
The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books

The Hartree–Fock Approximation

Pierre-François LOOS

Laboratoire de Chimie et Physique �antiques (UMR 5626),
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How to perform a HF calculation in practice?

The SCF algorithm for Hartree-Fock (HF) calculations (p. 146)

1 Specify molecule {RA} and {ZA} and basis set {φµ}
2 Calculate integrals Sµν, Hµν and 〈µν|λσ〉
3 Diagonalize S and compute X = S−1/2

4 Obtain guess density matrix for P
1. Calculate J and K, then F = H+ J+K
2. Compute F′ = X† · F · X
3. Diagonalize F′ to obtain C′ and E
4. Calculate C = X ·C′
5. Form a new density matrix P = C ·C†

6. Am I converged? If not go back to 1.

5 Calculate stu� that you want, like EHF for example
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Szabo’s and Ostlund’s book
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Motivations & Assumptions

We consider the time-independent Schrödinger equation

HF is an ab initio method, i.e., there’s no parameter

We don’t care about relativistic e�ects

HF is an independent-particle model, i.e., the motion of one electron is considered to be independent of
the dynamics of all other electrons⇒ interactions are taken into account in an average fashion

HF is the starting point of pre�y much anything!
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The Hamiltonian

In the Schrödinger equation
HΦ({ri}, {RA}) = EΦ({ri}, {RA}) (1)

the total Hamiltonian is
H = Tn + Te + Vne + Vee + Vnn (2)

What are all these terms?

Tn is the kinetic energy of the nuclei

Te is the kinetic energy of the electrons

Vne is the Coulomb a�raction between nuclei and electrons

Vee is the Coulomb repulsion between electrons

Vnn is the Coulomb repulsion between nuclei
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The Hamiltonian (Take 2)

In atomic units (m = e = h̄ = 1)

Tn = −
M

∑
A=1

∇2
A

2MA
(3a)

Te = −
N

∑
i=1

∇2
i

2
(3b)

Vne = −
M

∑
A=1

N

∑
i=1

ZA
riA

(3c)

Vee =
N

∑
i<j

1
rij

(3d)

Vnn =
M

∑
A<B

ZAZB
RAB

(3e)

∇2 is the Laplace operator (or Laplacian)

MA is the mass of nucleus A

ZA is the charge of nucleus A

riA is the distance between electron i and nucleus A

rij is the distance between electrons i and j

RAB is the distance between nuclei A and B
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Molecular coordinate system
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The Born-Oppenheimer approximation

Born-Oppenheimer approximation = decoupling nuclei and electrons

Because MA � 1, the nuclear coordinates are “parameters”⇒ potential energy surface (PES)

Φ({ri}, {RA}) = Φnucl({RA})Φelec({ri}, {RA}) with Etot = Eelec +
M

∑
A<B

ZAZB
RAB

(4)

Nuclear Hamiltonian

The nuclear Hamiltonian is

HnuclΦnucl = EnuclΦnucl with Hnucl = Tn + Vnn (5)

It describes the vibration, rotation and translation of the molecules

Electronic Hamiltonian

The electronic Hamiltonian is

HelecΦelec = EelecΦelec with Helec = Te + Vne + Vee (6)
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Separability of the Schrödinger equation

Problem:

“Assuming that Ĥ = ĤA + ĤB with ĤAΨA = EAΨA and ĤBΨB = EBΨB, find the expression of Ψ and E such
that ĤΨ = EΨ”

Solution:

Let’s try Ψ = ΨAΨB and see if we’re lucky.
Then,

ĤΨ = (ĤA + ĤB)ΨAΨB

= ĤAΨAΨB + ĤBΨAΨB

= EAΨAΨB + EBΨAΨB

= (EA + EB)︸ ︷︷ ︸
E

ΨAΨB︸ ︷︷ ︸
Ψ
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“Assuming that Ĥ = ĤA + ĤB with ĤAΨA = EAΨA and ĤBΨB = EBΨB, find the expression of Ψ and E such
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Spin of the electron

We are interested by electrons which are fermions⇒ Pauli exclusion principle (cf next slide)

Spin functions: |σ〉 = |s,ms〉 s2 |s,ms〉 = s(s+ 1) |s,ms〉 sz |s,ms〉 = ms |s,ms〉

|α〉 =
∣∣ 1

2 , 1
2

〉
spin-up electron |β〉 =

∣∣ 1
2 ,− 1

2

〉
= spin-down electron

∫
α∗(ω)β(ω)dω =

∫
β∗(ω)α(ω)dω = 0

∫
α∗(ω)α(ω)dω =

∫
β∗(ω)β(ω)dω = 1 (7)

〈α|β〉 = 〈β|α〉 = 0 〈α|α〉 = 〈β|β〉 = 1 (8)

The composite variable x combines spin (ω) and spatial (r) coordinates: x = (ω, r)

Antisymmetry principle

HelecΦ(x1, x2, . . . , xN ) = EelecΦ(x1, x2, . . . , xN ) (9)

Φ(x1, . . . , xi , . . . , xj , . . . , xN ) = −Φ(x1, . . . , xj , . . . , xi , . . . , xN ) (10)
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Antisymmetry

Problem:

“Show that, for a system of two fermions, the wave function vanishes when they are at the same point in
spin-space”

Solution

Indistinguishable particles means

|Ψ(x1, x2)|2 = |Ψ(x2, x1)|2 ⇒ Ψ(x1, x2) = ±Ψ(x2, x1) (11)

Bosons mean Ψ(x1, x2) = Ψ(x2, x1) and Fermions mean Ψ(x1, x2) = −Ψ(x2, x1)

Let’s put them at the same spot, i.e. x = x1 = x2

For Fermions, Ψ(x, x) = −Ψ(x, x) ⇒ Ψ(x, x) = 0 (12)

The wave function vanishes! ⇒ This is called the Fermi hole!
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Antisymmetry (Take 2)

Problem:

“Given two one-electron functions χ1(x) and χ2(x), could you construct a two-electron (fermionic) wave function
Ψ(x1, x2)?”

