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Meotivations
Accurate energies with quantum Monte Carlo (QMC)

Trial wave function for QMC

Wr(R) =

¥ _aD](R") Df(R)
!

@ The multideterminant part is obtained via the (selected FCI) CIPSI algorithm

Giner et al. JCP 142 (2015) 044115

o We use a “minimal” (nodeless) Jastrow J(R)

y
The water molecule [Caffarel et al. JCP 144 (2016) 151103]
TABLE III. C i of d-state total energies of
water obtained with the most accurate (heoreucal methods. Energies in a.u.
TABLE II. All-electron DMC energies (in a.u.) obtained with CIPSI nodes
for each basis set. Second column: Increase of CPU time due to the use of the Clark et al., DMC (upper bound) ~76.436 8(4)
large multideterminant expansion. ‘This work, DMC (upper bound) ~76.437 44(18)
- Almora-Diaz,”” CISDTQQnSx (upper bound) ~76.4343
Basis set[Ndets] Tepu(Ndets)/ Tepy(1det) EQMC Helgaker ef al.,”? R12-CCSD(T) ~76.439(2)
i 30
cc-pCVDZ[172256] ~101 ~76.41571(20) Muller and Kl:'.lzelmgg, R12-CCSD(T) -76.4373
cc-pCVTZ[640426] ~185 ~76.43182(19) Almora-Diaz, " FC1 + CBS ~76.4386(9)
cc-pCVQZ[666927] ~128 ~76.43622(14) Halkler et al., " CCSD(T) + CBS ~76.4386
cc-pCVSZ[1423377) 235 _76.43744(18) Bytautas and Ruedenberg,” FCI + CBS ~76.4390(4)
This work, DMC + CBS ~76.43894(12)
Experimentally derived estimate”” -76.4389
v
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[QICLIEEILIN  Motivations

Chromium dimer

Table: Variational ground-state energy E(©) and second-order contribution E(?) of the Cro
molecule with bond length 1.68 A computed with various basis sets. For all basis sets, the
reference is composed of 2 x 107 determinants selected in the valence FCl space (28 electrons).

Reference Basis Active space EO® E® EO® + E®

CIPSI cc-pVDZ (28e,760) —2087.2278833  —0.068334(1) —2087.296217(1)
cc-pVTZ (28e,1260) —2087.4497817  —0.124676(1) —2087.574423(1)
cc-pVQZ (28e,1760) —2087.5133733  —0.155957(1)  —2087.669 330(1)

Garniron, Scemama, Loos & Caffarel, JCP 147 (2017) 034101

= We need to get to the CBS limit faster!
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Introduction [EIENE

Issues

What we don't want...
® redundant work between Jastrow and multideterminant part
@ chemical intuition and/or user input

®® stochastic optimization

What we want...
© a systematic, black-box procedure
© compact FCI expansions
© the exact (non-relativistic) energy, i.e. minimizing the fixed-node error

©©® a massively parallel implementation

= Explicitly-correlated FCI (selected if possible), i.e. FCI-F12 method
Booth et al. JCP 137 (2012) 164112; Kersten et al. JCP 145 (2016) 054117

Pierre-Francois Loos (LCPQ, CNRS/UPS) FCI-F12 WATOC17 4/13



Ansatz

Wave function ansatz

wy= 10 + IR

conventional FCI explicitly correlated

D)=Y"aln F) =36
)

i

projector: Q =1 — Z [11] correlation factor: f = Z fij
I i<j

Correlation factor: Slater geminal fitted with Gaussian geminals

1-— exp(—)\ru) 2 Neg 2
flo=———"—"2=rp+ O(I’lg) eXP )\I’12 E av eXP( /\,,I’12>
A \—v—’

Slater geminal .
Gaussian geminal

Ten-no, CPL 398 (2004) 56; Tew & Klopper, JCP 123 (2005) 074101
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Effective Hamiltonian theory

Dressing the FCI matrix

AW) = EN) == a[Hi+c " (1AIF) ~ E| + 3 csHy =0,
J#1
. Hy + ¢ (I|A|F), if I =J,
Hy = .
Hyy, otherwise.

