Electron-nucleus cusp correction for molecular orbitals

Pierre-Francois Loos, Anthony Scemama and Michel Caffarel

Laboratoire de Chimie et Physique Quantiques, UMR5626, Université Paul Sabatier,
Toulouse, France

CMMSE 2017 (Cadiz, Spain)

7th Jul 2017

Pierre-Francois Loos (LCPQ, CNRS/UPS) e-n cusp correction for MOs CMMSE 2017 1/25



Introduction Local energy

A good presentation always starts like this...

The Schrodinger equation is

VR = (r17 ey rn) S R3n, Flwexact(R) - Eexactwexact(R)

and can be recast as

’:Iwexact ( R) _ -i\—wexact(R)
Wexact ( R) N Wexact ( R)

+ V(R) = Feact
where

T(R):—%ZV?

V(R) = 2 !

R == > L= Ly
i i<j

fwexact ( R)

In a “good” wave function, the “explosions” in V(R) must be compensated by Vooi(R)
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Introduction Kato cusp

Kato coalescence conditions

Kato electron-nucleus (e-n) cusp condition

Kato showed that, when an electron meet a nucleus, we must have

¥ nuclei A and electrons i, W = —Za (Veact(R))]

ri=rp

ri=ra

This is called the Kato e-n cusp condition and it makes the local energy finite at each
nuclear center

Kato, Com Pure Appl Math 10 (1957) 151
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The hydrogen atom
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Trial wave function
Trial wave functions within quantum Monte Carlo (QMC)

Multideterminant Slater-Jastrow wave funtion

A typical QMC trial wave function has the form

Ur(R) = e’®>" D] (R) D} (RY)
1

built with molecular orbitals (MOs) looking like

N
oi(r) = Z cui xu(r) where x,.(r) is a Gaussian basis function
n

A Gaussian function centered at r = 0 is “cuspless” at r =0, i.e.

o 0|
—ar | 70

r=0
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The hydrogen atom
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Introduction Local energy

Local energy

Trial wave function and local energy

If the trial wave function Wt is approximate,
AV (R) # EV1(R)

but one can define .
HV1(R) = Eoc(R)Wr(R)

where the local energy is

Ec(R) = %ﬁg)

The fluctuations of Ei,c measure the “quality” of Wt
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Introduction Local energy

The hydrogen atom
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The hydrogen atom
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Introduction Local energy

The hydrogen atom
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The hydrogen atom
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The hydrogen atom
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The hydrogen atom
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Introduction Local energy

The hydrogen atom
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How can we keep E. finite at the e-n coalescence points?

1. Use a pseudopotential to get rid of the core electrons

© With Gaussian basis functions, T(R) is finite at nuclei.
Therefore, if V(R) is made finite, then Eioc(R) will be finite

® One can always blame the pseudopotential...
® You must use a pseudo for all the atoms!

®® (Some) QMC people use a pseudopotential even on the hydrogen atom(!)
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How can we keep E. finite at the e-n coalescence points?

2. Impose e-n cusp via a one-body term within the Jastrow factor

If the Slater determinant D(R) is cuspless, then

—Zaria
V1 (R) = D(R)exp Z 15 bara
iA !

has the right e-n cusp

© Nodeless function: doesn’'t change the nodal structure of Wt
® Not orthogonal to MOs: redundant work

®® Needs a (noisy) stochastic optimization of Jastrow parameters
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How can we keep E. finite at the e-n coalescence points?

3. Working on the MOs...

Sufficient condition: if each MO satisfies the Kato cusp condition, then D(R) also
satisfies this condition.

@ Replace the core MOs with tabulated Slater-based ones
Scemama et al. JCP 141 (2014) 244110

©® Gaussians basis sets better than Slater ones and yield better nodes
o Create core MOs with STO-NG (N > 10), then replace them with STOs
Petruzielo et al. JCP 136 (2012) 124116
® Lots of two-electron integrals to calculate
o Use Slater-type basis functions
Nemec et al. JCP 132 (2010) 034111
©® Expensive for large systems and e-n cusp not guaranteed
@ “Circoncision” of the MOs around the nuclei
Ma et al. JCP 122 (2005) 224322

@ definitely not “ab inito”
® widely used
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The hydrogen atom (again)
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What are we doing?