Solution

A possible solution is
Ψ(x1, x2) = χ1(x1)χ2(x2)− χ1(x2)χ2(x1) (13)

This has been popularized by Slater:

Ψ(x1, x2) =

∣∣∣∣χ1(x1) χ2(x1)
χ1(x2) χ2(x2)

∣∣∣∣ = χ1(x1)χ2(x2)− χ1(x2)χ2(x1) (14)

This is called a Slater determinant!

A wave function of the form Ψ(x1, x2) = χ1(x1)χ2(x2) is called a Hartree product
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The HF wave function

A Slater determinant

ΨHF(x1, x2, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣ ≡ |χ1(x1)χ2(x2) . . . χN (xN )〉

= A χ1(x1)χ2(x2) . . . χN (xN ) = AΠ(x1, x2, . . . , xN )

(15)

A is called the antisymetrizer

Π(x1, x2, . . . , xN ) is a Hartree product

The many-electron wave function ΨHF(x1, x2, . . . , xN ) is an antisymmetrized product of one-electron
functions
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Spin and spatial orbitals

χi(x) = σ(ω)ψi(r) =

{
α(ω)ψi(r)
β(ω)ψi(r)

ψi(r) =
K

∑
µ
Cµiφµ(r)

These are restricted spin orbitals⇒ Restricted Hartree-Fock = RHF

The spin orbitals are orthogonal

〈
χi
∣∣χj
〉
=
∫

χ∗i (x)χj(x)dx = δij =

{
1 if i = j

0 otherwise

The spatial orbitals are orthogonal〈
ψi
∣∣ψj
〉
=
∫

ψ∗i (r)ψj(r)dr = δij = Kronecker delta

The basis functions (or atomic orbitals) are, a priori, not orthogonal〈
φµ

∣∣φν
〉
=
∫

φ∗µ(r)φν(r)dr = Sµν = Overlap matrix
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Spin and spatial orbitals (Take 2)

Comments

{φµ|i = 1, . . . ,K} are basis functions or atomic orbitals (AOs)

{χi |i = 1, . . . , 2K} are the spin orbitals

{ψi |i = 1, . . . ,K} are the spatial orbitals or molecular orbitals (MOs)

With K AOs, one can create K spatial orbitals and 2K spin orbitals

For the ground state, the first N spin orbitals are occupied and the last 2K − N are vacant (unoccupied)

When a system has 2 electrons in each orbital, it is called a closed-shell system, otherwise it is called a
open-shell system

For the ground state of a closed shell, the first N/2 spatial orbitals are doubly-occupied and the last
K − N/2 are vacant (unoccupied)

The MOs are build by linear combination of AOs (LCAO)

The coe�icient Cµi are determined via the HF equations based on variational principle
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Ground-state Hartree-Fock determinant
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Excited determinants

Reference determinant

The electrons are in the N lowest orbitals (Aufbau principle): |Ψ0〉 = |χ1 . . . χaχb . . . χN 〉 (16)

Singly-excited determinants

Electron in a promoted in r : |Ψr
a〉 = |χ1 . . . χrχb . . . χN 〉 (17)

Doubly-excited determinants

Electrons in a and b promoted in r and s: |Ψrs
ab〉 = |χ1 . . . χrχs . . . χN 〉 (18)
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The Hartree-Fock energy

The HF energy is

EHF = 〈ΨHF|Helec + Vnn|ΨHF〉 where Helec = Te + Vne + Vee (19)

We define a few quantities:

the one-electron Hamiltonian (or core Hamiltonian) = nice guy!

O1 = Te + Vne =
N

∑
i=1

h(i) where h(i) = −∇
2
i

2
−

M

∑
A=1

ZA
riA

(20)

the two-electron Hamiltonian (electron-electron repulsion) = nasty guy!

O2 = Vee =
N

∑
i<j

1
rij

(21)

Therefore, we have

Helec =
N

∑
i=1

h(i) +
N

∑
i<j

1
rij

(22)
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The Hartree-Fock energy (Take 2)

Nuclear repulsion:
〈ΨHF|Vnn|ΨHF〉 = Vnn 〈ΨHF|ΨHF〉 = Vnn (23)

Core Hamiltonian:

〈ΨHF|O1|ΨHF〉 =
N

∑
a=1
〈χa(1)|h(1)|χa(1)〉 =

N

∑
a=1

ha (24)

Two-electron Hamiltonian:

〈ΨHF|O2|ΨHF〉 =
N

∑
a<b

[
〈χa(1)χb(2)|r−1

12 |χa(1)χb(2)〉 − 〈χa(1)χb(2)|r−1
12 |χb(1)χa(2)〉

]

=
N

∑
a<b

 Jab︸︷︷︸
Coulomb

− Kab︸︷︷︸
Exchange

 =
1
2

N

∑
a=1

N

∑
b=1

(Jab −Kab) because Jaa = Kaa

(25)

HF energy:

EHF =
N

∑
a=1

ha +
N

∑
a<b

(Jab −Kab) + Vnn (26)
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The Hartree-Fock energy (Take 3)

Coulomb operator

Jj(1) |χi(1)〉 =
〈
χj(2)

∣∣r−1
12

∣∣χj(2)
〉
|χi(1)〉 =

[∫
dx2χ∗j (x2)r−1

12 χj(x2)

]
|χi(x1)〉 (27)

Coulomb matrix elements

Jij = 〈χi(1)|Jj(1)|χi(1)〉 =
〈
χi(1)χj(2)

∣∣r−1
12

∣∣χi(1)χj(2)
〉

=
x

χ∗i (x1)χ
∗
j (x2)r−1

12 χi(x1)χj(x2)dx1dx2
(28)

