

Core-ionized and core-excited states of macromolecules

Pierre-François Loos Xavier Assfeld

Equipe de Chimie et Biochimie Théoriques UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843) Faculté des Sciences et Techniques, Nancy-Université FRANCE

March 2, 2007

Pierre-François Loos, Xavier Assfeld

Core-ionized and core-excited states of macromolecules

ED SESAMES

< ロ > (同 > (回 > (回 >))

Core Electron Binding Energies (CEBEs)

- $\bullet\,$ Useful tools to obtain information on the structure and on the nature of molecules a
- Experimental studies on macromolecules^b

^aSchwarz et al. Angew. Chem. Int. Ed. 1974, 13, 454.
^bsee for example : Gordon et al. J. Phys. Chem. A 2003, 107, 8512.

Theoretical Study

- Excited States \implies variationnal collapse and orthogonality constraint^{*a*}
- Macromolecular systems \implies QM/MM within the LSCF method^b

 $^{a}{\rm Ferr\acute{e}}$ et al. J. Chem. Phys. 2002, 117, 4119. $^{b}{\rm Assfeld}$ et al. Chem. Phys. Lett. 1996, 263, 100.

▲□▶▲□▶▲目▶▲目▶ 目 のの(

ED SESAMES

Pierre-François Loos, Xavier Assfeld

Core-ionized and core-excited states of macromolecules

ED SESAMES

C_{carb} Formamide

- Exp.^{*a*}: 294.45 eV
- Ref.^b: 294.16 eV (+0.29)
- This work: 294.41 eV (+0.04)

^aJoly et al. J. Atomic Data and Nuclear Data Tables, 1984, 31, 433.

^bChong et al. J. Phys. Chem. A 2002, 106, 356.

$C_{carb}, C_{R2}, \overline{C_{R3}}$ N,N-dimethylformamide

- Exp.: 293.45, 292.03, 292.03 eV
- Ref.: 293.25(+0.20), 291.92(+0.11), 292.27(-0.24) eV
- This work: 293.52(-0.07), 291.86(+0.17), 292.24(-0.21) eV

イロン イボン イヨン イヨン

Maximum deviation Theory vs Theory & Exp. vs Theories

- Ref.-This work: $\simeq 0.3 \text{ eV}$
- Exp.-This work: $\simeq 0.2 \text{ eV}$
 - Exp.-Ref.: $\simeq 0.2 \text{ eV}$

 \implies Accurate carbon 1s ionization energies w.r.t Theory and Exp.

Goals O Alanine residue Theory vs Experiment 000000

 $C_{_{M'}}$

(b) Conf. 2

Conformations: $\Delta E < 1$ kcal/mol

Alanine CEBEs (eV)

	conf. 1	conf. 2	$\operatorname{Exp.}^{a}$
C_{α}	292.45(-0.15)	292.16(+0.14)	292.30
C_{carb}	294.60(+0.70)	294.92(+0.38)	295.30
C_{Me}	291.11(+0.09)	290.89(+0.31)	291.20

^aPowis et al. J. Phys. Chem. A 2003, 107, 25.

Pierre-François Loos, Xavier Assfeld

Core-ionized and core-excited states of macromolecules

Goals O Alanine Tripeptide

Ala-Tripeptide: α -helix and β -sheet conformations

Ala-Tripeptide CEBEs (eV)

	α -helix	β -sheet	
C_{α}	291.87	292.00	\simeq 0.3-0.4 eV
C_{carb}	293.69	293.87^{a}	$\simeq 2.0 \text{ eV}$
C_{Me}	290.50	290.62	\simeq 0.3-0.4 eV

 $^{a}\mathrm{C}_{carb}$ N-methylacetamide 293.37 eV

Pierre-François Loos, Xavier Assfeld

Core-ionized and core-excited states of macromolecules

ED SESAMES

Pierre-François Loos, Xavier Assfeld

Core-ionized and core-excited states of macromolecules

ED SESAMES

・ロト ・回ト ・ヨト ・ヨト

QM/MM partition of the poly-Ala-pentadecapeptide

Pentadecapeptide CEBEs (eV)								
	PBE0/Amber Pl		$PBE0/Amber^{*a}$					
		α -helix	β -sheet	α -helix	β -sheet			
	C_{α}	-0.26	-0.62	+0.05	+0.08			
	C_{carb}	-0.09	-0.76	+0.63	+0.23			
	C_{Me}	-0.71	-0.32	+0.47	+0.11			

 $^a{\rm The}$ Amber* calculations are performed excluding the electrostatic polarization of the wave function by the classical point charges

Pierre-François Loos, Xavier Assfeld

Core-ionized and core-excited states of macromolecules

< ロ > < 同 > < 回 > < 回

Conclusions

- Orthogonality between GS and ES
- Accurate carbon 1s ionization energies : PBE0/6-311++G**//B3LYP/6-311++G** + Boys-Foster CO
- Carbon 1s ionization energies sensible to:
 - Chemical shift (closest surroundings)
 - Polarization (long-range interactions) 0.2-1.0 eV

Outlooks

Extension to the innershell absorption spectra

- Most common proteinogenic $\alpha\text{-amino}$ acids
- Experimental NEXAFS spectra available Kaznacheyev et al. J. Phys. Chem. A, 2002, 106, 3153 Zubavichus et al. J. Phys. Chem. A, 2005, 109, 6998
- Real biological systems: enzymes, proteins, RNA or DNA

・ロト ・ 一日 ト ・ 日 ト ・