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Collaborators and Funding

• Selected CI and QMC

Anthony Yann Michel Denis
Scemama Garniron Caffarel Jacquemin

• Green function methods

Arjan Pina Mika
Berger Romaniello Véril



Selected CI methods + range-separated hybrids

“Quantum Package 2.0: An Open-Source Determinant-Driven Suite of
Programs”,

Garniron et al. , JCTC (submitted) arXiv:1902.08154



Green functions & self-consistency: an unhappy marriage?
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�Self-consistency?or

“Green functions and self-consistency: insights from the spherium model”,
Loos, Romaniello & Berger, JCTC 14 (2018) 3071



There’s a glitch in GW

“Unphysical discontinuities in GW methods”,
Véril, Romaniello, Berger & Loos, JCTC 14 (2018) 5220



How to morph ground state into excited state?

Physical
Transition

Complex 
Adiabatic Connection

“Complex Adiabatic Connection: a Hidden Non-Hermitian Path from
Ground to Excited States”,

Burton, Thom & Loos, JCP Comm. 150 (2019) 041103



Section 2

PT -symmetric Quantum Mechanics



Carl Bender

• Professor of Physics at Washington University
in St. Louis:
Expert in Mathematical Physics

• Homepage:
https://web.physics.wustl.edu/cmb/

• Book:
“Advanced Mathematical Methods for Scientists
and Engineers”

• Series of 15 lectures (can be found on
YouTube) on Mathematical Physics:

• summation of divergent series
• perturbation theory
• asymptotic expansion
• WKB approximation

• He will be lecturing at the 3rd Mini-school on
Mathematics (19th-21st Jun, Jussieu)
https://wiki.lct.jussieu.fr/gdrnbody

https://web.physics.wustl.edu/cmb/
https://wiki.lct.jussieu.fr/gdrnbody


PT -Symmetric Quantum Mechanics



PT -Symmetric Quantum Mechanics

The spectrum of the Hamiltonian

Ĥ = p2 + i x3

is real and positive.

Why? Because it is PT symmetric, i.e. invariant under the combination of

• parity P: p → −p and x → −x
• time reversal T : p → −p, x → x and i → −i



PT -Symmetric Quantum Mechanics

Ĥ = p2 + x2(ix)ε

• ε ≥ 0: unbroken PT -symmetry region

• ε = 0: PT boundary

• ε < 0: broken PT -symmetry region
(eigenfunctions of Ĥ aren’t eigenfunctions of PT simultaneously)



Hermitian vs PT -symmetric

PT -symmetric QM is an extension of QM into the complex
plane

• Hermitian: Ĥ = Ĥ† where † means transpose +
complex conjugate

• PT -symmetric: Ĥ = ĤPT , i.e. Ĥ = PT Ĥ(PT )−1

• Hermiticity is very powerful as it guarantees real
energies and conserves probability

• (unbroken) PT symmetry is a weaker condition which
still ensure real energies and probability conservation



Hermitian vs PT -symmetric vs Non-Hermitian

Hermitian Ĥ PT -symmetric Ĥ non-Hermitian Ĥ

Ĥ† = Ĥ ĤPT = Ĥ Ĥ† 6= Ĥ

Closed systems PT -symmetric systems Open systems

〈a|b〉 = a† · b 〈a|b〉 = aCPT · b (scattering, resonances, etc)



PT -symmetric QM is a genuine quantum theory

Take-home message:
PT -symmetric Hamiltonian can be seen as analytic continuation of

Hermitian Hamiltonian from real to complex space. 1

1The relativistic version of PT -symmetric QM does exist.



PT -symmetric experiments

“Parity-time-symmetric whispering-gallery microcavities”
Peng et al. Nature Physics 10 (2014) 394



Highlight in Nature Physics (2015)

NATURE PHYSICS | VOL 11 | OCTOBER 2015 | www.nature.com/naturephysics 799
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PT -symmetry in Quantum and Classical Physics



Section 3

Non-Hermitian quantum chemistry



Hermitian Hamiltonian going complex

Let’s consider the Hamiltonian for two electrons on a unit sphere
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For complex λ, the Hamiltonian becomes non Hermitian.
There is a (square-root) singularity in the complex-λ plane at
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Hermitian Hamiltonian going complex
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• There is an avoided crossing at Re(λEP)

• The smaller Im(λEP), the sharper the avoided crossing is

• Square-root branch cuts from λEP running parallel to the Im axis
towards ±i∞

• (non-Hermitian) exceptional points ≡ (Hermitian) conical intersection

• Im(λEP) is linked to the radius of convergence of PT



Conical intersection (CI) vs exceptional point (EP)

Benda & Jagau, JPCL 9 (2018) 6978

• At CI, the eigenvectors stay
orthogonal

• At EP, both eigenvalues and
eigenvectors coalesce
(self-orthogonal state)

• Encircling a CI, states do not
interchange but wave function
picks up geometric phase

• Encircling a EP, states can
interchange and wave function
picks up geometric phase

• encircling a EP clockwise or
anticlockwise yields different
states



Hermitian Hamiltonian going PT -symmetric

How to PT -symmetrize a CI matrix?

H =

(
λ iλ/

√
3

iλ/
√

3 2 + 7λ/5

)
It is definitely not Hermitian but the
PT -symmetry is not obvious...

H =

(
ε1 iλ
iλ ε2

)
=

(
(ε1 + ε2)/2 0

0 (ε1 + ε2)/2

)
+ i

(
i(ε2 − ε1)/2 λ
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)
PT -symmetry projects exceptional
points on the real axis
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Section 4

non-Hermitian Quantum Chemistry



The basic idea

• Quantum mechanics is
quantized because we’re looking
at it in the real plane (Reimann
sheets or parking garage)

• If you extend real numbers to
complex numbers you lose the
ordering property of real
numbers

• So, can we interchange ground
and excited states away from
the real axis?

• How do we do it (in practice)?
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Holomorphic HF = analytical continuation of HF

Let’s consider (again) the Hamiltonian for two electrons on a unit sphere

Ĥ = −∇
2
1 +∇2

2
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+

λ

r12

We are looking for a UHF solution of the form

ΨUHF(θ1, θ2) = ϕ(θ1)ϕ(π − θ2)

where the spatial orbital is ϕ = s cosχ+ pz sinχ.

Ensuring the stationarity of the UHF energy, i.e., ∂EUHF/∂χ = 0

sin 2χ (75 + 6λ− 56λ cos 2χ) = 0

or

χ = 0 or π/2 χ = ± arccos

(
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)



HF energy landscape
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Analytical continuation and state interconversion

arccos(z) = π/2 + i log
(
i z +

√
1− z2

)
z = 3/28 + 75/(56λ)



Complex adiabatic connection path
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Coulson-Fisher points ≈ exceptional points ⇒ quasi-exceptional points



That’s (almost) the end...
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