(non-local) Exchange operator

Kj(1) |χi(1)〉 =
〈
χj(2)

∣∣r−1
12

∣∣χi(2)
〉 ∣∣χj(1)

〉
=

[∫
dx2χ∗j (x2)r−1

12 χi(x2)

] ∣∣χj(x2)
〉

(29)

Exchange matrix elements

Kij = 〈χi(1)|Kj(1)|χi(1)〉 =
〈
χi(1)χj(2)

∣∣r−1
12

∣∣χj(1)χi(2)
〉

=
x

χ∗i (x1)χ
∗
j (x2)r−1

12 χj(x1)χi(x2)dx1dx2
(30)
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Integral notations

Spin orbitals

[i|h|j] = 〈i|h|j〉 =
∫

χ∗i (x1)h(r1)χi(x1)dx1 (31)

〈ij|kl〉 =
〈
χiχj

∣∣χkχl
〉
=

x
χ∗i (x1)χ

∗
j (x2)

1
r12

χk(x1)χl(x2)dx1dx2 = [ik|jl] (32)

[ij|kl] = [χiχj |χkχl ] =
x

χ∗i (x1)χj(x1)
1
r12

χ∗k (x2)χl(x2)dx1dx2 = 〈ik|jl〉 (33)

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉 =
x

χ∗i (x1)χ
∗
j (x2)

1
r12

(1−P12)χk(x1)χl(x2)dx1dx2 (34)

Spatial orbitals

(i|h|j) = hij = (ψi |h|ψj) =
∫

ψ∗i (r1)h(r1)ψi(r1)dr1 (35)

(ij|kl) = (ψiψj |ψkψl) =
x

ψ∗i (r1)ψj(r1)
1
r12

ψ∗k (r2)ψl(r2)dr1dr2 (36)
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Permutation symmetry

Permutation symmetry in physicts’ notations

〈ij|kl〉 =
〈
χiχj

∣∣χkχl
〉
=

x
χ∗i (x1)χ

∗
j (x2)

1
r12

χk(x1)χl(x2)dx1dx2 (37)

Complex-valued integrals: 〈ij|kl〉 = 〈ji|lk〉 = 〈kl|ij〉∗ = 〈lk|ji〉∗ (38)

Permutation symmetry in chemists’ notations

[ij|kl] = [χiχj |χkχl ] =
x

χ∗i (x1)χj(x1)
1
r12

χ∗k (x2)χl(x2)dx1dx2 (39)

Real-valued integrals: [ij|kl] = [ji|kl] = [ij|lk] = [ji|lk] = [kl|ij] = [lk|ij] = [kl|ji] = [lk|ji] (40)
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Slater-Condon rules: One-electron operators

O1 =
N

∑
i
h(i) (41)

Case 1 = di�er by zero spinorbital: |K〉 = |. . .mn . . .〉

〈K |O1|K〉 =
N

∑
m
〈m|h|m〉 (42)

Case 2 = di�er by one spinorbital: |K〉 = |. . .mn . . .〉 and |L〉 = |. . . pn . . .〉

〈K |O1|L〉 = 〈m|h|p〉 (43)

Case 3 = di�er by two spinorbitals: |K〉 = |. . .mn . . .〉 and |L〉 = |. . . pq . . .〉

〈K |O1|L〉 = 0 (44)
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Slater-Condon rules: Two-electron operators

O2 =
N

∑
i<j

r−1
ij (45)

Case 1 = di�er by zero spinorbital: |K〉 = |. . .mn . . .〉

〈K |O2|K〉 =
1
2

N

∑
mn
〈mn||mn〉 (46)

Case 2 = di�er by one spinorbital: |K〉 = |. . .mn . . .〉 and |L〉 = |. . . pn . . .〉

〈K |O2|L〉 =
N

∑
n
〈mn||pn〉 (47)

Case 3 = di�er by two spinorbitals: |K〉 = |. . .mn . . .〉 and |L〉 = |. . . pq . . .〉

〈K |O2|L〉 = 〈mn||pq〉 (48)
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The Hartree-Fock energy: examples

Problem: Normalization of the HF wave function

“Show that the HF wave function built with two (normalized) spin orbitals χ1 and χ2 is normalized”

Solution

ΨHF =
1√
2

∣∣∣∣χ1(1) χ2(1)
χ1(2) χ2(2)

∣∣∣∣ = χ1(1)χ2(2)− χ1(2)χ2(1)√
2

〈ΨHF|ΨHF〉 =
1
2
〈χ1(1)χ2(2)− χ2(1)χ1(2)|χ1(1)χ2(2)− χ2(1)χ1(2)〉

=
1
2

[
〈χ1(1)χ2(2)|χ1(1)χ2(2)〉 − 〈χ1(1)χ2(2)|χ2(1)χ1(2)〉

− 〈χ2(1)χ1(2)|χ1(1)χ2(2)〉+ 〈χ2(1)χ1(2)|χ2(1)χ1(2)〉
]

=
1
2

[
1− 0− 0 + 1

]
= 1

Remember that 〈χ1(1)χ2(2)|χ1(1)χ2(2)〉 = 〈χ1(1)|χ1(1)〉 〈χ2(2)|χ2(2)〉

PF Loos The HF approximation



The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books HF energy Integrals Slater-Condon Examples Spin to spatial Fock matrix Variational principle Koopmans

The Hartree-Fock energy: examples

Problem: Normalization of the HF wave function

“Show that the HF wave function built with two (normalized) spin orbitals χ1 and χ2 is normalized”

Solution

ΨHF =
1√
2

∣∣∣∣χ1(1) χ2(1)
χ1(2) χ2(2)

