

Symmetric (or Löwdin) orthogonalization

$$
\begin{equation*}
\boldsymbol{X}=\boldsymbol{S}^{-1 / 2}=\boldsymbol{U} \cdot \boldsymbol{s}^{-1 / 2} \cdot \boldsymbol{U}^{\dagger} \text { is one solution... } \tag{69}
\end{equation*}
$$

Is it working?

$$
\begin{equation*}
\boldsymbol{X}^{\dagger} \cdot \boldsymbol{S} \cdot \boldsymbol{X}=\boldsymbol{S}^{-1 / 2} \cdot \boldsymbol{S} \cdot \boldsymbol{S}^{-1 / 2}=\boldsymbol{S}^{-1 / 2} \cdot \boldsymbol{S} \cdot \boldsymbol{S}^{-1 / 2}=\boldsymbol{I} \tag{70}
\end{equation*}
$$

Canonical orthogonalization

$\boldsymbol{X}=\boldsymbol{U} \cdot \boldsymbol{s}^{-1 / 2}$ is another solution (when you have linear dependencies)...
Is it working?

$$
\begin{equation*}
\boldsymbol{X}^{\dagger} \cdot \boldsymbol{S} \cdot \boldsymbol{X}=\boldsymbol{s}^{-1 / 2} \cdot \underbrace{\boldsymbol{U}^{\dagger} \cdot \boldsymbol{S} \cdot \boldsymbol{U}}_{\boldsymbol{S}} \cdot \boldsymbol{s}^{-1 / 2}=\boldsymbol{I} \tag{72}
\end{equation*}
$$

How to obtain a good guess for the MOs or density matrix?

Possible initial density matrix
(1) We can set $\boldsymbol{P}=\mathbf{0} \Rightarrow \boldsymbol{F}=\boldsymbol{H}$ (core Hamiltonian approximation):
\Rightarrow Usually a poor guess but easy to implement
(2) Use EHT or semi-empirical methods:
\Rightarrow Out of fashion
(3) Using tabulated atomic densities:
\Rightarrow "SAD" guess in QChem
(1) Read the MOs of a previous calculation:
\Rightarrow Very common and very useful

Convergence in SCF calculations

(1) You can check the energy and/or the density matrix:
\Rightarrow The energy/density should not change at convergence
(2) You can check the commutator $\boldsymbol{F} \cdot \boldsymbol{P} \cdot \boldsymbol{S}-\boldsymbol{S} \cdot \boldsymbol{P} \cdot \boldsymbol{F}$:
\Rightarrow At convergence, we have $\boldsymbol{F} \cdot \boldsymbol{P} \cdot \boldsymbol{S}-\boldsymbol{S} \cdot \boldsymbol{P} \cdot \boldsymbol{F}=\mathbf{0}$
(3) The DIIS (direct inversion in the iterative subspace) method is usually used to speed up convergence:
\Rightarrow Extrapolation of the Fock matrix using previous iterations

$$
\boldsymbol{F}_{m+1}=\sum_{i=m-k}^{m} c_{i} \boldsymbol{F}_{i}
$$

Dipole moments

Classical vs Quantum

$$
\begin{equation*}
\boldsymbol{\mu}=\left(\mu_{x}, \mu_{y}, \mu_{z}\right)=\underbrace{\sum_{i} q_{i} \boldsymbol{r}_{i}} \tag{73}
\end{equation*}
$$

classical definition

$$
\begin{equation*}
\boldsymbol{\mu}=\left(\mu_{x}, \mu_{y}, \mu_{z}\right)=\underbrace{\left\langle\Psi_{0}\right|-\sum_{i}^{N} \boldsymbol{r}_{i}\left|\Psi_{0}\right\rangle}_{\text {electrons }}+\underbrace{\sum_{A}^{M} Z_{A} \boldsymbol{R}_{A}}_{\text {nuclei }}=-\sum_{\mu v} P_{\mu v}(\nu|\boldsymbol{r}| \mu)+\sum_{A}^{M} Z_{A} \boldsymbol{R}_{A} \tag{74}
\end{equation*}
$$

Vector components

$$
\begin{equation*}
\mu_{x}=-\sum_{\mu \nu} P_{\mu \nu}(\nu|x| \mu)+\sum_{A}^{M} Z_{A} X_{A} \quad \text { with } \underbrace{(v|x| \mu)}_{\text {one-electron integrals }}=\int \phi_{\nu}^{*}(\boldsymbol{r}) x \phi_{\mu}(\boldsymbol{r}) d \boldsymbol{r} \tag{75}
\end{equation*}
$$

