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Students, postdocs & colleagues

• Selected CI and QMC

Anthony Michel Mika Clotilde
Scemama Caffarel Véril Marut

• Green’s function methods

Arjan Pina Mr/Ms
Berger Romaniello Postdoc

Loos, Romaniello & Berger, JCTC 14 (2018) 3071

Véril, Romaniello, Berger & Loos, JCTC 14 (2018) 5220



Quantum Package 2.0: the greatest thing since sliced baguette

“Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs”,

Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176



What’s selected CI (sCI)?

Ground state of Cr2 in cc-pVQZ: full-valence CAS(28,198)
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Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176



What can you do with QP2? (Basically everything but here’s a short list...)

Applications

• sCI+PT2: Benchmarking excited-state methods
Loos, Scemama, Blondel, Garniron, Caffarel & Jacquemin, JCTC 14 (2018) 4360

• sCI+PT2: Double excitations
Loos, Boggio-Pasqua, Scemama, Caffarel & Jacquemin, JCTC 15 (2019) 1939

• sCI+QMC: “Challenging” case of FeS
Scemama, Garniron, Caffarel & Loos, JCTC 14 (2018) 1395

• sCI+QMC: Excitation energies with “deterministic” nodes
Scemama, Benali, Jacquemin, Caffarel & Loos, JCP 149 (2019) 064103

Developments

• Semi-stochastic PT2
Garniron, Scemama, Loos & Caffarel, JCP 147 (2017) 034101

• Renormalized PT2 & stochastic selection
Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176

• Internally-decontrated version (shifted-Bk)
Garniron, Scemama, Giner, Caffarel & Loos, JCP 149 (2018) 064103



Range-separated hybrids are actually useful!!
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“A Density-Based Basis-Set Correction for Wave Function Theory”,

Loos, Pradines, Scemama, Toulouse & Giner JPCL 10 (2019) 2931



How to morph a ground state into an excited state?

Physical
Transition

Complex 
Adiabatic Connection

“Complex Adiabatic Connection: a Hidden Non-Hermitian Path from Ground to Excited
States”,

Burton, Thom & Loos, JCP 150 (2019) 041103

“PT -Symmetry in Hartree-Fock Theory”,

Burton, Thom & Loos, JCTC (revised) arXiv:1903.08489



Section 2

Non-Hermitian quantum chemistry



Hermitian Hamiltonian going complex

Let’s consider the Hamiltonian for two electrons on a unit sphere

H = −∇
2
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2

2
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λ

r12

Loos & Gill, PRL 103 (2009) 123008

The CID/CCD Hamiltonian for 2 states reads
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For complex λ, the Hamiltonian becomes non Hermitian.
There is a (square-root) singularity in the complex-λ plane at

λEP = −15

28

(
1± i

5√
3

)
(Exceptional points) |λEP| ≈ 1.64 > 1

Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press, 2011



Hermitian Hamiltonian going complex
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• There is an avoided crossing at Re(λEP)

• Square-root branch cuts from λEP running parallel to the Im axis towards
±i∞
• (non-Hermitian) exceptional points ≡ (Hermitian) conical intersection

• Im(λEP) is linked to the radius of convergence of PT



Hermitian Hamiltonian going complex
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• Im(λEP) is linked to the radius of convergence of PT



Conical intersection (CI) vs exceptional point (EP)

Benda & Jagau, JPCL 9 (2018) 6978

• At CI, eigenvectors stay orthogonal

• At EP, both eigenvalues and
eigenvectors coalesce
(self-orthogonal state)

• Encircling CI, states do not
interchange but wave function
picks up geometric phase

• Encircling EP, states can
interchange and wave function
picks up geometric phase

• Encircling EP clockwise or
anticlockwise yields different states



The basic idea

• Quantum mechanics is quantized
because we’re looking at it in the
real plane (Riemann sheets or
parking garage)

• If you extend real numbers to
complex numbers you lose the
ordering property of real numbers

• So, can we interchange ground and
excited states away from the real
axis?

• How do we do it (in practice)?
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Holomorphic HF = analytical continuation of HF

Let’s consider (again) the Hamiltonian for two electrons on a unit sphere

Ĥ = −∇
2
1 +∇2

2

2
+

λ

r12

We are looking for a UHF solution of the form

ΨUHF(θ1, θ2) = ϕ(θ1)ϕ(π − θ2)

where the spatial orbital is ϕ = s cosχ+ pz sinχ.

Ensuring the stationarity of the UHF energy, i.e., ∂EUHF/∂χ = 0

sin 2χ (75 + 6λ− 56λ cos 2χ) = 0

or

χ = 0 or π/2 χ = ± arccos

(
3

28
+

75

56λ

)



HF energy landscape
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Analytical continuation and state interconversion

arccos(z) = π/2 + i log
(
i z +

√
1− z2

)
z = 3/28 + 75/(56λ)



Complex adiabatic connection path
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Coulson-Fisher points ≈ exceptional points ⇒ quasi-exceptional points



Section 3

PT -symmetric Quantum Mechanics



PT -Symmetric Quantum Mechanics



PT -Symmetric Quantum Mechanics

The spectrum of the Hamiltonian

Ĥ = p2 + i x3

is real and positive.

Why?

Because it is PT symmetric, i.e. invariant under the combination of

• parity P: p → −p and x → −x
• time reversal T : p → −p, x → x and i → −i
• Combined PT : p → p, x → −x and i → −i
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PT -Symmetric Quantum Mechanics

Ĥ = p2 + x2(ix)ε

• ε ≥ 0: unbroken PT -symmetry region

• ε = 0: PT boundary

• ε < 0: broken PT -symmetry region
(eigenfunctions of Ĥ aren’t eigenfunctions of PT simultaneously)



Hermitian vs PT -symmetric

PT -symmetric QM is an extension of QM into the complex plane

• Hermitian: Ĥ = Ĥ† where † means transpose + complex
conjugate

• PT -symmetric: Ĥ = ĤPT , i.e. Ĥ = PT Ĥ(PT )−1

• Hermiticity is very powerful as it guarantees real energies
and conserves probability

• (unbroken) PT symmetry is a weaker condition which still
ensure real energies and probability conservation



Hermitian vs PT -symmetric vs Non-Hermitian

Hermitian Ĥ PT -symmetric Ĥ non-Hermitian Ĥ

Ĥ† = Ĥ ĤPT = Ĥ Ĥ† 6= Ĥ

Closed systems PT -symmetric systems Open systems

〈a|b〉 = a† · b 〈a|b〉 = aCPT · b (scattering, resonances, etc)



PT -symmetric experiments

“Parity-time-symmetric whispering-gallery microcavities”
Peng et al. Nature Physics 10 (2014) 394



PT -symmetry in Quantum and Classical Physics



PT -symmetry in Hartree-Fock theory: minimal basis H2
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Burton, Thom & Loos, JCTC (revised) arXiv:1903.08489



PT -symmetry in Hartree-Fock theory

PT -HF theory

• MOs are PT -symmetric iff Fock operator is PT -symmetric (and vise-versa)

• Like other symmetries, PT -symmetry “propagates” during SCF process

• If MOs are PT -symmetric then MOs energies and HF energy are real

• PT -symmetry can be ensured by constructing PT -doublets



PT -symmetry is a new type of symmetry

The seven families of HF solutions

RHF (S2, Sz, T , K)

c-RHF (S2, Sz)UHF (Sz, K) p-UHF (Sz, T )

c-UHF (Sz)GHF (K) p-GHF (T )
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That’s (almost) the end...
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