GW/BSE methods in chemistry: Computational aspects

Pierre-François LOOS

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

Online ISTPC 2021 school - June 8th, 2021

Today's program

Charged excitations

- One-shot $GW(G_0W_0)$
- Partially self-consistent eigenvalue GW (evGW)
- Quasiparticle self-consistent GW (qsGW)
- Other self-energies (GF2, SOSEX, T-matrix, etc)

Neutral excitations

- Random-phase approximation (RPA)
- Configuration interaction with singles (CIS)
- Time-dependent Hartree-Fock (TDHF) or RPA with exchange (RPAx)
- Time-dependent density-functional theory (TDDFT)
- Bethe-Salpeter equation (BSE) formalism

Correlation energy

- Plasmon (or trace) formula
- Galitski-Migdal formulation
- Adiabatic connection fluctuation-dissipation theorem (ACFDT)

2 Charged excitations

Assumptions & Notations

Let's talk about notations

- We consider closed-shell systems (2 opposite-spin electrons per orbital)
- We only deal with singlet excited states but triplets can also be obtained
- Number of occupied orbitals O
- Number of vacant orbitals V
- Total number of orbitals N = O + V
- $\phi_p(\mathbf{r})$ is a (real) spatial orbital
- *i*, *j*, *k*, *l* are occupied orbitals
- *a*, *b*, *c*, *d* are vacant orbitals
- p, q, r, s are arbitrary (occupied or vacant) orbitals
- μ , ν , λ , σ are basis function indexes
- *m* indexes the *OV* single excitations $(i \rightarrow a)$

Useful papers/programs

- molGW: Bruneval et al. Comp. Phys. Comm. 208 (2016) 149
- Turbomole: van Setten et al. JCTC 9 (2013) 232; Kaplan et al. JCTC 12 (2016) 2528
- Fiesta: Blase et al. Chem. Soc. Rev. 47 (2018) 1022
- FHI-AIMS: Caruso et al. PRB 86 (2012) 081102

• Reviews & Books:

- Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344
- Onida et al. Rev. Mod. Phys. 74 (2002) 601
- Blase et al. Chem. Soc. Rev. , 47 (2018) 1022
- Golze et al. Front. Chem. 7 (2019) 377
- Blase et al. JPCL 11 (2020) 7371
- Martin, Reining & Ceperley Interacting Electrons (Cambridge University Press)
- *GW*100: IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (http://gw100.wordpress.com)

Fundamental and optical gaps (© Bruno Senjean)

Hedin's pentagon

Hedin, Phys Rev 139 (1965) A796

What can you calculate with GW?

- Ionization potentials (IPs) given by occupied MO energies
- Electron affinities (EAs) given by virtual MO energies
- Fundamental (HOMO-LUMO) gap (or band gap in solids)
- Correlation and total energies

What can you calculate with BSE?

- Singlet and triplet optical excitations (vertical absorption energies)
- Oscillator strengths (absorption intensities)
- Correlation and total energies

The MBPT chain of actions

Blase et al. JPCL 11 (2020) 7371

(日)

Photochemistry: Jablonski diagram

PF Loos (https://www.irsamc.ups-tlse.fr/loos/) GW/BSE methods in chemistry

Context Charged excitations Neutral excitations Correlation energy

Photochemistry: absorption, emission, and 0-0

Vertical excitation energies cannot be computed experimentally!!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

2 Charged excitations

O Neutral excitations

Correlation energy

▲□▶▲□▶▲□▶▲□▶ □ のへで

Green's function and dynamical screening

One-body Green's function

$$G(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega}) = \underbrace{\sum_{i} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{i}(\mathbf{r}_{2})}{\boldsymbol{\omega} - \boldsymbol{\epsilon}_{i} - i\eta}}_{\text{removal part = IPs}} + \underbrace{\sum_{a} \frac{\phi_{a}(\mathbf{r}_{1})\phi_{a}(\mathbf{r}_{2})}{\boldsymbol{\omega} - \boldsymbol{\epsilon}_{a} + i\eta}}_{\text{addition part = EAs}}$$
(3)

Polarizability

$$P(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}) = -\frac{i}{\pi} \int G(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega} + \boldsymbol{\omega}') G(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}') d\boldsymbol{\omega}'$$
(4)

Dielectric function and dynamically-screened Coulomb potential

$$\varepsilon(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}) = \delta(\mathbf{r}_1 - \mathbf{r}_2) - \int \frac{P(\mathbf{r}_1, \mathbf{r}_3; \boldsymbol{\omega})}{|\mathbf{r}_2 - \mathbf{r}_3|} d\mathbf{r}_3$$
(5)

$$W(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}) = \int \frac{\epsilon^{-1}(\mathbf{r}_1, \mathbf{r}_3; \boldsymbol{\omega})}{|\mathbf{r}_2 - \mathbf{r}_3|} d\mathbf{r}_3$$
(6)

Dynamical screening in the orbital basis

Spectral representation of W

$$W_{pq,rs}(\omega) = \iint \phi_p(\mathbf{r}_1)\phi_q(\mathbf{r}_1)W(\mathbf{r}_1,\mathbf{r}_2;\omega)\phi_r(\mathbf{r}_2)\phi_s(\mathbf{r}_2)d\mathbf{r}_1d\mathbf{r}_2$$

=
$$\underbrace{(pq|rs)}_{(\text{static}) \text{ exchange part}} + \underbrace{2\sum_m (pq|m)(rs|m) \left[\frac{1}{\omega - \Omega_m^{\text{RPA}} + i\eta} - \frac{1}{\omega + \Omega_m^{\text{RPA}} - i\eta}\right]}_{(\text{dynamical) correlation part } W_{pq,rs}^c(\omega)}$$
(7)

Electron repulsion integrals (ERIs)

$$(pq|rs) = \iint \frac{\phi_p(r_1)\phi_q(r_1)\phi_r(r_2)\phi_s(r_2)}{|r_1 - r_2|} dr_1 dr_2$$
(8)

Screened ERIs (or spectral weights)

$$(pq|m) = \sum_{ia} (pq|ia) (\mathbf{X}_m^{\text{RPA}} + \mathbf{Y}_m^{\text{RPA}})_{ia}$$

ur norr ter ter ter 990

(9)