Electron density

$$
\rho(\boldsymbol{r})=\sum_{\mu v} \phi_{\mu}(\boldsymbol{r}) P_{\mu \nu} \phi_{v}(\boldsymbol{r}) \quad \text { with } \quad \int \rho(\boldsymbol{r}) d \boldsymbol{r}=N \Rightarrow N=\sum_{\mu v} P_{\mu v} S_{v \mu}=\sum_{\mu}(\boldsymbol{P} \cdot \boldsymbol{S})_{\mu \mu}=\operatorname{Tr}(\boldsymbol{P} \cdot \boldsymbol{S})
$$

Mulliken population analysis

Assuming that the basis functions are atom-centered

$$
\begin{equation*}
\underbrace{q_{A}^{\text {Mulliken }}}_{\text {net charge on } A}=Z_{A}-\sum_{\mu \in A}(\boldsymbol{P} \cdot \boldsymbol{S})_{\mu \mu} \tag{77}
\end{equation*}
$$

Löwdin population analysis
Because $\operatorname{Tr}(\boldsymbol{A} \cdot \boldsymbol{B})=\operatorname{Tr}(\boldsymbol{B} \cdot \boldsymbol{A})$, we have, for any $\alpha, N=\sum_{\mu}\left(\boldsymbol{S}^{\alpha} \cdot \boldsymbol{P} \cdot \boldsymbol{S}^{1-\alpha}\right)_{\mu \mu}$

$$
\begin{equation*}
\text { For } \alpha=1 / 2, \text { we get: } \quad N=\sum_{\mu}\left(\boldsymbol{S}^{1 / 2} \cdot \boldsymbol{P} \cdot \boldsymbol{S}^{1 / 2}\right)_{\mu \mu} \Rightarrow q_{A}^{\text {Löwdin }}=Z_{A}-\sum_{\mu \in A}\left(\boldsymbol{S}^{1 / 2} \cdot \boldsymbol{P} \cdot \boldsymbol{S}^{1 / 2}\right)_{\mu \mu} \tag{78}
\end{equation*}
$$

How to model open-shell systems?

- RHF is made to describe closed-shell systems and we have used restricted spin orbitals:

$$
\chi_{i}^{\mathrm{RHF}}(\mathbf{x})=\left\{\begin{array}{l}
\alpha(\omega) \psi_{i}(\boldsymbol{r}) \\
\beta(\omega) \psi_{i}(\boldsymbol{r})
\end{array}\right.
$$

- It does not describe open-shell systems
- For open-shell systems we can use unrestricted spin orbitals

$$
\chi_{i}^{\mathrm{UHF}}(\boldsymbol{x})=\left\{\begin{array}{l}
\alpha(\omega) \psi_{i}^{\alpha}(\boldsymbol{r}) \\
\beta(\omega) \psi_{i}^{\beta}(\boldsymbol{r})
\end{array}\right.
$$

- RHF $=$ Restricted Hartree-Fock \leftrightarrow Roothaan-Hall equations
- UHF $=$ Unrestricted Hartree-Fock \leftrightarrow Pople-Nesbet equations
- Restricted Open-shell Hartree-Fock (ROHF) do exist but we won't talk about it

RHF, ROHF and UHF

- RHF = Restricted Hartree-Fock
- UHF = Unrestricted Hartree-Fock
- ROHF = Restricted Open-shell Hartree-Fock

Unrestricted Hartree-Fock equations

UHF equations for unrestricted spin orbitals

To minimize the UHF energy, the unrestricted spin orbitals must be eigenvalues of the α and β Fock operators:

$$
\begin{equation*}
f^{\alpha}(1) \psi_{i}^{\alpha}(1)=\varepsilon_{i}^{\alpha} \psi_{j}^{\alpha}(1) \quad f^{\beta}(1) \psi_{i}^{\beta}(1)=\varepsilon_{i}^{\beta} \psi_{j}^{\beta}(1) \tag{79}
\end{equation*}
$$

where

$$
\begin{align*}
& f^{\alpha}(1)=h(1)+\sum_{a}^{N^{\alpha}}\left[J_{a}^{\alpha}(1)-K_{a}^{\alpha}(1)\right]+\sum_{a}^{N^{\beta}} J_{a}^{\beta}(1) \tag{80}\\
& f^{\beta}(1)=h(1)+\sum_{a}^{N^{\beta}}\left[J_{a}^{\beta}(1)-K_{a}^{\beta}(1)\right]+\sum_{a}^{N^{\alpha}} J_{a}^{\alpha}(1) \tag{81}
\end{align*}
$$