∣∣∣∣ = χ1(1)χ2(2)− χ1(2)χ2(1)√
2

〈ΨHF|ΨHF〉 =
1
2
〈χ1(1)χ2(2)− χ2(1)χ1(2)|χ1(1)χ2(2)− χ2(1)χ1(2)〉

=
1
2

[
〈χ1(1)χ2(2)|χ1(1)χ2(2)〉 − 〈χ1(1)χ2(2)|χ2(1)χ1(2)〉

− 〈χ2(1)χ1(2)|χ1(1)χ2(2)〉+ 〈χ2(1)χ1(2)|χ2(1)χ1(2)〉
]

=
1
2

[
1− 0− 0 + 1

]
= 1

Remember that 〈χ1(1)χ2(2)|χ1(1)χ2(2)〉 = 〈χ1(1)|χ1(1)〉 〈χ2(2)|χ2(2)〉
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The Hartree-Fock energy: examples (Take 2)

Problem: Core Hamiltonian

“Show that 〈ΨHF|O1|ΨHF〉 = ∑N
a=1 ha for the same system”

Solution

O1 = h(1) + h(2)

〈ΨHF|h(1) + h(2)|ΨHF〉

=
1
2
〈χ1(1)χ2(2)− χ1(2)χ2(1)|h(1) + h(2)|χ1(1)χ2(2)− χ1(2)χ2(1)〉

=
1
2

[
〈χ1(1)χ2(2)|h(1) + h(2)|χ1(1)χ2(2)〉 − 〈χ1(1)χ2(2)|h(1) + h(2)|χ2(1)χ1(2)〉

− 〈χ2(1)χ1(2)|h(1) + h(2)|χ1(1)χ2(2)〉+ 〈χ2(1)χ1(2)|h(1) + h(2)|χ2(1)χ1(2)〉
]

=
1
2

[
h1 + h2 − 0− 0 + h2 + h1

]
= h1 + h2
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The Hartree-Fock energy: examples (Take 3)

Problem: Two-electron Hamiltonian

“Show that 〈ΨHF|O2|ΨHF〉 = ∑N
a<b (Jab −Kab) for the same system and write down the HF energy”

Solution

O2 = r−1
12

〈ΨHF|r−1
12 |ΨHF〉 =

1
2
〈χ1χ2 − χ2χ1|r−1

12 |χ1χ2 − χ2χ1〉

=
1
2

[
〈χ1χ2|r−1

12 |χ1χ2〉 − 〈χ1χ2|r−1
12 |χ2χ1〉

− 〈χ2χ1|r−1
12 |χ1χ2〉+ 〈χ2χ1|r−1

12 |χ2χ1〉
]

=
1
2

[
J12 −K12 −K12 + J12

]
= J12 −K12

Remember that 〈χ2χ1|r−1
12 |χ2χ1〉 = 〈χ1χ2|r−1

12 |χ1χ2〉

EHF = h1 + h2 + J12 −K12
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The Hartree-Fock energy: examples (Take 4)

Three-electron system

“Find the HF energy of a three-electron system composed by the spin orbitals χ1, χ2 and χ3”

Solution

O1 = h(1) + h(2) + h(3)

O2 = r−1
12 + r−1

13 + r−1
23

...

EHF = h1 + h2 + h3 + J12 + J13 + J23 −K12 −K13 −K23
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HF energy of He

Singlet 1s2 state of the He atom

χ1 = α ψ1 χ2 = β ψ1

EHF(singlet) = h1 + h2 + J12 −K12 = 2h1 + J11

J12 = 〈χ1χ2|χ1χ2〉
= 〈α|α〉〈β|β〉〈ψ1ψ1|ψ1ψ1〉 = J11

K12 = 〈χ1χ2|χ2χ1〉
= 〈α|β〉〈β|α〉〈ψ1ψ1|ψ1ψ1〉 = 0

Triplet 1s2s state of the He atom

χ1 = α ψ1 χ2 = α ψ2

EHF(triplet) = h1 + h2 + J12 −K12 = h1 + h2 + J12 − K12

Singlet-triplet energy spli�ing

∆EHF = EHF(triplet)− EHF(singlet)

= (h2 − h1)︸ ︷︷ ︸
>0

+ (J12 − J11)︸ ︷︷ ︸
<0

−K12
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HF Energy of Atoms

Problem: HF energy of the Li atom

“Find the HF energy of the Li atom in terms of the spatial MOs”

Solution:

χ1 = α ψ1 χ2 = β ψ1 χ3 = α ψ2 χ4 = β ψ2

EHF = 2h1 + h2 + J11 + 2J12 − K12

Problem: HF energy of the B atom

“Find the HF energy of the B atom’ in terms of the spatial MOs’

Solution:

EHF = 2h1 + 2h2 + h3 + J11 + 4J12 + J22 − 2K12 + 2J13 + 2J23 − K13 − K23

PF Loos The HF approximation
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From spin to spatial orbitals

Two-electron example: H2 in minimal basis

In the spin orbital basis, we have

EHF = 〈χ1|h|χ1〉+ 〈χ2|h|χ2〉+ 〈χ1χ2|χ1χ2〉 − 〈χ1χ2|χ2χ1〉
= [χ1|h|χ1] + [χ2|h|χ2] + [χ1χ1|χ2χ2]− [χ1χ2|χ2χ1]

Spin to spatial transformation:

χ1(x) ≡ ψ1(x) = ψ1(r)α(ω)

χ2(x) ≡ ψ̄1(x) = ψ1(r)β(ω)

EHF = [ψ1|h|ψ1] + [ψ̄1|h|ψ̄1] + [ψ1ψ1|ψ̄1ψ̄1]− [ψ1ψ̄1|ψ̄1ψ1]

Therefore, in the spatial orbital basis, we have

EHF = 2(ψ1|h|ψ1) + (ψ1ψ1|ψ1ψ1) = 2(1|h|1) + (11|11)

