Three-electron integrals over Gaussian basis functions

Pierre-François Loos, Giuseppe Barca, and Peter Gill

Research School of Chemistry, Australian National University, Canberra, Australia

Molecular Electronic Structure, Buenos Aires

19th Sep 2016

Why

Why do we want to compute these?

Potentially useful in many cases

- Gaussian-type geminals (GTGs) calculations Szalewicz & Jeziorski, Mol. Phys. 108, 3191 (2010) Komornicki & King, JCP 134 (2011) 244115
- GTGs and Gaussian-type orbitals (GTOs) Persson & Taylor, JCP 105 (1996) 5915; TCA 97 (1997) 240
- Transcorrelated-type methods Ten-no, CPL 330 (2000) 175
- Explicitly-correlated F12 methods: MP2-F12, CC-F12, etc. (RI world) Hattig et al. Chem Rev 112 (2012) 4 Ten-no & Noga, WIREs Comput Mol Sci 2 (2012) 114

What do we want to calculate?

Three-electron integral

Notations & Scaling

$$\begin{split} \langle \textbf{a}_1 \textbf{a}_2 \textbf{a}_3 | \textbf{b}_1 \textbf{b}_2 \textbf{b}_3 \rangle &\equiv \langle \textbf{a}_1 \textbf{a}_2 \textbf{a}_3 | \textbf{f}_{123} | \textbf{b}_1 \textbf{b}_2 \textbf{b}_3 \rangle \\ &= \iiint \psi_{\textbf{a}_1}^{\textbf{A}_1}(\textbf{r}_1) \psi_{\textbf{a}_2}^{\textbf{A}_2}(\textbf{r}_2) \psi_{\textbf{a}_3}^{\textbf{A}_3}(\textbf{r}_3) \, \textbf{f}_{123} \, \psi_{\textbf{b}_1}^{\textbf{B}_1}(\textbf{r}_1) \psi_{\textbf{b}_2}^{\textbf{B}_2}(\textbf{r}_2) \psi_{\textbf{b}_3}^{\textbf{B}_3}(\textbf{r}_3) d\textbf{r}_1 d\textbf{r}_2 d\textbf{r}_3 \end{split}$$

Gaussian-type orbital (GTO)

Primitive GTO =
$$|\mathbf{a}| = (x - A_x)^{\mathbf{a}_x} (y - A_y)^{\mathbf{a}_y} (z - A_z)^{\mathbf{a}_z} e^{-\alpha |\mathbf{r} - \mathbf{A}|^2}$$

Contracted GTO = $|\mathbf{a}\rangle \equiv \psi_{\mathbf{a}}^{\mathbf{A}}(\mathbf{r}) = \sum_{i}^{K} D_i |\mathbf{a}|_i$

- **Exponent** α
- Center $\mathbf{A} = (A_x, A_y, A_z)$
- Angular momentum $\mathbf{a}=(a_x,a_y,a_z)$ and total angular momentum $a=a_x+a_y+a_z$

Three-electron operator

Three-electron operators

Notations & Scaling

$$f_{123} = f_{12}g_{13}h_{23}$$

Two-electron operators

■ Long-range Coulomb operator

$$C_{12} = r_{12}^{-1}$$

■ Short-range Slater geminal

$$S_{12} = \exp(-\lambda r_{12})$$

■ Short-range Gaussian geminal

$$\mathcal{G}_{12} = \exp\left(-\lambda r_{12}^2\right)$$

■ Short-range operator

$$\mathcal{E}_{12} = r_{12} \operatorname{erfc}(\sqrt{\lambda} r_{12})$$

Asymptotic scaling

Оре	Scaling	
Two-electron	Three-electron	-
5	SS, SSS, SSL	$\mathcal{O}(N)$
L	SL, SLL	$\mathcal{O}(N^2)$
	LL, LLL	$\mathcal{O}(N^3)$

