Electron-nucleus cusp correction for molecular orbitals

Pierre-François Loos, Anthony Scemama and Michel Caffarel

Laboratoire de Chimie et Physique Quantiques, UMR5626, Université Paul Sabatier, Toulouse, France

CMMSE 2017 (Cadiz, Spain)

7th Jul 2017

A good presentation always starts like this...

The Schrödinger equation is

$$\forall \boldsymbol{R} = (\boldsymbol{r}_1, \dots, \boldsymbol{r}_n) \in \mathbb{R}^{3n}, \ \hat{H} \Psi_{\text{exact}}(\boldsymbol{R}) = \boldsymbol{E}_{\text{exact}} \Psi_{\text{exact}}(\boldsymbol{R})$$

and can be recast as

$$\frac{\hat{H}\Psi_{\text{exact}}(\textit{\textbf{R}})}{\Psi_{\text{exact}}(\textit{\textbf{R}})} = \frac{\hat{T}\Psi_{\text{exact}}(\textit{\textbf{R}})}{\Psi_{\text{exact}}(\textit{\textbf{R}})} + V(\textit{\textbf{R}}) = \textit{\textbf{E}}_{\text{exact}}$$

where

$$T(\mathbf{R}) = -\frac{1}{2} \sum_{i} \nabla_{i}^{2}$$
$$V(\mathbf{R}) = -\sum_{A} \sum_{i} \frac{Z_{A}}{|r_{A} - r_{i}|} + \sum_{i < j} \frac{1}{|r_{i} - r_{j}|}$$

In a "good" wave function, the "explosions" in $V(\mathbf{R})$ must be compensated by $\frac{\hat{T}\Psi_{\text{exact}}(\mathbf{R})}{\Psi_{\text{exact}}(\mathbf{R})}$

(ロ) (回) (三) (三)

Kato electron-nucleus (e-n) cusp condition

Kato showed that, when an electron meet a nucleus, we must have

$$\forall \text{ nuclei } A \text{ and electrons } i, \left. \frac{\partial \langle \Psi_{\text{exact}}(R) \rangle}{\partial r_i} \right|_{r_i = r_A} = -Z_A \left. \langle \Psi_{\text{exact}}(R) \rangle \right|_{r_i = r_A}$$

This is called the Kato e-n cusp condition and it makes the local energy finite at each nuclear center

Kato, Com Pure Appl Math 10 (1957) 151

(日) (同) (日) (日)

The hydrogen atom

Trial wave functions within quantum Monte Carlo (QMC)

Multideterminant Slater-Jastrow wave funtion

A typical QMC trial wave function has the form

$$\Psi_{\mathsf{T}}(\boldsymbol{R}) = e^{J(\boldsymbol{R})} \sum_{l} c_{l} D_{l}^{\uparrow}(\boldsymbol{R}^{\uparrow}) D_{l}^{\downarrow}(\boldsymbol{R}^{\downarrow})$$

built with molecular orbitals (MOs) looking like

 $\phi_i(\mathbf{r}) = \sum_{\mu}^{N} c_{\mu i} \chi_{\mu}(\mathbf{r})$ where $\chi_{\mu}(\mathbf{r})$ is a Gaussian basis function

A Gaussian function centered at r = 0 is "cuspless" at r = 0, i.e.

$$\frac{\partial \langle \chi_{\mu}(\boldsymbol{r}) \rangle}{\partial \boldsymbol{r}} \bigg|_{\boldsymbol{r}=\boldsymbol{0}} = \boldsymbol{0}$$

The hydrogen atom

Local energy

Trial wave function and local energy

If the trial wave function Ψ_T is approximate,

 $\hat{H}\Psi_{\mathrm{T}}(\boldsymbol{R})\neq E\Psi_{\mathrm{T}}(\boldsymbol{R})$

but one can define

 $\hat{H}\Psi_{\mathrm{T}}(\boldsymbol{R}) = \boldsymbol{E}_{\mathrm{loc}}(\boldsymbol{R})\Psi_{\mathrm{T}}(\boldsymbol{R})$

where the local energy is

$$E_{\text{loc}}(\mathbf{R}) = rac{\hat{H} \Psi_{\text{T}}(\mathbf{R})}{\Psi_{\text{T}}(\mathbf{R})}$$

The fluctuations of E_{loc} measure the "quality" of Ψ_{T}

Pierre-François Loos (LCPQ, CNRS/UPS)

The hydrogen atom

The hydrogen atom

The hydrogen atom

The hydrogen atom

Local energy

The hydrogen atom

The hydrogen atom

Local energy

The hydrogen atom

How can we keep E_{loc} finite at the e-n coalescence points?

- 1. Use a pseudopotential to get rid of the core electrons
 - © With Gaussian basis functions, T(R) is finite at nuclei. Therefore, if V(R) is made finite, then $E_{loc}(R)$ will be finite
 - © One can always blame the pseudopotential...
 - S You must use a pseudo for all the atoms!
- \odot (Some) QMC people use a pseudopotential even on the hydrogen atom(!)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How can we keep E_{loc} finite at the e-n coalescence points?

