Selected CI and Jastrow-free QMC methods for Chemistry

Anthony Scemama, Yann Garniron, Denis Jacquemin, Michel Caffarel & Pierre-François (Titou) Loos

Laboratoire de Chimie et Physique Quantiques, UMR5626, Université Paul Sabatier, Toulouse, France

16th May 2018

マボト イラト イラト

Collaborators and Funding

• Selected CI and QMC

Anthony Scemama

Yann Garniron

Michel Caffarel

Denis Jacquemin

3

• Green function methods

Arjan Berger

Pina Romaniello

Mika Véril

イロト イポト イヨト イヨト

Green functions and self-consistency: an unhappy marriage?

"Green functions and self-consistency: insights from the spherium model", Loos, Romaniello & Berger, JCTC (in press) arXiv:1803.04234

< 17 >

A B + A B +

3

Section 2

Selected CI

・ロン ・回と ・ヨン ・ ヨン

= 990

▲御≯ ▲ 副≯

< ∃⇒

The CIPSI algorithm

CIPSI = **CI** using a Perturbative Selection made Iteratively

- Based on old idea by Bender and Davidson (1969)
- Further developments in Toulouse many years ago (Malrieu, Evangelisti, Daudey, Spiegelman, etc)
- CIPSI is a good candidate for massively parallel wave function calculations (PhD E. Giner and Y. Garniron)
- CIPSI ≈ deterministic version of FCIQMC Caffarel et al., Recent Progress in Quantum Monte Carlo (2016) Chap. 2, 15-46.
- Open-source code: QUANTUM PACKAGE (A. Scemama) https://github.com/scemama/quantum_package

Color code

Internal vs External

- Green: reference/variational/internal wave function (zeroth-order or model space)
- Red: perturbers or external wave function (first-order or perturbative space)

イロト イポト イヨト イヨト

3

CIPSI algorithm

Object of the second second

$$|\Psi^{(0)}\rangle = \sum_{I \in \mathcal{D}} c_I |I\rangle \qquad \qquad E^{(0)} = \frac{\langle \Psi^{(0)} | H | \Psi^{(0)} \rangle}{\langle \Psi^{(0)} | \Psi^{(0)} \rangle}$$

e Generate external determinants:

$$\mathcal{A} = \left\{ (orall I \in \mathcal{D}) \left(orall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2
ight) : \ket{lpha} = \hat{T} \ket{I}
ight\}$$

③ Second-order perturbative contribution of each $|\alpha\rangle$:

$$\delta E(\alpha) = \frac{|\langle \Psi^{(0)} | \hat{H} | \alpha \rangle|^2}{E^{(0)} - \langle \alpha | \hat{H} | \alpha \rangle}$$

Select $|\alpha\rangle$ with largest $\delta E(\alpha)$ and add them to \mathcal{D}

Iterate

Giner, Scemama & Caffarel, JCP 142 (2015) 044115

- 4 同 2 4 日 2 4 日 2

< 17 >

< ∃ >

- ∢ ⊒ →

æ

CIPSI on the Titanium atom

Few remarks...

- When all $|I\rangle$ are selected, we obtain the FCI energy
- CIPSI is more an algorithm than a method
- CIPSI generates various wave function methods: CID, CISD, CISDT, CAS, CASSD, MRCI, etc.
- Most of wave function methods can be performed à la CIPSI

э

< A >

PT2 correction

How do we know how far we are from the "true" FCI?

• Second-order Epstein-Nesbet correction:

$$\boldsymbol{E}^{(2)} = \sum_{\alpha} \delta \boldsymbol{E}(\alpha)$$

• $|\alpha\rangle$'s with largest $\delta E(\alpha)$ have been added to $\Psi^{(0)}$ previously \Rightarrow only small contributions remaining

- A increases with D
 ⇒ a very large number of very small contributions
- In practice, we use a semi-stochastic algorithm to compute E⁽²⁾
 ⇒ much faster!!
 Garniron, Scemama, Loos & Caffarel, JCP 147 (2017) 034101
- We linearly extrapolate to $E^{(2)} = 0$ to reach the FCI limit (exFCI)

< 17 >

< ∃ >

- ∢ ⊒ →

æ

CIPSI on the Titanium atom

A mountaineering strategy to excited states

- sCl calculations (up to several millions of determinants)
- Large (diffuse) basis sets (AVXZ)

Loos, Scemama, Blondel, Garniron, Caffarel & Jacquemin JCTC (submitted)

Ξ.