Computation of the dynamical screening

Direct (ph-)RPA calculation (pseudo-hermitian linear problem)

$$\begin{pmatrix} \boldsymbol{A}^{\text{RPA}} & \boldsymbol{B}^{\text{RPA}} \\ -\boldsymbol{B}^{\text{RPA}} & -\boldsymbol{A}^{\text{RPA}} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{X}_{m}^{\text{RPA}} \\ \boldsymbol{Y}_{m}^{\text{RPA}} \end{pmatrix} = \Omega_{m}^{\text{RPA}} \begin{pmatrix} \boldsymbol{X}_{m}^{\text{RPA}} \\ \boldsymbol{Y}_{m}^{\text{RPA}} \end{pmatrix}$$
(10)

For singlet states:
$$A_{ia,jb}^{\text{RPA}} = \delta_{ij}\delta_{ab}(\epsilon_a - \epsilon_i) + 2(ia|bj)$$
 $B_{ia,jb}^{\text{RPA}} = 2(ia|jb)$ (11)

Non-hermitian to hermitian

$$(\boldsymbol{A} - \boldsymbol{B})^{1/2} \cdot (\boldsymbol{A} + \boldsymbol{B}) \cdot (\boldsymbol{A} - \boldsymbol{B})^{1/2} \cdot \boldsymbol{Z}_m = \Omega_m^2 \boldsymbol{Z}_m$$
(12)

$$(\boldsymbol{X}_m + \boldsymbol{Y}_m) = \Omega_m^{-1/2} (\boldsymbol{A} - \boldsymbol{B})^{+1/2} \cdot \boldsymbol{Z}_m$$
(13)

$$(\boldsymbol{X}_m - \boldsymbol{Y}_m) = \Omega_m^{+1/2} (\boldsymbol{A} - \boldsymbol{B})^{-1/2} \cdot \boldsymbol{Z}_m$$
(14)

Tamm-Dancoff approximation (TDA)

$$\boldsymbol{B} = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{A} \cdot \boldsymbol{X}_m = \boldsymbol{\Omega}_m^{\mathsf{TDA}} \boldsymbol{X}_m$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖

(15)

The self-energy

GW Self-energy $\underbrace{\sum_{GW \text{ self-energy}}^{\text{xc}}(\mathbf{r}_1, \mathbf{r}_2; \omega)}_{GW \text{ self-energy}} = \underbrace{\sum_{exchange}^{\text{x}}(\mathbf{r}_1, \mathbf{r}_2; \omega)}_{\text{correlation}} = \frac{i}{2\pi} \int G(\mathbf{r}_1, \mathbf{r}_2; \omega + \omega') W(\mathbf{r}_1, \mathbf{r}_2; \omega') e^{i\eta\omega'} d\omega' \quad (16)$

Exchange part of the (static) self-energy

$$\Sigma^{\mathbf{x}}_{pq} = -\sum_{i} (pi|iq)$$

Correlation part of the (dynamical) self-energy

$$\Sigma_{pq}^{c}(\omega) = 2\sum_{im} \frac{(pi|m)(qi|m)}{\omega - \epsilon_{i} + \Omega_{m}^{\text{RPA}} - i\eta} + 2\sum_{am} \frac{(pa|m)(qa|m)}{\omega - \epsilon_{a} - \Omega_{m}^{\text{RPA}} + i\eta}$$
(18)

(17)

Quasiparticle equation

Dyson equation

$$[G(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega})]^{-1} = \underbrace{[G_{\mathrm{KS}}(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega})]^{-1}}_{\mathrm{KS \ Green's \ function}} + \underbrace{\Sigma^{\mathrm{xc}}(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega})}_{\mathrm{KS \ potential}} - \underbrace{\upsilon^{\mathrm{xc}}(\mathbf{r}_1)}_{\mathrm{KS \ potential}} \delta(\mathbf{r}_1 - \mathbf{r}_2)$$
(19)

Non-linear quasiparticle (QP) equation

$$\omega = \epsilon_p^{\text{KS}} + \Sigma_{pp}^{\text{xc}}(\omega) - V_p^{\text{xc}} \quad \text{with} \quad V_p^{\text{xc}} = \int \phi_p(\mathbf{r}) v^{\text{xc}}(\mathbf{r}) \phi_p(\mathbf{r}) d\mathbf{r}$$
(20)

Linearized QP equation

$$\Sigma_{pp}^{\text{xc}}(\omega) \approx \Sigma_{pp}^{\text{xc}}(\epsilon_{p}^{\text{KS}}) + (\omega - \epsilon_{p}^{\text{KS}}) \frac{\partial \Sigma_{pp}^{\text{xc}}(\omega)}{\partial \omega} \bigg|_{\omega = \epsilon_{p}^{\text{KS}}} \Rightarrow \epsilon_{p}^{GW} = \epsilon_{p}^{\text{KS}} + Z_{p}[\Sigma_{pp}^{\text{xc}}(\epsilon_{p}^{\text{KS}}) - V_{p}^{\text{xc}}]$$
(21)
$$\underbrace{Z_{p}}_{\text{renormalization factor}} = \left[1 - \frac{\partial \Sigma_{pp}^{\text{xc}}(\omega)}{\partial \omega}\bigg|_{\omega = \epsilon_{p}^{\text{KS}}}\right]^{-1} \text{ with } 0 \le Z_{p} \le 1$$
(22)

Solutions of the non-linear QP equation: evGW@HF/6-31G for H₂ at R = 1 bohr

Loos et al, JCTC 14 (2018) 3071

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Véril et al, JCTC 14 (2018) 5220

GW flavours

Acronyms

- perturbative GW, one-shot GW, or $G_0 W_0$
- evGW or eigenvalue-only (partially) self-consistent GW
- qsGW or quasiparticle (partially) self-consistent GW
- scGW or (fully) self-consistent GW