PF Loos The HF approximation
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From spin to spatial orbitals (Take 2)

One-electron terms

[χ1|h|χ1] =
∫

χ∗1 (x)h(r)χ1(x)dx

=
∫

α∗(ω)ψ∗1 (r)h(r)α(ω)ψ1(r)dωdr

=

[∫
α∗(ω)α(ω)dω

]
︸ ︷︷ ︸

=1

[∫
ψ∗1 (r)h(r)ψ1(r)dr

]
︸ ︷︷ ︸

(ψ1|h|ψ1)

[χ2|h|χ2] =
∫

χ∗2 (x)h(r)χ2(x)dx

=
∫

β∗(ω)ψ∗1 (r)h(r)β(ω)ψ1(r)dωdr

=

[∫
β∗(ω)β(ω)dω

]
︸ ︷︷ ︸

=1

[∫
ψ∗1 (r)h(r)ψ1(r)dr

]
︸ ︷︷ ︸

(ψ1|h|ψ1)
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From spin to spatial orbitals (Take 3)

Two-electron terms

[χ1χ1|χ2χ2] =
x

χ∗1 (x1)χ1(x1)r−1
12 χ∗2 (x2)χ2(x2)dx1dx2

=
x

α∗(ω1)ψ
∗
1 (r1)α(ω1)ψ1(r1)r−1

12 β∗(ω2)ψ
∗
1 (r2)β(ω2)ψ1(r2)dω1dr1dω2dr2

=

[∫
α∗(ω1)α(ω1)dω1

]
︸ ︷︷ ︸

=1

[∫
β∗(ω2)β(ω2)dω2

]
︸ ︷︷ ︸

=1

[x
ψ∗1 (r1)ψ1(r1)r−1

12 ψ∗1 (r2)ψ1(r2)dr1dr2

]
︸ ︷︷ ︸

(ψ1ψ1|ψ1ψ1)

[χ1χ2|χ2χ1] =
x

χ∗1 (x1)χ2(x1)r−1
12 χ∗2 (x2)χ1(x2)dx1dx2

=
x

α∗(ω1)ψ
∗
1 (r1)β(ω1)ψ1(r1)r−1

12 β∗(ω2)ψ
∗
1 (r2)α(ω2)ψ1(r2)dω1dr1dω2dr2

=

[∫
α∗(ω1)β(ω1)dω1

]
︸ ︷︷ ︸

=0

[∫
β∗(ω2)α(ω2)dω2

]
︸ ︷︷ ︸

=0

[x
ψ∗1 (r1)ψ1(r1)r−1

12 ψ∗1 (r2)ψ1(r2)dr1dr2

]
︸ ︷︷ ︸

(ψ1ψ1|ψ1ψ1)
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From spin to spatial orbitals (Take 4)

General expression

EHF =
N

∑
a
[a|h|a] + 1

2

N

∑
a

N

∑
b
([aa|bb]− [ab|ba]) = 2

N/2

∑
a
(a|h|a) +

N/2

∑
a

N/2

∑
b

[2(aa|bb)− (ab|ba)] (49)

One- and two-electron terms

N

∑
a
[a|h|a] =

N/2

∑
a
[a|h|a] +

N/2

∑
a
[ā|h|ā] = 2

N/2

∑
a
[a|h|a] (50)

1
2

N

∑
a

N

∑
b
([aa|bb]− [ab|ba]) = 1

2

{
N/2

∑
a

N/2

∑
b

([aa|bb]− [ab|ba]) +
N/2

∑
a

N/2

∑
b

([aa|b̄b̄]− [ab̄|b̄a])

+
N/2

∑
a

N/2

∑
b

([āā|bb]− [āb|bā]) +
N/2

∑
a

N/2

∑
b

([āā|b̄b̄]− [āb̄|b̄ā])
}

=
N/2

∑
a

N/2

∑
b

[2(aa|bb)− (ab|ba)]

(51)
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The Fock matrix

Using the variational principle, one can show that, to minimise the energy, the MOs need to diagonalise the
one-electron Fock operator

f (1) = h(1) +
N

∑
a
[Ja(1)−Ka(1)]︸ ︷︷ ︸

νHF(1) = Hartree-Fock potential

For a closed-shell system (i.e. two electrons in each orbital)

f (1) = h(1) +
N/2

∑
a
[2Ja(1)− Ka(1)] (closed shell)

These orbitals are called canonical molecular orbitals (= eigenvectors):

f (1)ψi(1) = εi ψi(1)

and εi are called the MO energies (= eigenvalues)
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Fock matrix elements in the MO basis

Problem:

“ Find the expression of the matrix elements fij =
〈
χi
∣∣f ∣∣χj

〉
”

Solution:

〈
χi
∣∣f ∣∣χj

〉
=
〈
χi
∣∣h+ ∑

a
(Ja −Ka)

∣∣χj
〉

=
〈
χi
∣∣h∣∣χj

〉
+ ∑

a

( 〈
χi
∣∣Ja∣∣χj

〉
−
〈
χi
∣∣Ka

∣∣χj
〉)

= 〈i|h|j〉+ ∑
a
[〈ia|ja〉 − 〈ia|aj〉]

= 〈i|h|j〉+ ∑
a
〈ia||ja〉
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MO energies in the MO basis

Problem:

“ Deduce the expression of εi”

Solution:

f |χi〉 = εi |χi〉 ⇒ 〈χi |f |χi〉 = εi 〈χi |χi〉 = εi

⇒ εi = 〈i|h|i〉+ ∑
a
[〈ia|ia〉 − 〈ia|ai〉]

⇒ εi = 〈i|h|i〉+ ∑
a
〈ia||ia〉
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The variational principle

Problem

“Let’s suppose we know all the functions such as Ĥϕi = Eiϕi , with E0 < E1 < . . . and
〈