Benchmarking excited-state methods vs TBE/cc-pVTZ

-∢ ⊒ →

3

Errors in ADC(2) & ADC(3) for states with large (> 0.15 eV) ADC(2) error

ロト (日) (日) (日) (日) (日) (日)

Selected shifted-Bk for very large wave functions

$$\mathbf{H}\mathbf{c} - E\mathbf{c} = \begin{pmatrix} \mathbf{H}^{(0)} & \mathbf{h}^{\dagger} \\ \mathbf{h} & \mathbf{H}^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{c}^{(0)} \\ \mathbf{c}^{(1)} \end{pmatrix} - E \begin{pmatrix} \mathbf{c}^{(0)} \\ \mathbf{c}^{(1)} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

 $\Rightarrow \mathbf{c}^{(1)} = -(\mathbf{H}^{(1)} - E\mathbf{I})^{-1}\mathbf{h}\,\mathbf{c}^{(0)}$

Effective Hamiltonian: $\mathbf{H}_{eff} = \mathbf{H}^{(0)} + \mathbf{\Delta}$ Dressing term: $\mathbf{\Delta} = \mathbf{h}^{\dagger} \mathbf{c}^{(1)}$

Approximation #1 (Bk method): $\Delta = \mathbf{h}^{\dagger} (E\mathbf{I} - \mathbf{D}^{(1)})^{-1} \mathbf{h}$

Gershgorn & Shavitt, IJQC 2 (1968) 751

Selected shifted-Bk for very large wave functions

$$\mathbf{H}\mathbf{c} - E\mathbf{c} = \begin{pmatrix} \mathbf{H}^{(0)} & \mathbf{h}^{\dagger} & \mathbf{0} \\ \mathbf{h} & \mathbf{H}^{(1)} & \mathbf{g}^{\dagger} \\ \mathbf{0} & \mathbf{g} & \mathbf{H}^{(2)} \end{pmatrix} \begin{pmatrix} \mathbf{c}^{(0)} \\ \mathbf{c}^{(1)} \\ \mathbf{c}^{(2)} \end{pmatrix} - E \begin{pmatrix} \mathbf{c}^{(0)} \\ \mathbf{c}^{(1)} \\ \mathbf{c}^{(2)} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

$$\Rightarrow \mathbf{c}^{(1)} = -\left[(\mathbf{H}^{(1)} - E\mathbf{I}) - \mathbf{g}^{\dagger} (\mathbf{H}^{(2)} - E\mathbf{I}) \mathbf{g} \right]^{-1} \mathbf{h} \, \mathbf{c}^{(0)}$$

Effective Hamiltonian: $\mathbf{H}_{eff} = \mathbf{H}^{(0)} + \mathbf{\Delta}$ Dressing term: $\mathbf{\Delta} = \mathbf{h}^{\dagger} \mathbf{c}^{(1)}$

Approximation #2 (shifted-Bk method): $\Delta = \mathbf{h}^{\dagger} (E^{(0)} - \mathbf{D}^{(1)})^{-1} \mathbf{h}$

Davidson, McMurchie & Day, IJQC 74 (1981) 5491

A B > A B >

< ∃⇒

Selected shifted-Bk for very large wave functions

Comments

- Multi-state version also available
- Provides better trial wave functions for QMC

Section 3

Quantum Monte Carlo

・ロン ・回と ・ヨン ・ ヨン

Jastrow-free QMC protocol

Trial wave function for QMC

$$\Psi_{\mathsf{T}}(\boldsymbol{R}) = e^{J(\boldsymbol{R})} \sum_{l} c_{l} D_{l}^{\uparrow}(\boldsymbol{R}^{\uparrow}) D_{l}^{\downarrow}(\boldsymbol{R}^{\downarrow})$$

- The multideterminant part is obtained via the (selected CI) CIPSI algorithm Giner et al. CJC 91 (2013) 879; JCP 142 (2015) 044115 Caffarel et al. JCP 144 (2016) 151103
- We may or may not use a "minimal" (nodeless) Jastrow J(R)
 ⇒ Deterministic construction of the nodal surface
- Open-source code: QMC=CHEM (A. Scemama) https://github.com/scemama/qmcchem
- Interface for QMCPACK also available!