The Coulomb and Exchange operators are

$$
\begin{equation*}
J_{i}^{\sigma}(1)=\int \psi_{i}^{\sigma}(2) r_{12}^{-1} \psi_{i}^{\sigma}(2) d \mathbf{r}_{2} \quad K_{i}^{\sigma}(1) \psi_{j}^{\sigma}(1)=\left[\int \psi_{i}^{\sigma}(2) r_{12}^{-1} \psi_{j}^{\sigma}(2) d \mathbf{r}_{2}\right] \psi_{i}^{\sigma}(1) \tag{82}
\end{equation*}
$$

Unrestricted Hartree-Fock equations (Take 2)

UHF energy

The UHF energy is composed by three contributions:

$$
\begin{equation*}
E_{\mathrm{UHF}}=E_{\mathrm{UHF}}^{\alpha \alpha}+E_{\mathrm{UHF}}^{\beta \beta}+E_{\mathrm{UHF}}^{\alpha \beta} \tag{83}
\end{equation*}
$$

which yields

$$
\begin{equation*}
E_{\mathrm{UHF}}=\sum_{a}^{N^{\alpha}} h_{i}^{\alpha}+\frac{1}{2} \sum_{a b}^{N^{\alpha}}\left(J_{a b}^{\alpha \alpha}-K_{a b}^{\alpha \alpha}\right)+\sum_{a}^{N^{\beta}} h_{a}^{\beta}+\frac{1}{2} \sum_{a b}^{N^{\beta}}\left(J_{a b}^{\beta \beta}-K_{a b}^{\beta \beta}\right)+\sum_{a}^{N^{\alpha}} \sum_{b}^{N^{\beta}} J_{a b}^{\alpha \beta} \tag{84}
\end{equation*}
$$

The matrix elements are given by

$$
\begin{equation*}
h_{i}^{\sigma}=\left\langle\psi_{i}^{\sigma}\right| h\left|\psi_{i}^{\sigma}\right\rangle \quad J_{i j}^{\sigma \sigma^{\prime}}=\left\langle\psi_{i}^{\sigma} \psi_{j}^{\sigma^{\prime}} \mid \psi_{i}^{\sigma} \psi_{j}^{\sigma^{\prime}}\right\rangle \quad K_{i j}^{\sigma \sigma}=\left\langle\psi_{i}^{\sigma} \psi_{j}^{\sigma} \mid \psi_{j}^{\sigma} \psi_{j}^{\sigma}\right\rangle \tag{85}
\end{equation*}
$$

Note that $K_{i j}^{\alpha \beta}=0 \Leftrightarrow$ there is no exchange between opposite-spin electrons

UHF energy of the Li atom

Problem

"Write down the UHF energy of the doublet state of the lithium atom"

UHF energy of the Li atom

Problem

"Write down the UHF energy of the doublet state of the lithium atom"

Solution

$$
E_{\mathrm{UHF}}=h_{1}^{\alpha}+h_{1}^{\beta}+h_{2}^{\alpha}+J_{12}^{\alpha \alpha}-K_{12}^{\alpha \alpha}+J_{11}^{\alpha \beta}+J_{21}^{\alpha \beta}
$$

The Pople-Nesbet Equations

Expansion of the unrestricted spin orbitals in a basis

$$
\begin{equation*}
\psi_{i}^{\alpha}(\boldsymbol{r})=\sum_{\mu=1}^{K} C_{\mu i}^{\alpha} \phi_{\mu}(\boldsymbol{r}) \quad \psi_{i}^{\beta}(\boldsymbol{r})=\sum_{\mu=1}^{K} C_{\mu i}^{\beta} \phi_{\mu}(\boldsymbol{r}) \tag{86}
\end{equation*}
$$

The Pople-Nesbet equations

$$
\begin{align*}
F^{\alpha} \cdot \boldsymbol{C}^{\alpha} & =\boldsymbol{S} \cdot \boldsymbol{C}^{\alpha} \cdot \boldsymbol{E}^{\alpha} \quad \boldsymbol{F}^{\beta} \cdot \boldsymbol{C}^{\beta}=\boldsymbol{S} \cdot \boldsymbol{C}^{\beta} \cdot \boldsymbol{E}^{\beta} \tag{87}\\
F_{\mu \nu}^{\alpha} & =H_{\mu \nu}+\sum_{\lambda \sigma} P_{\lambda \sigma}^{\alpha}[(\mu \nu \mid \sigma \lambda)-(\mu \lambda \mid \sigma v)]+\sum_{\lambda \sigma} P_{\lambda \sigma}^{\beta}(\mu \nu \mid \sigma \lambda) \tag{88}\\
F_{\mu \nu}^{\beta} & =H_{\mu \nu}+\sum_{\lambda \sigma} P_{\lambda \sigma}^{\beta}[(\mu \nu \mid \sigma \lambda)-(\mu \lambda \mid \sigma v)]+\sum_{\lambda \sigma} P_{\lambda \sigma}^{\alpha}(\mu \nu \mid \sigma \lambda) \tag{89}
\end{align*}
$$

F^{α} and \boldsymbol{F}^{β} are both functions of \boldsymbol{C}^{α} and $\boldsymbol{C}^{\beta} \Rightarrow$ There's a coupling between α and β MOs!