Perturbative GW with linearized solution

procedure $G_0 W_0 LIN@KS$ Perform KS calculation to get ϵ^{KS} , c^{KS} , and V^{xc} AO to MO transformation for ERIs: $(\mu\nu|\lambda\sigma) \stackrel{\mathbf{c}^{\text{KS}}}{\rightarrow} (pg|rs)$ Construct RPA matrices A^{RPA} and B^{RPA} from ϵ^{KS} and (pq|rs)Compute RPA eigenvalues Ω^{RPA} and eigenvectors $\boldsymbol{X}^{\text{RPA}} + \boldsymbol{Y}^{\text{RPA}}$ ▷ This is a $\mathcal{O}(N^6)$ step! Form screened ERIs (pq|m)for p = 1, ..., N do Compute diagonal of the self-energy $\sum_{n=1}^{c} (\omega)$ at $\omega = \epsilon_n^{KS}$ Compute renormalization factors Z_{n} Evaluate $\epsilon_p^{G_0 W_0} = \epsilon_p^{\text{KS}} + Z_p \Big\{ \text{Re}[\Sigma_{pp}^{c}(\epsilon_p^{\text{KS}})] - V_p^{\text{xc}} \Big\}$ end for end procedure

For contour deformation technique, see, for example, Duchemin & Blase, JCTC 16 (2020) 1742

Example from QuAcK (Ne/cc-pVDZ)

One-shot GOWO calculation	Linearized $G_0 W_0$ subroutine
I\er#[Iname] e_HF (eV) I	Sig_c (eV) bedure G_0 W in e_QP (eV) I
1 -891.591504 2 -52.218791 3 -72.647397 4 -22.647397 5 -22.647397 6 46.107752 7 46.107752 8 46.107752 9 54.167043 10 141.402085 11 141.402085 12 141.402085 13 141.402085	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
G0W0 HOMO comence G0W0 LOMO comence G0W0 LOMO comence G0W0 HOMO-LUMO gap	-3.872629 0.944019 278.890026 0 y: -20.878718 eV y: 45.302383 eV
RPA@GOW0 total energy RPA@GOW0 correlation energy GM@GOW0 total energy GM@GOW0 correlation energy	: -128.714946 au deformation technique, s y: -0.226138 au : -128.887856 au y: -0.399048 au

https://github.com/pfloos/QuAcK

▲□▶▲□▶▲□▶▲□▶ □ のへの

Perturbative GW with graphical solution

procedure $G_0 W_0 \text{GRAPH} @\text{KS}$ Perform KS calculation to get ϵ^{KS} , c^{KS} , and V^{xc} AO to MO transformation for ERIs: $(\mu\nu|\lambda\sigma) \xrightarrow{c^{KS}} (pq|rs)$ Construct RPA matrices A^{RPA} and B^{RPA} from ϵ^{KS} and (pq|rs)Compute RPA eigenvalues Ω^{RPA} and eigenvectors $\mathbf{X}^{\text{RPA}} + \mathbf{Y}^{\text{RPA}}$ \triangleright This is a $\mathcal{O}(N^6)$ step! Form screened ERIs (pq|m)for p = 1, ..., N do Compute diagonal of the self-energy $\sum_{pp}^{c}(\omega)$ Solve $\omega = \epsilon_p^{\text{KS}} + \text{Re}[\sum_{n=1}^{c} (\omega)] - V_n^{\text{xc}}$ to get $\epsilon_p^{C_0 W_0}$ via Newton's method end for end procedure

◆□▶ ◆□▶ ◆□▶ ◆□▶ = つくや

Newton's method

https://en.wikipedia.org/wiki/Newton%27s_method

Partially self-consistent eigenvalue GW

```
procedure EVGW@KS
      Perform KS calculation to get \epsilon^{\text{KS}}, c^{\text{KS}}, and V^{\text{xc}}
      AO to MO transformation for ERIs: (\mu\nu|\lambda\sigma) \xrightarrow{c^{KS}} (pg|rs)
      Set \epsilon^{G_{-1}W_{-1}} = \epsilon^{\text{KS}} and n = 0
      while max |\Delta| > \tau do
            Construct RPA matrices A^{\text{RPA}} and B^{\text{RPA}} from \epsilon^{G_{n-1}W_{n-1}} and (pq|rs)
            Compute RPA eigenvalues \Omega^{\text{RPA}} and eigenvectors \boldsymbol{X}^{\text{RPA}} + \boldsymbol{Y}^{\text{RPA}}
                                                                                                                                        \triangleright This is a \mathcal{O}(N^6) step!
            Form screened ERIs (pq|m)
            for p = 1, ..., N do
                  Compute diagonal of the self-energy \sum_{pp}^{c}(\omega)
                  Solve \omega = \epsilon_n^{\text{KS}} + \text{Re}[\Sigma_{nn}^{c}(\omega)] - V_n^{\text{xc}} to get \epsilon_n^{G_n W_n}
            end for
            \mathbf{\Lambda} = \boldsymbol{\epsilon}^{G_n W_n} - \boldsymbol{\epsilon}^{G_{n-1} W_{n-1}}
            n \leftarrow n + 1
      end while
end procedure
```

Example from QuAcK (Ne/cc-pVDZ)

Self-consistent evG8W8	calculation			
# e_HF (eV)	l Sigma_c (eV)	I Z	l e_QP ((eV)
1 -891.591504	l 18.746313	0.853211	-872.845	5115
2 -52.218791	4.097592	I 0.954012	I -48.121	107 12
3 -22.647397	1.872062	0.963351	I -20.775	5232-12
4 -22.647397	1.872062	I 0.963351	I -20.775	232 12
1 5 1 -22.647397	1.872062	I 0.963351	I -20.775	232 12
I 6 I 46.107752	-0.834752	I 0.981106	45.273	8065 1
I 7 I 46.107752	-0.834752	I 0.981106	45.273	8065
I 8 \end 46.107752	-0.834752	I 0.981106	45.273	8065
9\bloc54.167043	-1.078523	0.984963	1 53.088	3542 1
\e10[[name] 141.402085	-3.068193	I 0.763837	1 138.333	929 I
11 141.402085	-3.068193	0.763837	1 138.333	929
12 141.402085	-3.068193	0.763837	1 138.333	929 1
13 141.402085	-3.068193	0.763837	1 138.333	929 1
\b14i {fram:141.402085	-3.068193	0.763837	1 138.333	929 ² 1 ²
I 15\legin[282.545807	-4.009519	0.941599	1 278.536	5 345
Iteration 8			Converge	
Convergence (= K) P	.00000			
\end evGW (HOMO	energy: -20.7	75232 eV		evGW-EUN evGW HON
fra evGW LUMO	energy: 45.27	73065 eV		
e∨GW HOMO-LUMO	gap : 66.04	18297 eV		
RPA@evGW total energy	: -128.71	15585 au	GM@evG	N tota
RPA@evGW correlation	energy: -0.22	26777 au		
GM@evGW total energy	: -128.89	98601 au		
GM@evGW correlation	energy: -0.44	9794 au		

