Quantum Chemistry in the Complex Domain

Hugh G. A. Burton, ${ }^{1}$ Alex J. W. Thom, ${ }^{1}$ and Pierre-François Loos ${ }^{2}$
${ }^{1}$ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
${ }^{2}$ Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

5th Mar 2019

Collaborators and Funding

- Selected Cl and QMC

Anthony
Scemama

Yann
Garniron

Michel
Caffarel

Denis
Jacquemin

- Green function methods

Arjan
Berger

Pina
Romaniello

Mika
Véril

Selected CI methods + range-separated hybrids

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs",
Garniron et al. , JCTC (submitted) arXiv:1902.08154

Green functions \& self-consistency: an unhappy marriage?

"Green functions and self-consistency: insights from the spherium model", Loos, Romaniello \& Berger, JCTC 14 (2018) 3071

There's a glitch in GW

"Unphysical discontinuities in GW methods",
Véril, Romaniello, Berger \& Loos, JCTC 14 (2018) 5220

How to morph ground state into excited state?

$$
\hat{H}=-\frac{1}{2} \hat{\nabla}^{2}+\lambda \sum_{i<j} \frac{1}{r_{i j}}
$$

Physical Transition

$$
\lambda=1
$$

Complex Adiabatic Connection

$$
\lambda=\lambda_{\mathrm{x}}+\mathrm{i} \lambda_{\mathrm{y}}
$$

"Complex Adiabatic Connection: a Hidden Non-Hermitian Path from Ground to Excited States", Burton, Thom \& Loos, JCP Comm. 150 (2019) 041103

Section 2

$\mathcal{P} \mathcal{T}$-symmetric Quantum Mechanics

Carl Bender

- Professor of Physics at Washington University in St. Louis:
Expert in Mathematical Physics
- Homepage:
https://web.physics.wustl.edu/cmb/
- Book:
"Advanced Mathematical Methods for Scientists and Engineers"
- Series of 15 lectures (can be found on YouTube) on Mathematical Physics:
- summation of divergent series
- perturbation theory
- asymptotic expansion
- WKB approximation
- He will be lecturing at the 3rd Mini-school on Mathematics (19th-21st Jun, Jussieu) https://wiki.lct.jussieu.fr/gdrnbody

$\mathcal{P} \mathcal{T}$-Symmetric Quantum Mechanics

Real Spectra in Non-Hermitian Hamiltonians Having $\mathcal{P} \mathcal{T}$ Symmetry

Carl M. Bender ${ }^{1}$ and Stefan Boettcher ${ }^{2,3}$
${ }^{1}$ Department of Physics, Washington University, St. Louis, Missouri 63130
${ }^{2}$ Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
${ }^{3}$ CTSPS, Clark Atlanta University, Atlanta, Georgia 30314
(Received 1 December 1997; revised manuscript received 9 April 1998)
The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of $\mathcal{P T}$ symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These $\mathcal{P} \mathcal{T}$ symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This paper describes the unusual classical and quantum properties of these theories. [S0031-9007(98)06371-6]

$\mathcal{P T}$-Symmetric Quantum Mechanics

The spectrum of the Hamiltonian

$$
\hat{H}=p^{2}+i x^{3}
$$

is real and positive.
Why? Because it is $\mathcal{P T}$ symmetric, i.e. invariant under the combination of

- parity $\mathcal{P}: p \rightarrow-p$ and $x \rightarrow-x$
- time reversal $\mathcal{T}: p \rightarrow-p, x \rightarrow x$ and $i \rightarrow-i$

$\mathcal{P T}$-Symmetric Quantum Mechanics

$$
\hat{H}=p^{2}+x^{2}(i x)^{\epsilon}
$$

- $\epsilon \geq 0$: unbroken $\mathcal{P} \mathcal{T}$-symmetry region
- $\epsilon=0: \mathcal{P T}$ boundary
- $\epsilon<0$: broken $\mathcal{P} \mathcal{T}$-symmetry region (eigenfunctions of \hat{H} aren't eigenfunctions of $\mathcal{P} \mathcal{T}$ simultaneously)

Hermitian vs $\mathcal{P} \mathcal{T}$-symmetric

$\mathcal{P} \mathcal{T}$-symmetric QM is an extension of QM into the complex plane

- Hermitian: $\hat{H}=\hat{H}^{\dagger}$ where \dagger means transpose + complex conjugate
- $\mathcal{P} \mathcal{T}$-symmetric: $\hat{H}=\hat{H}^{\mathcal{P} \mathcal{T}}$, i.e. $\hat{H}=\mathcal{P} \mathcal{T} \hat{H}(\mathcal{P} \mathcal{T})^{-1}$
- Hermiticity is very powerful as it guarantees real energies and conserves probability

