Quantum Chemistry in the Complex Domain

Pierre-François (Titou) Loos

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

5th June 2019

Students, postdocs \& colleagues

- Selected CI and QMC

Anthony
Scemama

Michel
Caffarel

Mika Véril

Clotilde
Marut

- Green's function methods

Arjan
Berger

Pina
Romaniello

$\mathrm{Mr} / \mathrm{Ms}$
Postdoc

Loos, Romaniello \& Berger, JCTC 14 (2018) 3071
Véril, Romaniello, Berger \& Loos, JCTC 14 (2018) 5220

Quantum Package 2.0: the greatest thing since sliced baguette

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs",
Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176

Ground state of Cr_{2} in cc-pVQZ: full-valence CAS $(28,198)$

Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176

Applications

- sCI+PT2: Benchmarking excited-state methods Loos, Scemama, Blondel, Garniron, Caffarel \& Jacquemin, JCTC 14 (2018) 4360
- sCI+PT2: Double excitations

Loos, Boggio-Pasqua, Scemama, Caffarel \& Jacquemin, JCTC 15 (2019) 1939

- sCI+QMC: "Challenging" case of Fe

Scemama, Garniron, Caffarel \& Loos, JCTC 14 (2018) 1395

- sCI+QMC: Excitation energies with "deterministic" nodes

Scemama, Benali, Jacquemin, Caffarel \& Loos, JCP 149 (2019) 064103
Developments

- Semi-stochastic PT2

Garniron, Scemama, Loos \& Caffarel, JCP 147 (2017) 034101

- Renormalized PT2 \& stochastic selection Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176
- Internally-decontrated version (shifted-Bk)

Garniron, Scemama, Giner, Caffarel \& Loos, JCP 149 (2018) 064103

Range-separated hybrids are actually useful!!

G2 atomization energies

"A Density-Based Basis-Set Correction for Wave Function Theory", Loos, Pradines, Scemama, Toulouse \& Giner JPCL 10 (2019) 2931

How to morph a ground state into an excited state?

$$
\hat{H}=-\frac{1}{2} \hat{\nabla}^{2}+\lambda \sum_{i<j} \frac{1}{r_{i j}}
$$

Physical
Transition
$\lambda=1$

Complex
Adiabatic Connection

$$
\lambda=\lambda_{\mathrm{x}}+\mathbf{i} \lambda_{\mathrm{y}}
$$

"Complex Adiabatic Connection: a Hidden Non-Hermitian Path from Ground to Excited States",
Burton, Thom \& Loos, JCP 150 (2019) 041103
" \mathcal{T} T-Symmetry in Hartree-Fock Theory",
Burton, Thom \& Loos, JCTC (revised) arXiv:1903.08489

Section 2

Non-Hermitian quantum chemistry

Hermitian Hamiltonian going complex

Let's consider the Hamiltonian for two electrons on a unit sphere

$$
\boldsymbol{H}=-\frac{\nabla_{1}^{2}+\nabla_{2}^{2}}{2}+\frac{\lambda}{r_{12}}
$$

Loos \& Gill, PRL 103 (2009) 123008
The CID/CCD Hamiltonian for 2 states reads

$$
\boldsymbol{H}=\boldsymbol{H}^{(0)}+\lambda \boldsymbol{H}^{(1)}=\left(\begin{array}{cc}
\lambda & \lambda / \sqrt{3} \\
\lambda / \sqrt{3} & 2+7 \lambda / 5
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)+\lambda\left(\begin{array}{cc}
1 & 1 / \sqrt{3} \\
1 / \sqrt{3} & 7 / 5
\end{array}\right)
$$

The eigenvalues are

$$
E_{ \pm}=1+\frac{18 \lambda}{15} \pm \sqrt{1+\frac{2 \lambda}{5}+\frac{28 \lambda^{2}}{75}}
$$

For complex λ, the Hamiltonian becomes non Hermitian.
There is a (square-root) singularity in the complex- λ plane at

$$
\lambda_{\mathrm{EP}}=-\frac{15}{28}\left(1 \pm i \frac{5}{\sqrt{3}}\right) \quad \text { (Exceptional points) } \quad\left|\lambda_{\mathrm{EP}}\right| \approx 1.64>1
$$