QMC@sCl without Jastrow: dissociation of FeS

Method ^a	ϵ	Ndet	N [↑]	N↓	acronym
sCl	10-4	15 723	191	188	sCI(4)
	10^{-5}	269 393	986	1 191	sCI(5)
	10^{-6}	1 127 071	3 883	4 623	sCI(6)
	0	8 388 608	364 365	308 072	$sCI(\infty)$
exFCI	—	$\sim 10^{27}$	$\sim 10^{16}$	$\sim 10^{11}$	FCI

^aBasis set: VTZ-ANO-BFD for Fe and VTZ-BFD for S

What	Who	D ₀ (in eV)
Experiment	Matthew et al.	3.240 ± 0.003
CAS/Jastrow/opt	Hagagi-Mood/Luchow	3.159 ± 0.015
exFCI/DMC/extrap ^a	Scemama and co	3.271 ± 0.077

^aDMC: Stochastic reconfiguration (fixed number of walkers)

Hagagi-Mood & Luchow, JPCA 121 (2017) 6165

イロン イロン イヨン イヨン

3

Scemama, Garniron, Caffarel & Loos, JCTC 14 (2018) 1395

The protocol: extrapolation to FCI nodes

Scemama, Garniron, Caffarel & Loos, JCTC 14 (2018) 1395

< ∃ >

< (17) > < (2)

э

How do fixed-node errors compensate in excited states?

Can we get accurate excitation energies in organic molecules?

TABLE I. Number of determinants N_{det} (and their corresponding acronym) of the various sCI-based trial wave functions for the singlet and triplet spin manifolds of H₂O and CH₂O at various truncation level ϵ . The characteristics of the extrapolated FCI (exFCI) expansion are also reported.

Method	e	N _{det} for singlet manifold					N _{det} for triplet manifold				acronym	
		H ₂ O		CH ₂ O		H ₂ O		CH ₂ O				
		AVDZ	AVTZ	AVQZ	AVDZ	AVTZ	AVDZ	AVTZ	AVQZ	AVDZ	AVTZ	
sCI	10^{-4}	9 4 3 2	9948	8 576	23 317	24672	5 087	5760	5 6 27	22 938	23 311	sCI(4)
	10^{-5}	89 797	110 557	74414	255 802	255802	46 264	58 632	55 637	227 083	311 542	sCI(5)
	10^{-6}	636 324	711 120	325 799	770 978	1584576	234 862	317 880	243 947	1074559	1699728	sCI(6)
	10^{-7}	3 1 19 6 4 3	2256057	697 703	_	—	1 029 683	1074337	681 392	_	—	sCI(7)
	0	5869449	5589200	1 139 302	2043030	6773751	4566873	3 760 373	1833526	6637572	3 172 099	sCI(∞)
exFCI	—	$\sim 10^{10}$	$\sim 10^{13}$	$\sim 10^{15}$	$\sim 10^{15}$	$\sim 10^{20}$	$\sim 10^{10}$	$\sim 10^{13}$	$\sim 10^{15}$	$\sim 10^{15}$	$\sim 10^{20}$	exFCI

Scemama, Benali, Jacquemin, Caffarel & Loos (in preparation)

< ロ > < 同 > < 三 > < 三 >

3

Fixed-node error in excited states: water

Water: (all-electron) DMC@CIPSI

PF Loos

sCI & QMC for Chem

290

Fixed-node error in excited states: water

Fixed-node error in excited states: water

Complete basis set (CBS) extrapolation

Triplet states of water: exDMC (AVDZ, AVTZ, AVQZ and CBS)

PF Loos sCI & QMC for Chem

Fixed-node error in excited states: formaldehyde

Fixed-node error in excited states: formaldehyde

Fixed-node error in excited states: formaldehyde

That's the end...

Thank you!

イロン イロン イヨン イヨン

= 990