ϕi
∣∣ϕj
〉
= δij . Show that,

for any normalized Ψ, we have E = 〈Ψ|Ĥ|Ψ〉 ≥ E0”

Solution

We expand Ψ in a clever basis

Ψ =
∞

∑
i
ci ϕi with

∞

∑
i
c2
i = 1

E = 〈Ψ|Ĥ|Ψ〉 =
〈

∑
i
ciϕi

∣∣∣∣∣Ĥ
∣∣∣∣∣∑j cjϕj

〉
= ∑

ij
cicj
〈

ϕi
∣∣Ĥ∣∣ϕj

〉
= ∑

ij
cicjEj

〈
ϕi
∣∣ϕj
〉
= ∑

ij
cicjEjδij = ∑

i
c2
i Ei ≥ E0 ∑

i
c2
i = E0
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Koopmans’ theorem

Ground-state energy of the N-electron system

NE0 = ∑
a
ha +

1
2 ∑

ab
〈ab||ab〉 (52)

Energy of the (N − 1)-electron system (cation)

N−1Ec = ∑
a 6=c

ha +
1
2 ∑
a 6=c

∑
b 6=c
〈ab||ab〉 (53)

Ionization potential (IP)

IP = N−1Ec − NE0

= − 〈c|h|c〉 − 1
2 ∑

a
〈ac||ac〉 − 1

2 ∑
b
〈cb||cb〉

= − 〈c|h|c〉 −∑
a
〈ac||ac〉 = −εc

(54)
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Koopmans’ theorem for electron a�inity (EA)

Problem:

“Show that Koopmans’ theorem applies to electron a�inities”

Solution:

EA = NE0 − N+1Er

= − 〈r |h|r〉 −∑
a
〈ra||ra〉

= −εr

(55)
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Roothaan-Hall equations: introduction of a basis

Expansion in a basis

ψi(r) =
K

∑
µ
Cµiφµ(r) ≡ |i〉 =

K

∑
µ
Cµi |µ〉

K AOs gives K MOs: N/2 are occupied MOs and K − N/2 are vacant/virtual MOs

Roothaan-Hall equations

f |i〉 = εi |i〉 ⇒ f ∑
ν
Cνi |ν〉 = εi ∑

ν
Cνi |ν〉

⇒ 〈µ|f ∑
ν
Cνi |ν〉 = εi 〈µ|∑

ν
Cνi |ν〉

⇒ ∑
ν
Cνi 〈µ|f |ν〉 = ∑

ν
Cνiεi 〈µ|ν〉

⇒ ∑
ν
FµνCνi = ∑

ν
SµνCνiεi
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Introduction of a basis (Take 2)

Matrix form of the Roothaan-Hall equations

F ·C = S ·C · E ⇔ F′ ·C′ = C′ · E (56)

F′ = X† · F · X C = X ·C′ X† · S · X = I (57)

Fock matrix Fµν = 〈µ|f |ν〉 and Overlap matrix Sµν = 〈µ|ν〉
We need to determine the coe�icient matrix C and the orbital energies E

C =


C11 C12 · · · C1K
C21 C22 · · · C2K

...
...

. . .
...

CK1 CK2 · · · CKK

 E =


ε1 0 · · · 0
0 ε2 · · · 0
...

...
. . .

...
0 0 · · · εK

 (58)

Self-consistent field (SCF) procedure

F(C) ·C = S ·C · E How do we solve these HF equations? (59)
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Expression of the Fock matrix

Problem:

“Find the expression of the Fock matrix in terms of the one- and two-electron integrals”

Solution:

Fµν = 〈µ|h+
N

∑
a
(Ja −Ka)|ν〉 = Hµν +

N

∑
a
〈µ|Ja −Ka|ν〉

= Hµν +
N

∑
a
( 〈µχa|r−1

12 |νχa〉 − 〈µχa|r−1
12 |χaν〉)

= Hµν +
N

∑
a

∑
λσ

CλaCσa( 〈µλ|r−1
12 |νσ〉 − 〈µλ|r−1

12 |σν〉)

= Hµν + ∑
λσ

Pλσ(〈µλ|νσ〉 − 〈µλ|σν〉) = Hµν + ∑
λσ

Pλσ 〈µλ||νσ〉 = Hµν + Gµν

Fµν = Hµν + ∑
λσ

Pλσ(〈µλ|νσ〉 − 1
2
〈µλ|σν〉) (closed shell)
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One- and two-electron integrals (Appendix A)

One-electron integrals: overlap & core Hamiltonian

Sµν = 〈µ|ν〉 =
∫

φ∗µ(r)φν(r)dr (60)

Hµν = 〈µ|Ĥc|ν〉 =
∫

φ∗µ(r)Ĥ
c(r)φν(r)dr (61)

Chemist/Mulliken notation for two-electron integrals

(µν|λσ) =
x

φ∗µ(r1)φν(r1)
1
r12

φ∗λ(r2)φσ(r2)dr1dr2 (62)

(µν||λσ) = (µν|λσ)− (µσ|λν) (63)

Physicist/Dirac notation for two-electron integrals

〈µν|λσ〉 =
x

φ∗µ(r1)φ
∗
ν(r2)

1
r12

φλ(r1)φσ(r2)dr1dr2 (64)

〈µν||λσ〉 = 〈µν|λσ〉 − 〈µν|σλ〉 (65)

PF Loos The HF approximation



The electronic problem HF approximation Roothaan-Hall equations Unrestricted HF Books Basis set approximation Fock matrix Density matrix & Integrals HF energy SCF Properties

Computation of the Fock matrix and energy

Density matrix (closed-shell system)

Pµν = 2
N/2

∑
a

CµaCνa or P = 2C ·C† (66)

Fock matrix in the AO basis (closed-shell system)