2. Impose e-n cusp via a one-body term within the Jastrow factor

If the Slater determinant $D(\mathbf{R})$ is cuspless, then

$$\Psi_{\mathsf{T}}(\boldsymbol{R}) = D(\boldsymbol{R}) \exp\left(\sum_{i,A} \frac{-Z_A r_{iA}}{1 + b_A r_{iA}}\right)$$

has the right e-n cusp

- \odot Nodeless function: doesn't change the nodal structure of Ψ_{T}
- Solution Not orthogonal to MOs: redundant work
- ©© Needs a (noisy) stochastic optimization of Jastrow parameters

イロト 不得下 イヨト イヨト

How can we keep E_{loc} finite at the e-n coalescence points?

3. Working on the MOs...

Sufficient condition: if each MO satisfies the Kato cusp condition, then $D(\mathbf{R})$ also satisfies this condition.

- Replace the core MOs with tabulated Slater-based ones Scemama et al. JCP 141 (2014) 244110
 - $\ensuremath{\textcircled{}^\circ}$ Gaussians basis sets better than Slater ones and yield better nodes
- Create core MOs with STO-NG (N > 10), then replace them with STOs Petruzielo et al. JCP 136 (2012) 124116

© Lots of two-electron integrals to calculate

• Use Slater-type basis functions Nemec et al. JCP 132 (2010) 034111

© Expensive for large systems and e-n cusp not guaranteed

- "Circoncision" of the MOs around the nuclei Ma et al. JCP 122 (2005) 224322
 - ③ definitely not "ab inito"
 - ③ widely used

What are we doing?

"We augment the Gaussian basis set with a minimal number of Slater basis functions"

Two procedures

- One-shot (OS)
- Self-consistent dressing (SCD)

Pierre-Francois Loos (LCPQ, CNRS/UPS)

<ロト < 回 > < 回 > < 回 > < 回 >

Mixed Gaussian-Slater basis: 1. One-shot procedure

Compute HF or KS cuspless MOs φ_i(**r**) in your favourite Gaussian basis set
Add a cusp-correcting s-type Slater on each atom A:

$$ilde{\chi}^{i}_{A}(\mathbf{r}) = \sqrt{rac{ ilde{lpha}_{i}^{3}}{\pi}} \exp[- ilde{lpha}_{i}|\mathbf{r}-\mathbf{r}_{A}|] \quad ext{with} \quad ilde{lpha}_{i} = rac{\phi_{i}(\mathbf{r}_{A})}{\phi_{i}(\mathbf{r}_{A})} Z_{A}$$

to create cusp-corrected MOs

$$ilde{\phi}_i(\mathbf{r}) = \phi_i(\mathbf{r}) + \hat{P}\varphi_i(\mathbf{r}) \quad ext{where} \quad \varphi_i(\mathbf{r}) = \sum_A^M ilde{c}_{Ai} \, ilde{\chi}_A^i(\mathbf{r})$$

Make the cusp-correcting MO φ_i(r) orthogonal to the space spanned by the Gaussians

$$\hat{P} = \hat{I} - \sum_{\mu} |\chi_{\mu}\rangle \langle \chi_{\mu}|$$

• Adjust \tilde{c}_{Ai} 's to enforce the cusp conditions for each MO i and each nucleus A

$$\sum_{B} \left[-\frac{\delta_{AB}}{Z_{A}} \partial_{r} \tilde{\chi}^{i}_{A}(\boldsymbol{r}_{A}) - \tilde{\chi}^{i}_{B}(\boldsymbol{r}_{A}) + \sum_{\mu} \tilde{S}^{i}_{B\mu} \chi_{\mu}(\boldsymbol{r}_{A}) \right] \tilde{c}_{Bi} = \phi_{i}(\boldsymbol{r}_{A})$$

Pierre-François Loos (LCPQ, CNRS/UPS)

Mixed Gaussian-Slater basis: 2. Self-consistent dressing

We want $\tilde{\phi}_i(\mathbf{r})$ to be the best orbital possible...

