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Students, postdocs & colleagues

® Selected Cl and QMC

=
Anthony Michel Clotilde
Scemama Caffarel Véril Marut

® Green's function methods

Arjan Pina Mr/Ms
Berger Romaniello Postdoc
Loos, Romaniello & Berger, JCTC 14 (2018) 3071
Véril, Romaniello, Berger & Loos, JCTC 14 (2018) 5220



Quantum Package 2.0: the greatest thing since sliced baguette

“Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs”,
Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176



What's selected CI (sCl)?

Ground state of Cr; in cc-pVQZ: full-valence CAS(28,198)
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Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176



What can you do with QP27 (Basically everything but here's a short list...

Applications
® sCI+PT2: Benchmarking excited-state methods
Loos, Scemama, Blondel, Garniron, Caffarel & Jacquemin, JCTC 14 (2018) 4360

® sCI+PT2: Double excitations
Loos, Boggio-Pasqua, Scemama, Caffarel & Jacquemin, JCTC 15 (2019) 1939

® sCl-+QMC: “Challenging” case of FeS
Scemama, Garniron, Caffarel & Loos, JCTC 14 (2018) 1395

® sC|+QMC: Excitation energies with “deterministic’ nodes
Scemama, Benali, Jacquemin, Caffarel & Loos, JCP 149 (2019) 064103

Developments
® Semi-stochastic PT2
Garniron, Scemama, Loos & Caffarel, JCP 147 (2017) 034101
® Renormalized PT2 & stochastic selection
Garniron et al., JCTC (ASAP) 10.1021/acs.jctc.9b00176
® |Internally-decontrated version (shifted-Bk)
Garniron, Scemama, Giner, Caffarel & Loos, JCP 149 (2018) 064103



Range-separated hybrids are actually useful!!

G2 atomization energies

“A Density-Based Basis-Set Correction for Wave Function Theory”,
Loos, Pradines, Scemama, Toulouse & Giner JPCL 10 (2019) 2931



How to morph a ground state into an excited state?
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“Complex Adiabatic Connection: a Hidden Non-Hermitian Path from Ground to Excited
States”,

Burton, Thom & Loos, JCP 150 (2019) 041103

“PT-Symmetry in Hartree-Fock Theory”,
Burton, Thom & Loos, JCTC (revised) arXiv:1903.08489
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Hermitian Hamiltonian going complex

Let's consider the Hamiltonian for two electrons on a unit sphere

_VEHVE A

H =
2 2

Loos & Gill, PRL 103 (2009) 123008
The CID/CCD Hamiltonian for 2 states reads
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The eigenvalues are
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For complex A, the Hamiltonian becomes non Hermitian.
There is a (square-root) singularity in the complex-\ plane at

Aep = 75 (1 + /%) (Exceptional points) [Aep| = 1.64 > 1

Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press, 2011



Hermitian Hamiltonian going complex
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There is an avoided crossing at Re()ep)

Square-root branch cuts from Agp running parallel to the Im axis towards
+ioco

(non-Hermitian) exceptional points = (Hermitian) conical intersection

Im(Xep) is linked to the radius of convergence of PT



Hermitian Hamiltonian going complex

There is an avoided crossing at Re()ep)

Square-root branch cuts from Agp running parallel to the Im axis towards
+ioco

(non-Hermitian) exceptional points = (Hermitian) conical intersection

Im(Xep) is linked to the radius of convergence of PT



Conical intersection (Cl) vs exceptional point (EP)

branching plane

parameter space

a) Conical intersections

Cl seam

. Cl

b) Exceptional points

EP seam

Im degeneracy

Re degeneracy

\ >

Benda & Jagau, JPCL 9 (2018) 6978

At Cl, eigenvectors stay orthogonal

At EP, both eigenvalues and
eigenvectors coalesce
(self-orthogonal state)

Encircling Cl, states do not
interchange but wave function
picks up geometric phase

Encircling EP, states can
interchange and wave function
picks up geometric phase

Encircling EP clockwise or
anticlockwise yields different states



The basic idea

Quantum mechanics is quantized
because we're looking at it in the
real plane (Riemann sheets or
parking garage)

If you extend real numbers to
complex numbers you lose the
ordering property of real numbers

So, can we interchange ground and
excited states away from the real
axis?