Dressing term

WAIF) =Yt

(IWAF|1J) =" Hixfrs |,
K

incomplete basis set correction

= The amplitudes t;’s are obtained to satisfy the e-e cusp conditions (SP ansatz)
Ten-no, JCP 121 (2004) 117
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Three- and four-electron integrals over Gaussian geminals

THE JOURNAL OF CHEMICAL PHYSICS 147, 024103 (2017) ‘2:' ‘12"@
Three- and four-electron integrals involving Gaussian geminals: ‘ ( ® ®
N, ) (

Fundamental integrals, upper bounds, and recurrence relations

Giuseppe M. J. Barca' and Pierre-Frangois Loos'22) 4
I Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia S,
2Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France

(Received 26 April 2017; accepted 22 June 2017; published online 11 July 2017)

A2z = Aga =0
‘We report the three main ingredients to calculate three- and four-electron integrals over Gaussian CraGraGuy
basis functions involving Gaussian geminal operators: fundamental integrals, upper bounds, and Nay = O(N?) S
recurrence relations. In particular, we consider the three- and four-electron integrals that may arise in B
explicitly correlated F12 methods. A straightforward method to obtain the fundamental integrals is )

given. We derive vertical, transfer, and horizontal recurrence relations to build up angular momentum
over the centers. Strong, simple, and scaling-consistent upper bounds are also reported. This latest
ingredient allows us to compute only the O(N?) significant three- and four-electron integrals, avoid-
ing the computation of the very large number of negligible integrals. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4991733]

e

O(N?)

Contracted
shell-sextets

(a1023a4[b1bababs)

Contracted
shell-quartets|
laabraaba)

Barca, Loos & Gill, in preparation
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Resolution of the identity (RI) approximation

RI approximation Q
e e] O complementary
— Z ‘A><A| | [caBs virtual space {a}
—= [ i} =2
| “ O % complete
T §------ orbital
“ k space
Dressing term {Z—= Lvirtua
“7 space {a} orbital space {p}
+ (P} = {3} U {a}
— — occupied
(|AIF) = th ;H/Af;u %Hmfm et
= Z ty Z Hixf xy,
Xec Valeev, CPL 395 (2004) 190
v
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Algorithm

Self-consistent dressing of the FCI matrix

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14: end procedure

: procedure DRESSED FCI-F12

Perform a (selected) FCI calculation to get |D) = >, ¢/ |/)
Compute extra integrals, e.g. (I|Hf|J)

while |AE| > 7 do

Determine t;’s to satisfy e-e cusp conditions

Form the dressed Hamiltonian H

Diagonalize H to get a new set of ¢/'s and energy E
end while

Return useful quantities for QMC, i.e. ¢/’s and t;'s

= It can be “embedded” in the Davidson diagonalization
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[llustrative calculations on a two-electron system

Paradigm: “Two electrons on a glome”

@ Singlet pair of electrons on a surface of a 3-sphere of radius R = uniform density!
Loos & Gill PRL 103 (2009) 123008; JCP 135 (2011) 214111

o Everything can be done analytically = great to test approximation(s)!
Loos & Gill PRA 79 (2009) 062517

@ For R=1, E. = —40.2 mE, = similar to He!
Loos & Gill PRL 105 (2010) 113001; CPL 500 (2010) 1
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[llustrative calculations on a two-electron system

Convergence of the correlation energy: R =1, Lgy = 3L and fi2 = n2
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v
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Conclusion Concluding remarks

Concluding remarks

Things to explore further...
@ Design a selected version of the algorithm
@ Three-electron integrals or RI tricks?

@ More generally, how do we get the nodes right?

Future directions...

o Efficient and massively parallel implementation in QUANTUM PACKAGE
https://github.com/LCPQ/quantum_package

o We are currently working on a similar methodology to enforce the electron-nucleus
cusp in QMC calculations
Loos, Scemama & Caffarel, in preparation.
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https://github.com/LCPQ/quantum_package
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