Unrestricted Density Matrices

Spin-up and spin-down density matrices

$$
\begin{equation*}
P_{\mu \nu}^{\alpha}=\sum_{a=1}^{N^{\alpha}} C_{\mu a}^{\alpha} C_{v a}^{\alpha} \quad \Leftrightarrow \quad P^{\alpha} \tag{90}
\end{equation*}
$$

$$
P_{\mu v}^{\beta}=\sum_{a=1}^{N^{\beta}} C_{\mu a}^{\beta} C_{v a}^{\beta} \quad \Leftrightarrow \quad \boldsymbol{P}^{\beta}
$$

Properties of the density $(\sigma=\alpha$ or $\beta)$

$$
\begin{equation*}
\rho^{\sigma}(\boldsymbol{r})=\sum_{\mu \nu} \phi_{\mu}(\boldsymbol{r}) P_{\mu \nu}^{\sigma} \phi_{\nu}(\boldsymbol{r}) \quad \int \rho^{\sigma}(\boldsymbol{r}) d \boldsymbol{r}=N^{\sigma} \tag{91}
\end{equation*}
$$

Total and Spin density matrices

$$
\begin{equation*}
\underbrace{\boldsymbol{P}^{\top}}_{\text {arge density }}=\boldsymbol{P}^{\alpha}+\boldsymbol{P}^{\beta} \quad \underbrace{\boldsymbol{P}^{S}}_{\text {Spin density }}=\boldsymbol{P}^{\alpha}-\boldsymbol{P}^{\beta} \tag{92}
\end{equation*}
$$

How to perform a UHF calculation in practice?

The SCF algorithm

(1) Specify molecule $\left\{\boldsymbol{R}_{A}\right\}$ and $\left\{Z_{A}\right\}$ and basis set $\left\{\phi_{\mu}\right\}$ (same as RHF)
(2) Calculate integrals $S_{\mu \nu}, H_{\mu \nu}$ and $\langle\mu \nu \mid \lambda \sigma\rangle$ (same as RHF)
(3) Diagonalize \boldsymbol{S} and compute \boldsymbol{X} (same as RHF)
(0) Obtain guess density matrix for \boldsymbol{P}^{α} and \boldsymbol{P}^{β}

1a. Calculate \boldsymbol{G}^{α} and then $\boldsymbol{F}^{\alpha}=\boldsymbol{H}+\boldsymbol{G}^{\alpha}$
1b. Calculate \boldsymbol{G}^{β} and then $\boldsymbol{F}^{\beta}=\boldsymbol{H}+\boldsymbol{G}^{\beta}$
2. Compute $\left(\boldsymbol{F}^{\alpha}\right)^{\prime}=\boldsymbol{X}^{\dagger} \cdot \boldsymbol{F}^{\alpha} \cdot \boldsymbol{X}$ and $\left(\boldsymbol{F}^{\beta}\right)^{\prime}=\boldsymbol{X}^{\dagger} \cdot \boldsymbol{F}^{\beta} \cdot \boldsymbol{X}$

3a. Diagonalize $\left(\boldsymbol{F}^{\alpha}\right)^{\prime}$ to obtain $\left(\boldsymbol{C}^{\alpha}\right)^{\prime}$ and \boldsymbol{E}^{α}
3b. Diagonalize $\left(\boldsymbol{F}^{\beta}\right)^{\prime}$ to obtain $\left(\boldsymbol{C}^{\beta}\right)^{\prime}$ and \boldsymbol{E}^{β}
4. Calculate $\boldsymbol{C}^{\alpha}=\boldsymbol{X} \cdot\left(\boldsymbol{C}^{\alpha}\right)^{\prime}$ and $\boldsymbol{C}^{\beta}=\boldsymbol{X} \cdot\left(\boldsymbol{C}^{\beta}\right)^{\prime}$
5. Form the new new density matrix \boldsymbol{P}^{α} and \boldsymbol{P}^{β}, and compute $\boldsymbol{P}^{\top}=\boldsymbol{P}^{\alpha}+\boldsymbol{P}^{\beta}$
6. Am I converged? If not go back to 1 .
(0) Calculate stuff that you want, like $E_{U H F}$ for example

Good books

- Introduction to Computational Chemistry (Jensen)
- Essentials of Computational Chemistry (Cramer)
- Modern Quantum Chemistry (Szabo \& Ostlund)

- Molecular Electronic Structure Theory (Helgaker, Jorgensen \& Olsen)