https://github.com/pfloos/QuAcK

Quasiparticle self-consistent GW (qsGW)

procedure qsGW Perform HF calculation to get ϵ^{HF} and c^{HF} (optional) Set $\epsilon^{G_{-1}W_{-1}} = \epsilon^{\text{HF}}$, $c^{G_{-1}W_{-1}} = c^{\text{HF}}$ and n = 0while max $|\Delta| > \tau$ do AO to MO transformation for ERIs: $(\mu\nu|\lambda\sigma) \xrightarrow{c^{C_{n-1}W_{n-1}}} (pq|rs)$ \triangleright This is a $\mathcal{O}(N^5)$ step! Construct RPA matrices A^{RPA} and B^{RPA} from $\epsilon^{G_{n-1}W_{n-1}}$ and (pq|rs)Compute RPA eigenvalues Ω^{RPA} and eigenvectors $\boldsymbol{X}^{\text{RPA}} + \boldsymbol{Y}^{\text{RPA}}$ \triangleright This is a $\mathcal{O}(N^6)$ step! Form screened ERIs (pq|m)Evaluate $\Sigma^{c}(\epsilon^{G_{n-1}W_{n-1}})$ and form $\tilde{\Sigma}^{c} \leftarrow [\Sigma^{c}(\epsilon^{G_{n-1}W_{n-1}})^{\dagger} + \Sigma^{c}(\epsilon^{G_{n-1}W_{n-1}})]/2$ Form \mathbf{F}^{HF} from $\mathbf{c}^{G_{n-1}W_{n-1}}$ and then $\tilde{\mathbf{F}} = \tilde{\mathbf{F}}^{\text{HF}} + \tilde{\Sigma}^{\text{c}}$ Diagonalize \tilde{F} to get $\epsilon^{G_n W_n}$ and $c^{G_n W_n}$ $\Lambda = \epsilon^{G_n W_n} - \epsilon^{G_{n-1} W_{n-1}}$ $n \leftarrow n+1$ end while end procedure

Example from QuAcK (Ne/cc-pVDZ)

Land Stat	<u>.</u>					
Self-consistent qsG16	W16 calc	ulation le f	rom QuA	cK(Ne/cc-p\	/D
# e_HF (eV)		Sig_c (eV) ∣		Z I	e_QP (eV)	I
1 -891.591504		18.755754	0.85336	31	-873.652325	ifte
2 -52.218791	L I	4.058060 I	0.95438	91	-48.405559	
3 -22.647393	7	1.855512	0.96352	ð I	-21.066156	
4 -22.647393	7	1.855512	0.96352	91	-21.066156	
5 -22.647397	7	1.855512	0.96352	ð I	-21.066156	
6 46.107752	2	-0.848683 I	0.98097	7	45.067534	
7 46.107752	2 1	-0.848683 I	0.98097	71	45.067534	
8 46.107752	21	-0.848683 I	0.98097	7 1	45.067534	
9 54.167043	3 1	-1.102700 I	0.98467	6 I	52.926661	
10 141,402085	5 1	-3.043127 I	0.77691	6 I	138.069002	
11 \enc141,402085	5 1	-3.043127 I	0.77691	6 1	138,069002	
1 12\[ind[blc141,402085	5 1	-3.043127	0.77691	6 I	138,069002	
[\e13][[name] 141.402085	5 1	-3.043127	0.77691	6 I	138.069002	
1 14 1 141.40208	5 1	-3.043127	0.77691	5 I	138.069002	
I 15 I 282.54580	7 i	-3.998794	0.94167	7 i	278.156200	
Iteration an16 [Example					Iteration	
Convergence anter	0.00001					
ARCW HOMO	anerov	-21 0661	56 eV			
as GW 11MO	energy.	45 0675	34 oV			
GECW HOMO-LLIM	energy:	45.0073	34 eV			
USGW HOMO-LOM	gup :		50 61			
\end[farGW]total	anarov	-128 4884	68			
as GW exchange	onorgy:	-12 1010	05 au			
GMBasGW connel ation	energy:	-12.1010	49 au			
PRAGas CW connel ation	energy:	-0.4102	45 au			
Krivedson corretation	energy.	-0.2276	an uu			

Summary	
One-electron energy:	-182.4760110151 au
Kinetic energy:	128.2215634186 au
Potential energy:	-310.6975744337 au
Two-electron energy:	53.9875434022 au
Hartree energy:	66.0886388591 au
Exchange energy:	-12.1010954570 au
Correlation energy:	-0.4102491313 au
Electronic energy:	-128.4884676130 au
Nuclear repulsion:	0.0000000000 au
qsGW energy:	-128.4884676130 au
Dipole moment (Debye)	Z Tot. 0.000000 0.000000

https://github.com/pfloos/QuAcK

Other self-energies

Second-order Green's function (GF2) [Hirata et al. JCP 147 (2017) 044108]

$$\Sigma_{pq}^{\text{GF2}}(\omega) = \frac{1}{2} \sum_{iab} \frac{\langle iq||ab \rangle \langle ab||ip \rangle}{\omega + \epsilon_i - \epsilon_a - \epsilon_b} + \frac{1}{2} \sum_{ija} \frac{\langle aq||ij \rangle \langle ij||ap \rangle}{\omega + \epsilon_a - \epsilon_i - \epsilon_j}$$
(23)