How do we do it (in practice)?



The basic idea

® Quantum mechanics is quantized
because we're looking at it in the
real plane (Riemann sheets or
parking garage)

® If you extend real numbers to
complex numbers you lose the
ordering property of real numbers

® So, can we interchange ground and
excited states away from the real
axis?

® How do we do it (in practice)?



Holomorphic HF = analytical continuation of HF

Let's consider (again) the Hamiltonian for two electrons on a unit sphere
" A
G- V + V2 LA
2 r2

We are looking for a UHF solution of the form
Wure (01, 02) = @(61)p(m — 02)
where the spatial orbital is ¢ = scosx + p. sin x.
Ensuring the stationarity of the UHF energy, i.e., 0Eynr/0x =0
sin2x (75 4+ 6\ — 56\ cos2x) = 0

or
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Holomorphic HF energy

2
Eqnr(A) = A

HF energy landscape

Attractive regime (A < 0)

Coulson-Fischer points

Repulsive regime
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Holomorphic HF energy

Complex adiabatic connection path
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PT-Symmetric Quantum Mechanics

VOLUME 80, NUMBER 24 PHYSICAL REVIEW LETTERS 15 JUNE 1998

Real Spectra in Non-Hermitian Hamiltonians Having ‘7 Symmetry

Carl M. Bender! and Stefan Boettcher??
'Department of Physics, Washington University, St. Louis, Missouri 63130
2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
3CTSPS, Clark Atlanta University, Atlanta, Georgia 30314
(Received 1 December 1997; revised manuscript received 9 April 1998)

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and
bounded below. Replacing this condition by the weaker condition of 7 symmetry, one obtains
new infinite classes of complex Hamiltonians whose spectra are also real and positive. These P77
symmetric theories may be viewed as analytic continuations of conventional theories from real to
complex phase space. This paper describes the unusual classical and quantum properties of these
theories.  [S0031-9007(98)06371-6]



PT-Symmetric Quantum Mechanics

The spectrum of the Hamiltonian
A= p2 +ix’
is real and positive.

Why?



PT-Symmetric Quantum Mechanics

The spectrum of the Hamiltonian
A= p2 +ix’
is real and positive.

Why?

Because it is P77 symmetric, i.e. invariant under the combination of
® parity P: p— —p and x = —x
® time reversal 7: p — —p, x > x and | — —i

® Combined PT: p— p, x = —x and i — —i



PT-Symmetric Quantum Mechanics

® ¢ > 0: unbroken PT-symmetry region
® ¢ =0: PT boundary

® ¢ < 0: broken PT-symmetry region
(eigenfunctions of H aren’t eigenfunctions of PT simultaneously)



Hermitian vs PT-symmetric

PT-symmetric QM is an extension of QM into the complex plane

Hermitian: A = A where 1 means transpose + complex
conjugate

PT-symmetric: H=HA"7 ie. A=PTHPT)?

Hermiticity is very powerful as it guarantees real energies
and conserves probability

(unbroken) PT symmetry is a weaker condition which still
ensure real energies and probability conservation



Hermitian vs P7T-symmetric vs Non-Hermitian

Hermitian H PT-symmetric H non-Hermitian H
A =H HPT = H HY £ H
Closed systems | P7T-symmetric systems Open systems
(alb) = af - b (alb) = aF7 - b (scattering, resonances, etc)




PT-symmetric experiments
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“Parity-time-symmetric whispering-gallery microcavities”
Peng et al. Nature Physics 10 (2014) 394



PT-symmetry in Quantum and Classical Physics

PT Symmetry

in Quantum and
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PT-symmetry in Hartree-Fock theory: minimal basis Ha
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Real UHF solution = covalent configuration
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Burton, Thom & Loos, JCTC (revised) arXiv:1903.08489



PT-symmetry in Hartree-Fock theory

PT-HF theory

® MOs are PT-symmetric iff Fock operator is PT-symmetric (and vise-versa)
® | ike other symmetries, PT-symmetry “propagates” during SCF process
® |f MOs are PT-symmetric then MOs energies and HF energy are real

® PT-symmetry can be ensured by constructing P7T-doublets



PT-symmetry is a new type of symmetry

The seven families of HF solutions

RHF (S2, S., T, K)




That's (almost) the end...
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