Hermitian Hamiltonian going complex

- There is an avoided crossing at $\operatorname{Re}\left(\lambda_{\mathrm{EP}}\right)$
- Square-root branch cuts from $\lambda_{\text {EP }}$ running parallel to the Im axis towards $\pm i \infty$
- (non-Hermitian) exceptional points \equiv (Hermitian) conical intersection
- $\operatorname{Im}\left(\lambda_{\mathrm{EP}}\right)$ is linked to the radius of convergence of PT

Hermitian Hamiltonian going complex

- There is an avoided crossing at $\operatorname{Re}\left(\lambda_{\mathrm{EP}}\right)$
- Square-root branch cuts from $\lambda_{\text {EP }}$ running parallel to the Im axis towards $\pm i \infty$
- (non-Hermitian) exceptional points \equiv (Hermitian) conical intersection
- $\operatorname{Im}\left(\lambda_{\mathrm{EP}}\right)$ is linked to the radius of convergence of PT
parameter space branching plane
a) Conical intersections

Benda \& Jagau, JPCL 9 (2018) 6978

- At Cl , eigenvectors stay orthogonal
- At EP, both eigenvalues and eigenvectors coalesce (self-orthogonal state)
- Encircling CI, states do not interchange but wave function picks up geometric phase
- Encircling EP, states can interchange and wave function picks up geometric phase
- Encircling EP clockwise or anticlockwise yields different states
- Quantum mechanics is quantized because we're looking at it in the real plane (Riemann sheets or parking garage)
- If you extend real numbers to complex numbers you lose the ordering property of real numbers
- So, can we interchange ground and excited states away from the real axis?
- How do we do it (in practice)?
- Quantum mechanics is quantized because we're looking at it in the real plane (Riemann sheets or parking garage)
- If you extend real numbers to complex numbers you lose the ordering property of real numbers
- So, can we interchange ground and excited states away from the real axis?
- How do we do it (in practice)?

Let's consider (again) the Hamiltonian for two electrons on a unit sphere

$$
\hat{H}=-\frac{\nabla_{1}^{2}+\nabla_{2}^{2}}{2}+\frac{\lambda}{r_{12}}
$$

We are looking for a UHF solution of the form

$$
\Psi_{\mathrm{UHF}}\left(\theta_{1}, \theta_{2}\right)=\varphi\left(\theta_{1}\right) \varphi\left(\pi-\theta_{2}\right)
$$

where the spatial orbital is $\varphi=s \cos \chi+p_{z} \sin \chi$.
Ensuring the stationarity of the UHF energy, i.e., $\partial E_{\text {UHF }} / \partial \chi=0$

$$
\sin 2 \chi(75+6 \lambda-56 \lambda \cos 2 \chi)=0
$$

or

$$
\chi=0 \text { or } \pi / 2 \quad \chi= \pm \arccos \left(\frac{3}{28}+\frac{75}{56 \lambda}\right)
$$

$$
E_{\mathrm{RHF}}^{s^{2}}(\lambda)=\lambda \quad E_{\mathrm{RHF}}^{p_{2}^{2}}(\lambda)=2+\frac{29 \lambda}{25} \quad E_{\mathrm{UHF}}(\lambda)=-\frac{75}{112 \lambda}+\frac{25}{28}+\frac{59 \lambda}{84}
$$

Analytical continuation and state interconversion

$$
\arccos (z)=\pi / 2+i \log \left(i z+\sqrt{1-z^{2}}\right) \quad z=3 / 28+75 /(56 \lambda)
$$

Complex adiabatic connection path

Coulson-Fisher points \approx exceptional points \Rightarrow quasi-exceptional points

Section 3

$\mathcal{P T}$-symmetric Quantum Mechanics

$\mathcal{P T}$-Symmetric Quantum Mechanics

Real Spectra in Non-Hermitian Hamiltonians Having $\mathcal{P} \mathcal{T}$ Symmetry

Carl M. Bender ${ }^{1}$ and Stefan Boettcher ${ }^{2,3}$
${ }^{1}$ Department of Physics, Washington University, St. Louis, Missouri 63130
${ }^{2}$ Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
${ }^{3}$ CTSPS, Clark Atlanta University, Atlanta, Georgia 30314
(Received 1 December 1997; revised manuscript received 9 April 1998)
The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of $\mathcal{P T}$ symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These $\mathcal{P} \mathcal{T}$ symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This paper describes the unusual classical and quantum properties of these theories. [S0031-9007(98)06371-6]

$\mathcal{P} \mathcal{T}$-Symmetric Quantum Mechanics

The spectrum of the Hamiltonian

$$
\hat{H}=p^{2}+i x^{3}
$$

is real and positive.