T-matrix

$$\Sigma_{pq}^{GT}(\omega) = \sum_{im} \frac{\langle pi|\chi_m^{N+2}\rangle \langle qi|\chi_m^{N+2}\rangle}{\omega + \epsilon_i - \Omega_m^{N+2}} + \sum_{am} \frac{\langle pa|\chi_m^{N-2}\rangle \langle qa|\chi_m^{N-2}\rangle}{\omega + \epsilon_i - \Omega_m^{N-2}}$$
(24)
$$\langle pi|\chi_m^{N+2}\rangle = \sum_{c < d} \langle pi||cd\rangle \chi_{cd}^{N+2,m} + \sum_{k < l} \langle pi||kl\rangle Y_{kl}^{N+2,m}$$
(25)
$$\langle pa|\chi_m^{N-2}\rangle = \sum_{c < d} \langle pa||cd\rangle \chi_{cd}^{N-2,m} + \sum_{k < l} \langle pa||kl\rangle Y_{kl}^{N-2,m}$$
(26)
$$pp-RPA \text{ problem:} \qquad \begin{pmatrix} A & B \\ -B^{\mathsf{T}} & -C \end{pmatrix} \cdot \begin{pmatrix} \chi_m^{N\pm2} \\ Y_m^{N\pm2} \end{pmatrix} = \Omega_m^{N\pm2} \begin{pmatrix} \chi_m^{N\pm2} \\ Y_m^{N\pm2} \end{pmatrix}$$
(27)

(日)

э.

PF Loos (https://www.irsamc.ups-tlse.fr/loos/)

2 Charged excitations

▲口 → ▲圖 → ▲国 → ▲国 → ▲日 →

Dynamical vs static kernels

A non-linear BSE problem [Strinati, Riv. Nuovo Cimento 11 (1988) 1]

$$\begin{pmatrix} \mathbf{A}(\boldsymbol{\omega}) & \mathbf{B}(\boldsymbol{\omega}) \\ -\mathbf{B}(-\boldsymbol{\omega}) & -\mathbf{A}(-\boldsymbol{\omega}) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \boldsymbol{\omega} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \quad \text{Hard to solve!}$$
(28)

Static BSE vs dynamic BSE for HeH $^+$ /STO-3G

Dynamical kernels can give you more than static kernels... Sometimes, too much...

Authier & Loos, JCP 153 (2020) 184105 [see also Romaniello et al, JCP 130 (2009) 044108]

Löwdin partitioning technique

Folding or dressing process

$$\underbrace{\mathbf{H}\cdot\mathbf{c}=\boldsymbol{\omega}\,\mathbf{c}}_{\mathbf{H}\cdot\mathbf{c}}$$

A large linear system with N solutions...

Row #2:
$$h \cdot c_1 + H_2 \cdot c_2 = \omega c_2$$
Row #1: $H_1 \cdot c_1 + h^{\mathsf{T}} \cdot c_2 = \omega c_1$

$$\begin{pmatrix} \mathbf{h}_{1} \\ \mathbf{H}_{2} \\ \mathbf{H}_{2} \\ N_{2} \times N_{2} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{c}_{1} \\ \mathbf{c}_{2} \end{pmatrix} = \boldsymbol{\omega} \begin{pmatrix} \mathbf{c}_{1} \\ \mathbf{c}_{2} \end{pmatrix} \qquad N = N_{1} + N_{2} \qquad (29)$$

$$\Rightarrow \quad \boldsymbol{c}_2 = (\boldsymbol{\omega} \ \mathbf{1} - \boldsymbol{H}_2)^{-1} \cdot \boldsymbol{h} \cdot \boldsymbol{c}_1 \tag{30}$$

 $= \boldsymbol{H}_1 - \boldsymbol{h}^{\mathsf{T}} \cdot \boldsymbol{H}_2^{-1} \cdot \boldsymbol{h}$

$$\underbrace{\tilde{\boldsymbol{H}}_{1}(\boldsymbol{\omega})\cdot\boldsymbol{c}_{1}=\boldsymbol{\omega}\,\boldsymbol{c}_{1}}_{(31)}$$

A smaller non-linear system with N solutions...

$$\tilde{\boldsymbol{H}}_{1}(\boldsymbol{\omega}) = \boldsymbol{H}_{1} + \boldsymbol{h}^{\mathsf{T}} \cdot (\boldsymbol{\omega} \ \boldsymbol{1} - \boldsymbol{H}_{2})^{-1} \cdot \boldsymbol{h}$$
(32)

Effective Hamitonian

Static approx. (e.g. $\omega = 0$):

$$\underbrace{\tilde{\boldsymbol{H}}_1(\boldsymbol{\omega}=0)}_{\text{A smaller linear system with }N_1 \text{ solutions...}}$$

 $\left(\begin{array}{c}
\widehat{H}_{1}\\
h
\end{array}\right)$

 \Rightarrow

approximations possible...

(33)

200

TD-DFT and BSE in practice: Casida-like equations

Linear response problem

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X}_m \\ \mathbf{Y}_m \end{pmatrix} = \Omega_m \begin{pmatrix} \mathbf{X}_m \\ \mathbf{Y}_m \end{pmatrix}$$

Blue pill: TD-DFT within the adiabatic approximation

$$\boldsymbol{A}_{ia,jb} = \left(\boldsymbol{\epsilon}_{a}^{\mathrm{KS}} - \boldsymbol{\epsilon}_{i}^{\mathrm{KS}}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) + \boldsymbol{f}_{ia,bj}^{\mathrm{xc}} \qquad \boldsymbol{B}_{ia,jb} = 2(ia|jb) + \boldsymbol{f}_{ia,jb}^{\mathrm{xc}}$$
(34)

$$f_{ia,bj}^{xc} = \iint \phi_i(\mathbf{r})\phi_a(\mathbf{r}) \frac{\delta^2 E^{xc}}{\delta\rho(\mathbf{r})\delta\rho(\mathbf{r}')} \phi_b(\mathbf{r})\phi_j(\mathbf{r})d\mathbf{r}d\mathbf{r}'$$
(35)