- (unbroken) $\mathcal{P} \mathcal{T}$ symmetry is a weaker condition which still ensure real energies and probability conservation

Hermitian vs $\mathcal{P} \mathcal{T}$-symmetric vs Non-Hermitian

Hermitian \hat{H}	$\mathcal{P} \mathcal{T}$-symmetric \hat{H}	non-Hermitian \hat{H}
$\hat{H}^{\dagger}=\hat{H}$	$\hat{H}^{\mathcal{P} \mathcal{T}}=\hat{H}$	$\hat{H}^{\dagger} \neq \hat{H}$
Closed systems	$\mathcal{P} \mathcal{T}$-symmetric systems	Open systems
$\langle a \mid b\rangle=a^{\dagger} \cdot b$	$\langle a \mid b\rangle=a^{\mathcal{C} \mathcal{T}} \cdot b$	(scattering, resonances, etc)

$\mathcal{P} \mathcal{T}$-symmetric QM is a genuine quantum theory

Complex Extension of Quantum Mechanics

Carl M. Bender, ${ }^{1}$ Dorje C. Brody, ${ }^{2}$ and Hugh F. Jones ${ }^{2}$
${ }^{1}$ Department of Physics, Washington University, St. Louis, Missouri 63130
${ }^{2}$ Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 12 August 2002; published 16 December 2002)

Requiring that a Hamiltonian be Hermitian is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry ($\mathcal{P} \mathcal{T}$ symmetry). One might expect a non-Hermitian Hamiltonian to lead to a violation of unitarity. However, if $\mathcal{P} \mathcal{T}$ symmetry is not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the Hamiltonian. Using C, an inner product whose associated norm is positive definite can be constructed. The procedure is general and works for any $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian. Observables exhibit $C \mathcal{P} \mathcal{T}$ symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalization of it.

Take-home message:
 $\mathcal{P T}$-symmetric Hamiltonian can be seen as analytic continuation of Hermitian Hamiltonian from real to complex space. ${ }^{1}$

[^0]
$\mathcal{P} \mathcal{T}$-symmetric experiments

a

c

d

"Parity-time-symmetric whispering-gallery microcavities" Peng et al. Nature Physics 10 (2014) 394

Highlight in Nature Physics (2015)

$\mathcal{P T}$-symmetry in Quantum and Classical Physics

Whh contributions from
Patrick E. Dorey, Clare Dunning, Andreas Fring, Daniel W. Hook,
Hugh F. Jones, Sergii Kuzhel, Géra Léval, and Roberto Tateo
116 World Scientific

Section 3

Non-Hermitian quantum chemistry

Hermitian Hamiltonian going complex

Let's consider the Hamiltonian for two electrons on a unit sphere

$$
\boldsymbol{H}=-\frac{\nabla_{1}^{2}+\nabla_{2}^{2}}{2}+\frac{\lambda}{r_{12}}
$$

The CID/CCD Hamiltonian for 2 states reads

$$
\boldsymbol{H}=\boldsymbol{H}^{(0)}+\lambda \boldsymbol{H}^{(1)}=\left(\begin{array}{cc}
\lambda & \lambda / \sqrt{3} \\
\lambda / \sqrt{3} & 2+7 \lambda / 5
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)+\lambda\left(\begin{array}{cc}
1 & 1 / \sqrt{3} \\
1 / \sqrt{3} & 7 / 5
\end{array}\right)
$$

The eigenvalues are

$$
E_{ \pm}=1+\frac{18 \lambda}{15} \pm \sqrt{1+\frac{2 \lambda}{5}+\frac{28 \lambda^{2}}{75}}
$$

For complex λ, the Hamiltonian becomes non Hermitian.
There is a (square-root) singularity in the complex- λ plane at

$$
\lambda_{\mathrm{EP}}=-\frac{15}{28}\left(1 \pm i \frac{5}{\sqrt{3}}\right) \quad \text { (Exceptional points) }
$$

Hermitian Hamiltonian going complex

- There is an avoided crossing at $\operatorname{Re}\left(\lambda_{\mathrm{EP}}\right)$
- The smaller $\operatorname{Im}\left(\lambda_{\mathrm{EP}}\right)$, the sharper the avoided crossing is
- Square-root branch cuts from $\lambda_{\text {EP }}$ running parallel to the Im axis towards $\pm i \infty$
- (non-Hermitian) exceptional points \equiv (Hermitian) conical intersection
- $\operatorname{Im}\left(\lambda_{\mathrm{EP}}\right)$ is linked to the radius of convergence of PT