“We augment the Gaussian basis set with a minimal number of Slater
basis functions”

Two procedures
@ One-shot (OS)

@ Self-consistent dressing (SCD)
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[N NEETESENRS EIES M One-shot procedure

Mixed Gaussian-Slater basis: 1. One-shot procedure

@ Compute HF or KS cuspless MOs ¢;(r) in your favourite Gaussian basis set
@ Add a cusp-correcting s-type Slater on each atom A:

i 53 .
{a(r) = \/%exp[—&;|r —ra]] with & = E:E:ng

to create
M .
= ¢i(r) + Ppi(r) where pi(r) = & a(r)
A
© Make the cusp-correcting MO ;(r) orthogonal to the space spanned by the

Gaussians o
P=1- Z X)Xl
I3

@ Adjust Ea;'s to enforce the cusp conditions for each MO i and each nucleus A

B . _ B
S| = Z0RA(ra) = Xalra) + 3 Shuxa(ra) | &5 = 0i(ra)

B ©
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(P NEETESENRS EIES M Self-consistent dressing.

Mixed Gaussian-Slater basis: 2. Self-consistent dressing

We want ¢;(r) to be the best orbital possible...

Deng, Gilbert & Gill, JCP 130 (2009) 231101
Projecting out over (x| yields

S Pt e (ﬁ;;A ¥ FM§;A> _te,
v A A
where
Fuw = (Xl flx) Fua = (xulf1Xa) Sua = (Xul¥a)
To avoid computing I:_[LA, we do the following approximation:
YLA - Z F;O\g;\A ~ F’LA - Z h,u)\ggA
A A
which involves only one-electron integrals
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(P NEETESENRS EIES M Self-consistent dressing.

Mixed Gaussian-Slater basis: 2. Self-consistent dressing

We obtain the following eigenvalue problem:
Z ﬁ;lu/cui = éicy,ig
v
where IE;LU is an (orbital-dependent) dressed Fock operator

FHM+DL7 ifp=v,

Fi, =
: Fuv, otherwise,

with

A —1 ~ Ti &i
D;, = Cui E CAj h;LA - E h,u)\s/\A
A A

The process is repeated until convergence... or not...

NB: somewhat related to the Perdew-Zunger self-interaction correction
Perdew & Zunger, PRB 23 (1981) 5048
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The hydrogen atom (again)

Local energy (decontracted STO-3G with an = 1)
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bizsalacn
The hydrogen atom (again)

Energy and variance (decontracted STO-3G with &y = 1)

Basis Cusp correction  Iteration Energy Variance
Gaussian —0.495741 223 x 10 *
Mixed 0S —0.499270  4.49 x 1072
Mixed SCD #1 —0.499270  4.49 x 1072
#2 —0.499970 3.07 x 107°
#3 —0.500000 4.88 x 107°
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Cusp-corrected MOs in atoms

Helium 1s orbital (HF/6-31G) dpe = 2 Neon 1s

orbital (HF/6-31G) éane = 10

(1)

—— Cuspless orbital

----- 0S cusp-corrected orbital
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& SCD cusp-corrected orbital
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Cusp-corrected schemes for the helium atom

Table: HF and FCI energies of the He atom obtained with the 6-31G basis set. The error bar
corresponding to one standard deviation is reported in parenthesis.

System Method Cusp Energy (a.u.) Variance (a.u.)
correction Deterministic VMC DMC VMC DMC
He HF —2.855160  —2.85512(6) —2.9039(1)  3.99(3)  4.47(18)
ScD —2.85817(9)  —2.9032(2) 0.610(3)  0.498(1)
FClI —2.870162  —2.87015(2) —2.9038(1)  3.89(3)  4.27(3)
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Local energy in the neon atom

Local energy for Ne (6-31G basis and éne = 10)
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Examples Molecules

Cusp-corrected MOs in BeH»

——— Cuspless orbital

----- Cusp-corrected orbital

®a,(2)
B (2)

z (a.u.)

Figure: Cuspless and cusp-corrected HF valence (ag and by,) orbitals of the BeH> molecule
obtained with the 6-31G basis set. For the ag orbital, we have dg. = 3.7893 and ay = 1.1199,
while for the by, orbital, &4 = 1.2056. The black line corresponds to the difference between the
cuspless and cusp-corrected orbitals magnified by one order of magnitude.

Pierre-Francois Loos (LCPQ, CNRS/UPS) e-n cusp correction for MOs CMMSE 2017 22 /25



Examples Molecules

Local energy in BeH,

T T T

—— Cuspless

----- Cusp correction

-25

-30

Pierre-Francois Loos (LCPQ, CNRS/UPS) e-n cusp correction for MOs CMMSE 2017 23 /25



Conclusion Concluding remarks

Concluding remarks
Things to explore further...

@ Is there a better strategy to optimise simultaneously the Gaussian and Slater
coefficients (CIS-type, perturbative, other type of dressing, etc)?

@ Shall we use something else than a Slater function to enforce the cusp
(polynomial, erf, ramp, etc)?

@ More generally, how do we get the nodes right?

Future directions...

@ The same procedure could potentially be employed to correct long-range behaviour
of the electronic density with obvious application in density-functional theory

@ We are currently working on a similar methodology to enforce the electron-electron
cusp in explicitly correlated wave functions

v
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