Why?

The spectrum of the Hamiltonian

$$
\hat{H}=p^{2}+i x^{3}
$$

is real and positive.
Why?
Because it is $\mathcal{P} \mathcal{T}$ symmetric, i.e. invariant under the combination of

- parity $\mathcal{P}: p \rightarrow-p$ and $x \rightarrow-x$
- time reversal $\mathcal{T}: p \rightarrow-p, x \rightarrow x$ and $i \rightarrow-i$
- Combined $\mathcal{P T}: p \rightarrow p, x \rightarrow-x$ and $i \rightarrow-i$

$\mathcal{P} \mathcal{T}$-Symmetric Quantum Mechanics

$$
\hat{H}=p^{2}+x^{2}(i x)^{\epsilon}
$$

- $\epsilon \geq 0$: unbroken $\mathcal{P} \mathcal{T}$-symmetry region
- $\epsilon=0: \mathcal{P T}$ boundary
- $\epsilon<0$: broken $\mathcal{P} \mathcal{T}$-symmetry region (eigenfunctions of \hat{H} aren't eigenfunctions of $\mathcal{P} \mathcal{T}$ simultaneously)

Hermitian vs $\mathcal{P} \mathcal{T}$-symmetric

$\mathcal{P} \mathcal{T}$-symmetric QM is an extension of QM into the complex plane

- Hermitian: $\hat{H}=\hat{H}^{\dagger}$ where \dagger means transpose + complex conjugate
- $\mathcal{P T}$-symmetric: $\hat{H}=\hat{H}^{\mathcal{P} \mathcal{T}}$, i.e. $\hat{H}=\mathcal{P} \mathcal{T} \hat{H}(\mathcal{P} \mathcal{T})^{-1}$
- Hermiticity is very powerful as it guarantees real energies and conserves probability

- (unbroken) $\mathcal{P} \mathcal{T}$ symmetry is a weaker condition which still ensure real energies and probability conservation

Hermitian vs $\mathcal{P} \mathcal{T}$-symmetric vs Non-Hermitian

Hermitian \hat{H}	$\mathcal{P} \mathcal{T}$-symmetric \hat{H}	non-Hermitian \hat{H}
$\hat{H}^{\dagger}=\hat{H}$	$\hat{H}^{\mathcal{P} \mathcal{T}}=\hat{H}$	$\hat{H}^{\dagger} \neq \hat{H}$
Closed systems	$\mathcal{P} \mathcal{T}$-symmetric systems	Open systems
$\langle a \mid b\rangle=a^{\dagger} \cdot b$	$\langle a \mid b\rangle=a^{\mathcal{C} \mathcal{T}} \cdot b$	(scattering, resonances, etc)

$\mathcal{P} \mathcal{T}$-symmetric experiments

"Parity-time-symmetric whispering-gallery microcavities" Peng et al. Nature Physics 10 (2014) 394

Whh coutrilediens from

Patrick E. Dorey, Clare Dunning, Andreas Fring, Daniel W. Hook,
Hugh F: Jones, Sergil Kuzhel, Géza Lévai, and Roberto Tateo
16 world Scientific

Real UHF solution \equiv covalent configuration
$\phi \quad \phi \xrightarrow[\text { site-flip }]{\mathcal{P}} \quad \phi \quad \underset{\text { spin-flip }}{\mathcal{T}} \quad \phi \quad \downarrow$

Real RHF solution \equiv ionic configuration

Burton, Thom \& Loos, JCTC (revised) arXiv:1903.08489
$\mathcal{P} \mathcal{T}$-HF theory

- MOs are $\mathcal{P} \mathcal{T}$-symmetric iff Fock operator is $\mathcal{P} \mathcal{T}$-symmetric (and vise-versa)
- Like other symmetries, $\mathcal{P} \mathcal{T}$-symmetry "propagates" during SCF process
- If MOs are $\mathcal{P} \mathcal{T}$-symmetric then MOs energies and HF energy are real
- $\mathcal{P} \mathcal{T}$-symmetry can be ensured by constructing $\mathcal{P} \mathcal{T}$-doublets

The seven families of HF solutions

That's (almost) the end...

Acknowledgements

- Hugh Burton and Alex Thom (Cambridge)
- Denis Jacquemin (Nantes)
- Emmanuel Giner and Julien Toulouse (Paris)
- Emmanuel Fromager (Strasbourg)

Funding
NEXT