Conical intersection (CI) vs exceptional point (EP)

- At Cl , the eigenvectors stay orthogonal
- At EP, both eigenvalues and eigenvectors coalesce (self-orthogonal state)
- Encircling a CI, states do not interchange but wave function picks up geometric phase
- Encircling a EP, states can interchange and wave function picks up geometric phase
- encircling a EP clockwise or anticlockwise yields different states
Benda \& Jagau, JPCL 9 (2018) 6978

Hermitian Hamiltonian going $\mathcal{P} \mathcal{T}$-symmetric

How to $\mathcal{P} \mathcal{T}$-symmetrize a Cl matrix?

$$
\boldsymbol{H}=\left(\begin{array}{cc}
\lambda & i \lambda / \sqrt{3} \\
i \lambda / \sqrt{3} & 2+7 \lambda / 5
\end{array}\right)
$$

It is definitely not Hermitian but the $\mathcal{P T}$-symmetry is not obvious...

$$
\begin{aligned}
\boldsymbol{H} & =\left(\begin{array}{ll}
\epsilon_{1} & i \lambda \\
i \lambda & \epsilon_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(\epsilon_{1}+\epsilon_{2}\right) / 2 & 0 \\
0 & \left(\epsilon_{1}+\epsilon_{2}\right) / 2
\end{array}\right) \\
& +i\left(\begin{array}{cc}
i\left(\epsilon_{2}-\epsilon_{1}\right) / 2 & \lambda \\
\lambda & -i\left(\epsilon_{2}-\epsilon_{1}\right) / 2
\end{array}\right)
\end{aligned}
$$

$\mathcal{P T}$-symmetry projects exceptional points on the real axis

Section 4

non-Hermitian Quantum Chemistry

The basic idea

- Quantum mechanics is quantized because we're looking at it in the real plane (Reimann sheets or parking garage)
- If you extend real numbers to complex numbers you lose the ordering property of real numbers
- So, can we interchange ground
 and excited states away from the real axis?
- How do we do it (in practice)?

The basic idea

- Quantum mechanics is quantized because we're looking at it in the real plane (Reimann sheets or parking garage)
- If you extend real numbers to complex numbers you lose the ordering property of real numbers
- So, can we interchange ground and excited states away from the real axis?
- How do we do it (in practice)?

Holomorphic $\mathrm{HF}=$ analytical continuation of HF

Let's consider (again) the Hamiltonian for two electrons on a unit sphere

$$
\hat{H}=-\frac{\nabla_{1}^{2}+\nabla_{2}^{2}}{2}+\frac{\lambda}{r_{12}}
$$

We are looking for a UHF solution of the form

$$
\Psi_{\mathrm{UHF}}\left(\theta_{1}, \theta_{2}\right)=\varphi\left(\theta_{1}\right) \varphi\left(\pi-\theta_{2}\right)
$$

where the spatial orbital is $\varphi=s \cos \chi+p_{z} \sin \chi$.
Ensuring the stationarity of the UHF energy, i.e., $\partial E_{\mathrm{UHF}} / \partial \chi=0$

$$
\sin 2 \chi(75+6 \lambda-56 \lambda \cos 2 \chi)=0
$$

or

$$
\chi=0 \text { or } \pi / 2 \quad \chi= \pm \arccos \left(\frac{3}{28}+\frac{75}{56 \lambda}\right)
$$

HF energy landscape

$$
E_{\mathrm{RHF}}^{s^{2}}(\lambda)=\lambda \quad E_{\mathrm{RHF}}^{p_{z}^{2}}(\lambda)=2+\frac{29 \lambda}{25} \quad E_{\mathrm{UHF}}(\lambda)=-\frac{75}{112 \lambda}+\frac{25}{28}+\frac{59 \lambda}{84}
$$

Analytical continuation and state interconversion

$$
\arccos (z)=\pi / 2+i \log \left(i z+\sqrt{1-z^{2}}\right) \quad z=3 / 28+75 /(56 \lambda)
$$

Complex adiabatic connection path

Coulson-Fisher points \approx exceptional points \Rightarrow quasi-exceptional points

That's (almost) the end...

Acknowledgements

- Hugh Burton and Alex Thom (Cambridge)
- Emmanuel Giner and Julien Toulouse (Paris)
- Denis Jacquemin (Nantes)
- Emmanuel Fromager (Strasbourg)
- Pina Romaniello and Arjan Berger (Toulouse)
- Anthony Scemama and Michel Caffarel (Toulouse)

[^0]: ${ }^{1}$ The relativistic version of $\mathcal{P T}$-symmetric QM does exist.