Red pill: BSE within the static approximation

$$\mathbf{A}_{ia,jb} = \left(\epsilon_a^{GW} - \epsilon_i^{GW}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - \mathbf{W}_{ij,ba}^{\text{stat}} \qquad \mathbf{B}_{ia,jb} = 2(ia|jb) - \mathbf{W}_{ib,ja}^{\text{stat}}$$
(36)
$$\mathbf{W}_{ij,ab}^{\text{stat}} \equiv \mathbf{W}_{ij,ab}(\omega = 0) = (ij|ab) - \mathbf{W}_{ij,ab}^{c}(\omega = 0)$$
(37)

The bridge between TD-DFT and BSE

TD-DFT	Connection	BSE
One-point density $\rho(1)$	$\rho(1) = -iG(11^+)$	Two-point Green's function <i>G</i> (12)
Two-point susceptibility $\chi(12) = \frac{\partial \rho(1)}{\partial U(2)}$	$\chi(12) = -iL(12; 1^+2^+)$	Four-point susceptibility $L(12; 34) = \frac{\partial G(13)}{\partial U(42)}$
Two-point kernel $K(12) = v(12) + \frac{\partial V^{xc}(1)}{\partial \rho(2)}$		Four-point kernel $i\Xi(1234) = v(13)\delta(12)\delta(34) - \frac{\partial \Sigma^{sc}(12)}{\partial G(34)}$

For dynamical correction within BSE, see, for example, Loos & Blase, JCP 153 (2020) 114120

BSE in a computer

Vertical excitation energies from BSE

procedure BSE@GW Compute *GW* quasiparticle energies ϵ_p^{GW} at the $G_0 W_0$, ev*GW*, or qs*GW* level Compute static screening $W_{pq,rs}^{stat}$ Construct BSE matrices A^{BSE} and B^{BSE} from ϵ_p^{GW} , (pq|rs), and $W_{pq,rs}^{stat}$ Compute lowest eigenvalues Ω_m^{BSE} and eigenvectors $X_m^{BSE} + Y_m^{BSE}$ (optional) \triangleright This is a $\mathcal{O}(N^4)$ step! end procedure

◆□▶ ◆□▶ ◆□▶ ◆□▶ = つくや

Removing the correlation part: TDHF and CIS

Linear response problem

$$\begin{pmatrix} \boldsymbol{A} & \boldsymbol{B} \\ -\boldsymbol{B} & -\boldsymbol{A} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{X}_m \\ \boldsymbol{Y}_m \end{pmatrix} = \Omega_m \begin{pmatrix} \boldsymbol{X}_m \\ \boldsymbol{Y}_m \end{pmatrix}$$

TDHF = RPA with exchange (RPAx)

$$\boldsymbol{A}_{ia,jb} = \left(\boldsymbol{\epsilon}_{a}^{\mathsf{HF}} - \boldsymbol{\epsilon}_{i}^{\mathsf{HF}}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - (ij|ba) \qquad \qquad \boldsymbol{B}_{ia,jb} = 2(ia|jb) - (ib|ja) \tag{38}$$

Linear response problem within the Tamm-Dancoff approximation

$$\boldsymbol{A}\cdot\boldsymbol{X}_m=\boldsymbol{\Omega}_m\boldsymbol{X}_m$$

TDHF within TDA = CIS

$$\mathbf{A}_{ia,jb} = \left(\epsilon_a^{\mathsf{HF}} - \epsilon_i^{\mathsf{HF}}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - (ij|ba)$$
(40)

(39)

Context Charged excitations Neutral excitations Correlation energy

Relationship between CIS, TDHF, DFT and TDDFT

Linear response

General linear response problem

```
procedure LINEAR RESPONSE

Compute A matrix at a given level of theory (RPA, RPAx, TD-DFT, BSE, etc)

if TDA then

Diagonalize A to get \Omega_m^{\text{TDA}} and X_m^{\text{TDA}}

else

Compute B matrix at a given level of theory

Diagonalize A - B to form (A - B)^{1/2}

Form and diagonalize (A - B)^{1/2} \cdot (A + B) \cdot (A - B)^{1/2} to get \Omega_m^2 and Z_m

Compute \sqrt{\Omega_m^2} and (X_m + Y_m) = \Omega_m^{-1/2} (A - B)^{1/2} \cdot Z_m

end if

end procedure
```

Form linear response matrices

Linear-response matrices for BSE

```
procedure Form A For singlet states
    Set \mathbf{A} = \mathbf{0}
     ia \leftarrow 0
    for i = 1, ..., O do
         for a = 1, \ldots, V do
              ia \leftarrow ia + 1
              ib \leftarrow 0
              for i = 1, ..., O do
                   for b = 1, \ldots, V do
                       ib \leftarrow ib + 1
                        A_{ia,ib} = \delta_{ii}\delta_{ab}(\epsilon_a^{GW} - \epsilon_i^{GW}) + 2(ia|bj) - (ij|ba) + W_{ii,ba}^{c}(\omega = 0)
                   end for
              end for
         end for
     end for
end procedure
```

Properties

Oscillator strength (length gauge)

$$f_m = \frac{2}{3} \Omega_m \left[(\mu_m^x)^2 + (\mu_m^y)^2 + (\mu_m^z)^2 \right]$$
(41)

Transition dipole

$$\mu_m^{\mathbf{x}} = \sum_{ia} (i|\mathbf{x}|a) (\mathbf{X}_m + \mathbf{Y}_m)_{ia} \qquad (p|\mathbf{x}|q) = \int \phi_p(\mathbf{r}) \, \mathbf{x} \, \phi_q(\mathbf{r}) d\mathbf{r} \tag{42}$$

Monitoring possible spin contamination [Monino & Loos, JCTC 17 (2021) 2

$$\left\langle \hat{S}^2 \right\rangle_m = \left\langle \hat{S}^2 \right\rangle_0 + \underbrace{\Delta \left\langle \hat{S}^2 \right\rangle_m}_{\text{JCP 134101 (2011) 134}} \left\langle \hat{S}^2 \right\rangle_0 = \frac{n_\alpha - n_\beta}{2} \left(\frac{n_\alpha - n_\beta}{2} + 1 \right) + n_\beta + \sum_p (p_\alpha | p_\beta) \quad (43)$$

