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There's a glitch in GW

quasiparticle energies

Bond length R

“Unphysical discontinuities in GW methods”,
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How to morph ground state into excited state?
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“Complex Adiabatic Connection: a Hidden Non-Hermitian Path from
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Burton, Thom & Loos, JCP Comm. 150 (2019) 041103
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PT-symmetric Quantum Mechanics
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PT-Symmetric Quantum Mechanics

VOLUME 80, NUMBER 24 PHYSICAL REVIEW LETTERS 15 JUNE 1998

Real Spectra in Non-Hermitian Hamiltonians Having ‘7 Symmetry

Carl M. Bender' and Stefan Boettcher®?
' Department of P Washington University, St. Louis, Missouri 63130
2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
3CTSPS, Clark Atlanta University, Atlanta, Georgia 30314
(Received 1 December 1997; revised manuscript received 9 April 1998)

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and
bounded below. Replacing this condition by the weaker condition of 7 symmetry, one obtains
new infinite classes of complex Hamiltonians whose spectra are also real and positive. These P77
symmetric theories may be viewed as analytic continuations of conventional theories from real to
complex phase space. This paper describes the unusual classical and quantum properties of these
theories. [S0031-9007(98)06371-6]



PT-Symmetric Quantum Mechanics

The spectrum of the Hamiltonian
A= P> +ix3
is real and positive.

Why? Because it is P77 symmetric, i.e. invariant under the combination of
® parity P: p— —p and x = —x
® timereversal 7: p— —p, x > xand | — —j



PT-Symmetric Quantum Mechanics

A= P+ x2(ix)6

Energy

® ¢ > 0: unbroken P7T-symmetry region

® ¢ =0: PT boundary

® € <0: broken PT-symmetry region
(eigenfunctions of H aren't eigenfunctions of P7 simultaneously)



Hermitian vs PT-symmetric

PT-symmetric QM is an extension of QM into the complex
plane

 Hermitian: H = AT where t means transpose +
complex conjugate
o PT-symmetric: H = HPT  ie. H= PTI—AI(PT)—l

® Hermiticity is very powerful as it guarantees real
energies and conserves probability

® (unbroken) PT symmetry is a weaker condition which
still ensure real energies and probability conservation



Hermitian vs P77 -symmetric vs Non-Hermitian

Hermitian H PT-symmetric H non-Hermitian H
Ht=H HPT = H HY £ H
Closed systems | PT-symmetric systems Open systems
(alb) =a' - b (a|lb) = a“PT - b (scattering, resonances, etc)




PT-symmetric QM is a genuine quantum theory

VOLUME 89, NUMBER 27 PHYSICAL REVIEW LETTERS 30 DECEMBER 2002

Complex Extension of Qquantum Mechanics

Carl M. Bender,' Dorje C. Brody,2 and Hugh F. Jones?
'Department of Physics, Washington University, St. Louis, Missouri 63130
2Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 12 August 2002; published 16 December 2002)

Requiring that a Hamiltonian be Hermitian is overly restrictive. A consistent physical theory of
quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less
restrictive and more physical condition of space-time reflection symmetry (P7” symmetry). One might
expect a non-Hermitian Hamiltonian to lead to a violation of unitarity. However, if 27 symmetry is
not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the
Hamiltonian. Using C, an inner product whose associated norm is positive definite can be constructed.
The procedure is general and works for any 27 -symmetric Hamiltonian. Observables exhibit CPT
symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with
conventional quantum mechanics but is rather a complex generalization of it.

Take-home message:
PT-symmetric Hamiltonian can be seen as analytic continuation of
Hermitian Hamiltonian from real to complex space. 1

IThe relativistic version of PT-symmetric QM does exist.



PT-symmetric experiments
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“Parity-time-symmetric whispering-gallery microcavities”
Peng et al. Nature Physics 10 (2014) 394



Highlight in Nature Physics (2015)
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PT-symmetry in Quantum and Classical Physics
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Section 3

Non-Hermitian quantum chemistry



Hermitian Hamiltonian going complex
Let's consider the Hamiltonian for two electrons on a unit sphere

VB4V A

H =
2 o

The CID/CCD Hamiltonian for 2 states reads

H= HO 4\ HY — (A/Aﬁ 21/;?/5) _ (8 g)ﬂ (1/1\@ 17//¢5§)

The eigenvalues are

18\ 2\ 28)\2
Ei =1+ 2 44/142
T AT

For complex A, the Hamiltonian becomes non Hermitian.
There is a (square-root) singularity in the complex-A plane at

1
Aep = —% (1 + /\%) (Exceptional points)



Hermitian Hamiltonian going complex
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There is an avoided crossing at Re(Agp)
The smaller Im(Agp), the sharper the avoided crossing is

Square-root branch cuts from Agp running parallel to the Im axis
towards +ioo

(non-Hermitian) exceptional points = (Hermitian) conical intersection
Im(Agp) is linked to the radius of convergence of PT



Conical intersection (Cl) vs exceptional point (EP)

parameter space branching plane

a) Conical intersections
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Cl seam

b) Exceptional points

EP seam

Im degeneracy

Re degeneracy \/

Benda & Jagau, JPCL 9 (2018) 6978

® At Cl, the eigenvectors stay
orthogonal

® At EP, both eigenvalues and
eigenvectors coalesce
(self-orthogonal state)

® Encircling a Cl, states do not
interchange but wave function
picks up geometric phase

® Encircling a EP, states can
interchange and wave function
picks up geometric phase

® encircling a EP clockwise or
anticlockwise yields different
states



Hermitian Hamiltonian going P77 -symmetric

How to PT-symmetrize a Cl matrix?

H= (/A/Aﬁ 2ii/7\/€5)

It is definitely not Hermitian but the
PT-symmetry is not obvious...

_ (€& iA
H_(I)\ 62)

_ ((61 4'062)/2 “ +0€2)/2>

o (i(Q _;1)/2 —i(e2 i 61)/2)

PT-symmetry projects exceptional
points on the real axis A
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non-Hermitian Quantum Chemistry



The basic idea

Quantum mechanics is
quantized because we're looking
at it in the real plane (Reimann
sheets or parking garage)

i SARAGE

-
If you extend real numbers to
complex numbers you lose the
ordering property of real
numbers

So, can we interchange ground
and excited states away from
the real axis?

How do we do it (in practice)?



The basic idea

® Quantum mechanics is
quantized because we're looking
at it in the real plane (Reimann
sheets or parking garage)

® |f you extend real numbers to
complex numbers you lose the
ordering property of real
numbers

® So, can we interchange ground
and excited states away from
the real axis?

¢ How do we do it (in practice)?



Holomorphic HF = analytical continuation of HF

Let's consider (again) the Hamiltonian for two electrons on a unit sphere

Vi+V3 A

Ao
2 ro

We are looking for a UHF solution of the form

Vunr(01,02) = @(01)p(m — 62)

where the spatial orbital is ¢ = scos x + p; sin x.

Ensuring the stationarity of the UHF energy, i.e., Eyne/0x =0
sin 2x (75 4+ 6\ — 56\ cos2y) =0

or

3 75
=0 2 =+ Il
X or 7/ X arccos (28 +56)\>
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Holomorphic HF energy

HF energy landscape
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Analytical continuation and state interconversion

arccos(z) = /2 + ilog(iz +v1i- z2> z=13/28+75/(56))
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Complex adiabatic connection path

Im(N\)
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Holomorphic HF energy

h-UHF
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e-e interaction strength A

Coulson-Fisher points &~ exceptional points = quasi-exceptional points



That's (almost) the end...
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