Fµν = Hµν + ∑
λσ

Pλσ(µν|λσ)︸ ︷︷ ︸
Jµν= Coulomb

− 1
2 ∑

λσ

Pλσ(µσ|λν)︸ ︷︷ ︸
Kµν= exchange

(67)

HF energy in the AO basis (closed-shell system)

EHF = ∑
µν

PµνHµν +
1
2 ∑

µνλσ

Pµν

[
(µν|λσ)− 1

2
(µσ|λν)

]
Pλσ or EHF =

1
2

Tr[P · (H+ F)] (68)
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Expression of the HF energy

Problem:

“Find the expression of the HF energy in terms of the one- and two-electron integrals”

Solution:

EHF =
N

∑
a
ha +

1
2

N

∑
ab
(Jab −Kab) (cf few slides ago)

=
N

∑
a

〈
∑
µ
Cµaφµ

∣∣∣∣∣h
∣∣∣∣∣∑ν

Cνaφν

〉
+

1
2

N

∑
ab

〈(
∑
µ
Cµaφµ

)(
∑
λ

Cλbφλ

)∣∣∣∣∣
∣∣∣∣∣
(

∑
ν
Cνaφν

)(
∑
σ
Cσbφσ

)〉

= ∑
µν

Pµν

[
Hµν +

1
2 ∑

λσ

Pλσ 〈µλ||νσ〉
]
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Expression of the HF energy

Problem:

“Find the expression of the HF energy in terms of the one- and two-electron integrals”

Solution:

EHF =
N

∑
a
ha +

1
2

N

∑
ab
(Jab −Kab) (cf few slides ago)

=
N

∑
a

〈
∑
µ
Cµaφµ

∣∣∣∣∣h
∣∣∣∣∣∑ν

Cνaφν

〉
+

1
2

N

∑
ab

〈(
∑
µ
Cµaφµ

)(
∑
λ

Cλbφλ

)∣∣∣∣∣
∣∣∣∣∣
(

∑
ν
Cνaφν

)(
∑
σ
Cσbφσ

)〉

= ∑
µν

Pµν

[
Hµν +

1
2 ∑

λσ

Pλσ 〈µλ||νσ〉
]
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How to perform a HF calculation in practice?

The SCF algorithm

1 Specify molecule {RA} and {ZA} and basis set {φµ}
2 Calculate integrals Sµν, Hµν and 〈µν|λσ〉
3 Diagonalize S and compute X
4 Obtain guess density matrix for P

1. Calculate G and then F = H+G
2. Compute F′ = X† · F · X
3. Diagonalize F′ to obtain C′ and E
4. Calculate C = X ·C′
5. Form a new density matrix P = C ·C†

6. Am I converged? If not go back to 1.

5 Calculate stu� that you want, like EHF for example
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Orthogonalization matrix

We are looking for a matrix in order to orthogonalize the AO basis, i.e. X† · S · X = I

Symmetric (or Löwdin) orthogonalization

X = S−1/2 = U · s−1/2 ·U† is one solution… (69)

Is it working?

X† · S · X = S−1/2 · S · S−1/2 = S−1/2 · S · S−1/2 = I X (70)

Canonical orthogonalization

X = U · s−1/2 is another solution (when you have linear dependencies)…
(71)

Is it working?

X† · S · X = s−1/2 ·U† · S ·U︸ ︷︷ ︸
s

·s−1/2 = I X (72)
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How to obtain a good guess for the MOs or density matrix?

Possible initial density matrix

1 We can set P = 0⇒ F = H (core Hamiltonian approximation):
⇒ Usually a poor guess but easy to implement

2 Use EHT or semi-empirical methods:
⇒ Out of fashion

3 Using tabulated atomic densities:
⇒ “SAD” guess in QChem

4 Read the MOs of a previous calculation:
⇒ Very common and very useful
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How do I know I have converged (or not)?

Convergence in SCF calculations

1 You can check the energy and/or the density matrix:
⇒ The energy/density should not change at convergence

2 You can check the commutator F · P · S− S · P · F:
⇒ At convergence, we have F · P · S− S · P · F = 0

3 The DIIS (direct inversion in the iterative subspace) method is usually used to speed up convergence:
⇒ Extrapolation of the Fock matrix using previous iterations

Fm+1 =
m

∑
i=m−k

ci Fi
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Dipole moments

Classical vs �antum

µ = (µx , µy , µz ) = ∑
i
qiri︸ ︷︷ ︸

classical definition

(73)

µ = (µx , µy , µz ) = 〈Ψ0|−
N

∑
i
ri |Ψ0〉︸ ︷︷ ︸

electrons

+
M

∑
A
ZARA︸ ︷︷ ︸

nuclei

= −∑
µν

Pµν(ν|r|µ) +
M

∑
A
ZARA (74)

Vector components

µx = −∑
µν

Pµν(ν|x |µ) +
M

∑
A
ZAXA with (ν|x |µ)︸ ︷︷ ︸

one-electron integrals

=
∫

φ∗ν(r) x φµ(r)dr (75)
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Charge analysis

Electron density

ρ(r) = ∑
µν

φµ(r)Pµνφν(r) with
∫

ρ(r)dr = N ⇒ N = ∑
µν

PµνSνµ = ∑
µ
(P · S)µµ = Tr(P · S) (76)

Mulliken population analysis

Assuming that the basis functions are atom-centered

qMulliken
A︸ ︷︷ ︸

net charge on A

= ZA − ∑
µ∈A

(P · S)µµ (77)

Löwdin population analysis

Because Tr(A · B) = Tr(B ·A), we have, for any α, N = ∑µ(Sα · P · S1−α)µµ

For α = 1/2, we get: N = ∑
µ
(S1/2 · P · S1/2)µµ ⇒ qLöwdin

A = ZA − ∑
µ∈A

(S1/2 · P · S1/2)µµ (78)
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Unrestricted HF (UHF)

How to model open-shell systems?