Example from QuAcK (H₂O/cc-pVDZ)

Excitation n.	1: 8.411378 eV f = 0.0255 <s**2> = 0.0000</s**2>
5 -> 6∖ _{≣eg}	0.704168 Procedure(BSE) {}
Excitation n.	2: 10.496539 eV f = 0.0000 <s**2> = 0.0000</s**2>
5 (p>1, c, 7)= 5 -> 8 =	0.699391 -0.699559 Compute lowest BSE eigenvalues \$\orar \Comment[\alert[This is a \$\order*[N^4]\$ ste
Excitation n.	3: 11.080888 eV f = 0.0924 <s**2> = 0.0000</s**2>
4 -> 6 =	-0.703496
Excitation n.	4: 13.165908 eV f = 0.0706 <s**2> = 0.0000</s**2>
4 -> beging rome	0.701946
Excitation n.	5: 14.913736 eV f = 0.2678 <s**2> = 0.0000</s**2>
3 -> en6 =	0.704100

\begin{trame}	BSE IN all 🦳 🦳		0111 <u>2</u> 411011
Excitation n.	1: 7.632804 eV	/ f = 0.0000	<\$**2> = 2.0000
$5 \rightarrow 6 = 0$ $5 \rightarrow 9 = -0$.700599 .089914		
Excitation n.	2: 9.897068 eV	/ f = 0.0000	<s**2> = 2.0000</s**2>
4 -> 6 = -0. 4 -> 9 = 0. \end[0]	. 695522 . 093664		
Excitation n.	3: 10.002114 eV	/ f = 0.0000	<s**2> = 2.0000</s**2>
5 -> 7 = 0 5 -> 8 = -0	.695328 .117774		
Excitation n.	4: 11.995497 eV	/ f = 0.0000	<\$**2> = 2.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.228354 .651412 .135998		
Excitation n.	5: 13.698483 eV	/ f = 0.0000	<s**2> = 2.0000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.656938 .101160 .234306		

https://github.com/pfloos/QuAcK

Open-shell systems and double excitations

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ● の < ○</p>

2 Charged excitations

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Correlation energy at the *GW* or BSE level

RPA@GW correlation energy: plasmon (or trace) formula

$$E_{\rm c}^{\rm RPA} = \frac{1}{2} \left[\sum_{p} \Omega_m^{\rm RPA} - {\rm Tr} \left({\boldsymbol{A}}^{\rm RPA} \right) \right] = \frac{1}{2} \sum_{m} \left(\Omega_m^{\rm RPA} - \Omega_m^{\rm TDA} \right)$$

Galitskii-Migdal functional

$$E_{c}^{GM} = \frac{-i}{2} \sum_{pq}^{\infty} \int \frac{d\omega}{2\pi} \sum_{pq}^{c} (\omega) G_{pq}(\omega) e^{i\omega\eta} = 4 \sum_{ia} \sum_{m} \frac{(ai|m)^{2}}{\epsilon_{a}^{GW} - \epsilon_{i}^{GW} + \Omega_{m}^{\text{RPA}}}$$

ACFDT@BSE@GW correlation energy from the adiabatic connection

$$E_{\rm c}^{\rm ACFDT} = \frac{1}{2} \int_0^1 {\rm Tr}\left(\mathbf{K} \mathbf{P}^{\lambda}\right) d\lambda \tag{44}$$

Adiabatic connection fluctuation dissipation theorem (ACFDT)

Adiabatic connection

$$E_{\rm c}^{\rm ACFDT} = \frac{1}{2} \int_0^1 \operatorname{Tr}\left(\boldsymbol{K}\boldsymbol{P}^{\lambda}\right) d\lambda \stackrel{\rm quad}{\approx} \frac{1}{2} \sum_{k=1}^K w_k \operatorname{Tr}\left(\boldsymbol{K}\boldsymbol{P}^{\lambda_k}\right)$$
(45)

 λ is the **strength** of the electron-electron interaction:

- $\lambda = 0$ for the non-interacting system
- $\lambda = 1$ for the physical system

Interaction kernel

$$\boldsymbol{K} = \begin{pmatrix} \tilde{\boldsymbol{A}} & \tilde{\boldsymbol{B}} \\ \tilde{\boldsymbol{B}} & \tilde{\boldsymbol{A}} \end{pmatrix} \qquad \tilde{A}_{ia,jb} = 2(ia|bj) \qquad \tilde{B}_{ia,jb} = 2(ia|jb) \tag{46}$$

Correlation part of the two-particle density matrix

$$\boldsymbol{P}^{\lambda} = \begin{pmatrix} \boldsymbol{Y}^{\lambda} \cdot (\boldsymbol{Y}^{\lambda})^{\mathsf{T}} & \boldsymbol{Y}^{\lambda} \cdot (\boldsymbol{X}^{\lambda})^{\mathsf{T}} \\ \boldsymbol{X}^{\lambda} \cdot (\boldsymbol{Y}^{\lambda})^{\mathsf{T}} & \boldsymbol{X}^{\lambda} \cdot (\boldsymbol{X}^{\lambda})^{\mathsf{T}} \end{pmatrix} - \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{pmatrix}$$
(47)

Gaussian quadrature

Numerical integration by quadrature

"A K-point Gaussian quadrature rule is a quadrature rule constructed to yield an exact result for polynomials up to degree 2K - 1 by a suitable choice of the roots x_k and weights w_k for k = 1, ..., K."

$$\int_{a}^{b} f(x) w(x) dx \approx \sum_{k}^{K} \underbrace{w_{k}}_{\text{weights}} f(\underbrace{x_{k}}_{\text{roots}})$$
(48)