$$\hat{f} \ket{ ilde{\phi}_i} = ilde{arepsilon}_i \ket{ ilde{\phi}_i}$$

Deng, Gilbert & Gill, JCP 130 (2009) 231101 Projecting out over $\langle \chi_{\mu} |$ yields

$$\sum_{\nu} F_{\mu\nu} c_{\nu i} + \sum_{A} \tilde{c}_{Ai} \left(\tilde{F}^{i}_{\mu A} - \sum_{\lambda} F_{\mu \lambda} \tilde{S}^{i}_{\lambda A} \right) = \tilde{\varepsilon}_{i} c_{\mu i}$$

where

To avoid computing $\tilde{F}^i_{\mu A}$, we do the following approximation:

$$ilde{\mathcal{F}}^{i}_{\mu A} - \sum_{\lambda} \mathcal{F}_{\mu \lambda} ilde{S}^{i}_{\lambda A} pprox ilde{\mathbf{h}}^{i}_{\mu A} - \sum_{\lambda} \mathbf{h}_{\mu \lambda} ilde{S}^{i}_{\lambda A}$$

which involves only one-electron integrals

Mixed Gaussian-Slater basis: 2. Self-consistent dressing

We obtain the following eigenvalue problem:

$$\sum_{\nu} \tilde{F}^{i}_{\mu\nu} c_{\nu i} = \tilde{\varepsilon}_{i} c_{\mu i},$$

where $\tilde{F}^{i}_{\mu\nu}$ is an (orbital-dependent) dressed Fock operator

$$\tilde{\textit{\textit{F}}}^{i}_{\mu\nu} = \begin{cases} \textit{\textit{F}}_{\mu\mu} + \tilde{\textit{D}}^{i}_{\mu}, & \text{if } \mu = \nu, \\ \textit{\textit{F}}_{\mu\nu}, & \text{otherwise}, \end{cases}$$

with

$$\left| \tilde{D}^{i}_{\mu} = \frac{\boldsymbol{c}_{\mu i}^{-1}}{\sum_{A} \tilde{\boldsymbol{c}}_{A i}} \left(\tilde{h}^{i}_{\mu A} - \sum_{\lambda} h_{\mu \lambda} \tilde{\boldsymbol{S}}^{i}_{\lambda A} \right) \right|$$

The process is repeated until convergence... or not...

NB: somewhat related to the Perdew-Zunger self-interaction correction Perdew & Zunger, PRB 23 (1981) 5048

Pierre-François Loos (LCPQ, CNRS/UPS)

Energy and variance (decontracted STO-3G with $\tilde{\alpha}_{\rm H}=1)$

Basis	Cusp correction	Iteration	Energy	Variance	
Gaussian			-0.495741	$2.23 imes10^{-1}$	
Mixed	OS		-0.499270	$4.49 imes10^{-2}$	
Mixed	SCD	#1	-0.499270	$4.49 imes10^{-2}$	
		#2	-0.499970	$3.07 imes10^{-6}$	
		#3	-0.500000	$4.88 imes10^{-9}$	

Atoms

Cusp-corrected MOs in atoms

CMMSE 2017 19 / 25

Cusp-corrected schemes for the helium atom

Table: HF and FCI energies of the He atom obtained with the 6-31G basis set. The error bar corresponding to one standard deviation is reported in parenthesis.

System	Method	Cusp	Energy (a.u.)			Variance (a.u.)	
		correction	Deterministic	VMC	DMC	VMC	DMC
He	HF		-2.855160	-2.85512(6)	-2.9039(1)	3.99(3)	4.47(18)
		OS		-2.857 89(6)	-2.9034(3)	0.605(6)	0.498(2)
		SCD		-2.85817(9)	-2.9032(2)	0.610(3)	0.498(1)
	FCI		-2.870162	-2.87015(2)	-2.9038(1)	3.89(3)	4.27(3)
		OS		-2.87206(5)	-2.903 5(3)	0.496(4)	0.428(2)

Atoms

Local energy in the neon atom

Local energy for Ne (6-31G basis and $\tilde{\alpha}_{\rm Ne}=$ 10)

Examples

Molecules

Cusp-corrected MOs in BeH₂

Figure: Cuspless and cusp-corrected HF valence (a_g and b_{1u}) orbitals of the BeH₂ molecule obtained with the 6-31G basis set. For the a_g orbital, we have $\tilde{\alpha}_{Be} = 3.7893$ and $\tilde{\alpha}_{H} = 1.1199$, while for the b_{1u} orbital, $\tilde{\alpha}_{H} = 1.2056$. The black line corresponds to the difference between the cuspless and cusp-corrected orbitals magnified by one order of magnitude.

Examples

Molecules

Local energy in BeH₂

Concluding remarks

Things to explore further...

- Is there a better strategy to optimise simultaneously the Gaussian and Slater coefficients (CIS-type, perturbative, other type of dressing, etc)?
- Shall we use something else than a Slater function to enforce the cusp (polynomial, erf, ramp, etc)?
- More generally, how do we get the nodes right?

Future directions...

- The same procedure could potentially be employed to correct long-range behaviour of the electronic density with obvious application in density-functional theory
- We are currently working on a similar methodology to enforce the electron-electron cusp in explicitly correlated wave functions

Collaborators and Funding

• Collaborators: Anthony Scemama & Michel Caffarel

イロト イヨト イヨト イヨト

• Job & Money: Centre National de la Recherche Scientifique (CNRS)

Pierre-François Loos (LCPQ, CNRS/UPS)