RHF is made to describe closed-shell systems and we have used restricted spin orbitals:

χRHF
i (x) =

{
α(ω)ψi(r)
β(ω)ψi(r)

It does not describe open-shell systems

For open-shell systems we can use unrestricted spin orbitals

χUHF
i (x) =

{
α(ω)ψα

i (r)
β(ω)ψ

β
i (r)

RHF = Restricted Hartree-Fock↔ Roothaan-Hall equations

UHF = Unrestricted Hartree-Fock↔ Pople-Nesbet equations

Restricted Open-shell Hartree-Fock (ROHF) do exist but we won’t talk about it
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RHF, ROHF and UHF

RHF = Restricted Hartree-Fock

UHF = Unrestricted Hartree-Fock

ROHF = Restricted Open-shell Hartree-Fock
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Unrestricted Hartree-Fock equations

UHF equations for unrestricted spin orbitals

To minimize the UHF energy, the unrestricted spin orbitals must be eigenvalues of the α and β Fock operators:

f α(1)ψα
i (1) = εα

i ψα
j (1) f β(1)ψ

β
i (1) = ε

β
i ψ

β
j (1) (79)

where

f α(1) = h(1) +
Nα

∑
a
[Jα
a (1)− Kα

a (1)] +
Nβ

∑
a
Jβ
a (1) (80)

f β(1) = h(1) +
Nβ

∑
a
[Jβ
a (1)− K β

a (1)] +
Nα

∑
a
Jα
a (1) (81)

The Coulomb and Exchange operators are

Jσ
i (1) =

∫
ψσ
i (2)r

−1
12 ψσ

i (2)dr2 Kσ
i (1)ψ

σ
j (1) =

[∫
ψσ
i (2)r

−1
12 ψσ

j (2)dr2

]
ψσ
i (1) (82)
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Unrestricted Hartree-Fock equations (Take 2)

UHF energy

The UHF energy is composed by three contributions:

EUHF = Eαα
UHF + Eββ

UHF + Eαβ
UHF (83)

which yields

EUHF =
Nα

∑
a
hα
i +

1
2

Nα

∑
ab

(Jαα
ab − Kαα

ab ) +
Nβ

∑
a
hβ
a +

1
2

Nβ

∑
ab

(Jββ
ab − K ββ

ab ) +
Nα

∑
a

Nβ

∑
b

Jαβ
ab (84)

The matrix elements are given by

hσ
i = 〈ψσ

i |h|ψσ
i 〉 Jσσ′

ij =
〈

ψσ
i ψσ′

j

∣∣∣ψσ
i ψσ′

j

〉
Kσσ
ij =

〈
ψσ
i ψσ

j

∣∣∣ψσ
j ψσ

j

〉
(85)

Note that Kαβ
ij = 0⇔ there is no exchange between opposite-spin electrons
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UHF energy of the Li atom

Problem

“Write down the UHF energy of the doublet state of the lithium atom”

Solution

EUHF = hα
1 + hβ

1 + hα
2 + Jαα

12 − Kαα
12 + Jαβ

11 + Jαβ
21
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The Pople-Nesbet Equations

Expansion of the unrestricted spin orbitals in a basis

ψα
i (r) =

K

∑
µ=1

Cα
µi φµ(r) ψ

β
i (r) =

K

∑
µ=1

Cβ
µi φµ(r) (86)

The Pople-Nesbet equations

Fα ·Cα = S ·Cα · Eα Fβ ·Cβ = S ·Cβ · Eβ (87)

F α
µν = Hµν + ∑

λσ

Pα
λσ [(µν|σλ)− (µλ|σν)] + ∑

λσ

Pβ
λσ(µν|σλ) (88)

F β
µν = Hµν + ∑

λσ

Pβ
λσ [(µν|σλ)− (µλ|σν)] + ∑

λσ

Pα
λσ(µν|σλ) (89)

Fα and Fβ are both functions of Cα and Cβ ⇒ There’s a coupling between α and β MOs!
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Unrestricted Density Matrices

Spin-up and spin-down density matrices

Pα
µν =

Nα

∑
a=1

Cα
µaC

α
νa ⇔ Pα Pβ

µν =
Nβ

∑
a=1

Cβ
µaC

β
νa ⇔ Pβ (90)

Properties of the density (σ = α or β)

ρσ(r) = ∑
µν

φµ(r)Pσ
µνφν(r)

∫
ρσ(r)dr = Nσ (91)

Total and Spin density matrices

PT︸︷︷︸
Charge density

= Pα + Pβ PS︸︷︷︸
Spin density

= Pα − Pβ (92)
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How to perform a UHF calculation in practice?

The SCF algorithm

1 Specify molecule {RA} and {ZA} and basis set {φµ} (same as RHF)
2 Calculate integrals Sµν, Hµν and 〈µν|λσ〉 (same as RHF)
3 Diagonalize S and compute X (same as RHF)
4 Obtain guess density matrix for Pα and Pβ

1a. Calculate Gα and then Fα = H+Gα

1b. Calculate Gβ and then Fβ = H+Gβ

2. Compute (Fα)′ = X† · Fα · X and (Fβ)′ = X† · Fβ · X
3a. Diagonalize (Fα)′ to obtain (Cα)′ and Eα

3b. Diagonalize (Fβ)′ to obtain (Cβ)′ and Eβ

4. Calculate Cα = X · (Cα)′ and Cβ = X · (Cβ)′

5. Form the new new density matrix Pα and Pβ , and compute PT = Pα + Pβ

6. Am I converged? If not go back to 1.

5 Calculate stu� that you want, like EUHF for example
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Good books

Introduction to Computational Chemistry (Jensen)

Essentials of Computational Chemistry (Cramer)

Modern �antum Chemistry (Szabo & Ostlund)

Molecular Electronic Structure Theory (Helgaker, Jorgensen & Olsen)
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