Quadrature rules

Interval [a, b]	Weight function $w(x)$	Orthogonal polynomials	Name
[-1, 1]	1	Legendre $P_n(x)$	Gauss-Legendre
(-1, 1)	$(1-x)^{lpha}(1+x)^{eta}$, $lpha$, $eta>-1$	Jacobi $P_n^{\alpha,\beta}(x)$	Gauss-Jacobi
(-1, 1)	$1/\sqrt{1-x^2}$	Chebyshev (1st kind) $T_n(x)$	Gauss-Chebyshev
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev (2nd kind) $U_n(x)$	Gauss-Chebyshev
[0, ∞) [*]	$\exp(-x)$	Laguerre $L_n(x)$	Gauss-Laguerre
[0, ∞)	$x^{lpha} \exp(-x), lpha > -1$	Generalized Laguerre $L_n^{\alpha}(x)$	Gauss-Laguerre
$(-\infty,\infty)$	$\exp(-x^2)$	Hermite $H_n(x)$	Gauss-Hermite

https://en.wikipedia.org/wiki/Gaussian_quadrature

ACFDT at the RPA/RPAx level

RPA matrix elements

$$A_{ia,jb}^{\lambda,\text{RPA}} = \delta_{ij}\delta_{ab}(\epsilon_a^{\text{HF}} - \epsilon_i^{\text{HF}}) + 2\lambda(ia|bj) \qquad B_{ia,jb}^{\lambda,\text{RPA}} = 2\lambda(ia|jb)$$
(49)

$$E_{c}^{\text{RPA}} = \frac{1}{2} \int_{0}^{1} \text{Tr}\left(\boldsymbol{K}\boldsymbol{P}^{\lambda}\right) d\lambda = \frac{1}{2} \left[\sum_{m} \Omega_{m}^{\text{RPA}} - \text{Tr}\left(\boldsymbol{A}^{\text{RPA}}\right) \right]$$
(50)

RPAx matrix elements

$$A_{ia,jb}^{\lambda,\text{RPAx}} = \delta_{ij}\delta_{ab}(\epsilon_a^{\text{HF}} - \epsilon_i^{\text{HF}}) + \lambda[2(ia|bj) - (ij|ab)] \qquad B_{ia,jb}^{\lambda,\text{RPAx}} = \lambda[2(ia|jb) - (ib|aj)]$$
(51)

$$E_{\rm c}^{\rm RPAx} = \frac{1}{2} \int_0^1 {\rm Tr}\left(\mathbf{K}\mathbf{P}^{\lambda}\right) d\lambda \neq \frac{1}{2} \left[\sum_m \Omega_m^{\rm RPAx} - {\rm Tr}\left(\mathbf{A}^{\rm RPAx}\right)\right]$$
(52)

If exchange added to kernel, i.e., $\mathbf{K} = \mathbf{K}^{x}$, then [Angyan et al. JCTC 7 (2011) 3116]

$$E_{c}^{\text{RPAx}} = \frac{1}{4} \int_{0}^{1} \text{Tr}\left(\boldsymbol{K}^{x} \boldsymbol{P}^{\lambda}\right) d\lambda = \frac{1}{4} \left[\sum_{m} \Omega_{m}^{\text{RPAx}} - \text{Tr}\left(\boldsymbol{A}^{\text{RPAx}}\right) \right]$$
(53)

ACFDT at the BSE level

BSE matrix elements

$$A_{ia,jb}^{\lambda,\text{BSE}} = \delta_{ij}\delta_{ab}(\epsilon_a^{GW} - \epsilon_i^{GW}) + \lambda \Big[2(ia|bj) - W_{ij,ab}^{\lambda}(\omega = 0) \Big] \qquad B_{ia,jb}^{\lambda,\text{BSE}} = \lambda \Big[2(ia|jb) - W_{ib,ja}^{\lambda}(\omega = 0) \Big]$$
(54)
$$E_c^{\text{BSE}} = \frac{1}{2} \int_0^1 \text{Tr} \Big(\mathbf{K} \mathbf{P}^{\lambda} \Big) d\lambda \neq \frac{1}{2} \Big[\sum_m \Omega_m^{\text{BSE}} - \text{Tr} \Big(\mathbf{A}^{\text{BSE}} \Big) \Big]$$
(55)

λ -dependent screening

$$W_{pq,rs}^{\lambda}(\omega) = (pq|rs) + 2\sum_{m} (pq|m)^{\lambda} (rs|m)^{\lambda} \left[\frac{1}{\omega - \Omega_{m}^{\lambda, \text{RPA}} + i\eta} - \frac{1}{\omega + \Omega_{m}^{\lambda, \text{RPA}} - i\eta} \right]$$
(56)
$$(pq|m)^{\lambda} = \sum_{ia} (pq|ia) (X_{m}^{\lambda, \text{RPA}} + Y_{m}^{\lambda, \text{RPA}})_{ia}$$
(57)

ACFDT in a computer

ACFDT correlation energy from BSE

procedure ACFDT FOR BSE Compute *GW* quasiparticle energies ϵ^{GW} and interaction kernel *K* Get Gauss-Legendre weights and roots $\{w_k, \lambda_k\}_{1 \le k \le K}$ $E_c \leftarrow 0$ for $k = 1, \ldots, K$ do Compute static screening elements $W_{pa,rs}^{\lambda_k}(\omega=0)$ Perform BSE calculation at $\lambda = \lambda_k$ to get \mathbf{X}^{λ_k} and $\mathbf{Y}^{\lambda_k} > \text{This is a } \mathcal{O}(N^6)$ step done many times! Form two-particle density matrix \mathbf{P}^{λ_k} $E_{c} \leftarrow E_{c} + w_{k} \operatorname{Tr}(\boldsymbol{K} \boldsymbol{P}^{\lambda_{k}})$ end for end procedure

I NOR

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Useful papers/programs

- molGW: Bruneval et al. Comp. Phys. Comm. 208 (2016) 149
- Turbomole: van Setten et al. JCTC 9 (2013) 232; Kaplan et al. JCTC 12 (2016) 2528
- Fiesta: Blase et al. Chem. Soc. Rev. 47 (2018) 1022
- FHI-AIMS: Caruso et al. PRB 86 (2012) 081102

• Reviews & Books:

- Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344
- Onida et al. Rev. Mod. Phys. 74 (2002) 601
- Blase et al. Chem. Soc. Rev. , 47 (2018) 1022
- Golze et al. Front. Chem. 7 (2019) 377
- Blase et al. JPCL 11 (2020) 7371
- Martin, Reining & Ceperley Interacting Electrons (Cambridge University Press)
- *GW*100: IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (http://gw100.wordpress.com)