Notations & Scaling

Asymptotic scaling of two-electron integrals

Number of significant two-electron integrals for polyenes

$$N_{\rm sig} = c N^{\alpha}$$

Molecule	Ν	\mathcal{C}_{12}		\mathcal{G}_{12}	
		$N_{\rm sig}$	α	$N_{\rm sig}$	α
propene	12	1 625	_	1 650	_
butadiene	16	5 020	3.9	5 020	3.9
hexatriene	24	24 034	3.9	23 670	3.8
octatetraene	32	63818	3.4	52808	2.8
decapentaene	40	119 948	2.8	81 404	1.9
dodecaexaene	48	192 059	2.6	109 965	1.6

Helgaker, Jorgensen & Olsen, Molecular Electronic-Structure Theory

Notations & Scaling

Asymptotic scaling of three-electron integrals

Number of significant three-electron integrals for polyenes

$$N_{\text{sig}} = c N^{\alpha}$$

Molecule	Ν	$\mathcal{C}_{12}\mathcal{C}_{13}$		$\mathcal{G}_{12}\mathcal{C}_{13}$		$\mathcal{G}_{12}\mathcal{G}_{13}$	
		N _{sig}	α	N _{sig}	α	$N_{\rm sig}$	α
propene	12	123 480		243 071		123 480	
butadiene	16	650 034	5.8	1 288 614	5.8	649 796	5.8
hexatriene	24	6 259 263	5.6	10 992 400	5.3	4 436 162	4.7
octatetraene	32	22 875 778	4.5	31 511 030	3.7	9 273 218	2.6
decapentaene	40	53 576 923	3.8	59 315 069	2.8	14 101 575	1.9
dodecaexaene	48	101 224 185	3.5	94 176 325	2.5	18 927 362	1.6

How

Recipe for three-electron integrals

Late-contraction path algorithm (Head-Gordon-Pople & PRISM inspired)

Recurrence relations for three-electron integrals

Number of terms in the recurrence relations for cyclic and chain operators

Step	RR type	Three-electron operator		Two-electron operator
		$f_{12} g_{13} h_{23}$	$f_{12} g_{13}$	f_{12}
		(cyclic)	(chain)	
T_1	VRR ₁	8	6	4
T_2	VRR_2	10	7	6
T_3'	VRR_3	12	12	_
T_3	TRR	6	6	4
T ₄	HRR	2	2	2

If one uses GTGs, the RRs become even simpler! Barca & Gill, JCTC (in press)

Screening algorithm for three-electron integrals

What is a "good" upper bound?

A good upper bound must be

- simple
 - ⇔ significantly less computationally expensive than the true integral
- strong
 - \Leftrightarrow as close as possible from the true integral in the threshold region $(10^{-14} - 10^{-8})$
- scaling-consistent
 - $\Leftrightarrow N_{\text{sig}} = \mathcal{O}(N_{\text{UB}})$ where N_{UB} is the number estimated by the UB

Shell and shell-pair bounding Gaussians

Shell bounding Gaussian (SBG)

$$\mathring{a}(\mathbf{r}) = \mathcal{N}_{a}e^{-(1-\sigma)\alpha|\mathbf{r}-\mathbf{A}|^{2}} \geq ||a||$$

Shell-pair bounding Gaussian (SPBG)

$$\mathring{z}(\mathbf{r}) = \mathring{a}(\mathbf{r})\mathring{b}(\mathbf{r}) = h e^{-\xi |\mathbf{r} - \mathbf{Z}|^2} \ge ||ab||$$

$$\zeta = \alpha + \beta$$

$$\mathbf{Z} = (\alpha \mathbf{A} + \beta \mathbf{B})/\zeta$$

$$\xi = (1 - \sigma)\zeta$$

© Andrew Gilbert aka Mr. IQMol

A tale of three strategies

Strategies

Integral bound

We seek a single number that bounds a particular integral

$$|[\mathbf{a}_1 \mathbf{a}_2 | \mathbf{b}_1 \mathbf{b}_2]| \leq [\mathbf{a}_1 \mathbf{a}_1 | \mathbf{b}_1 \mathbf{b}_1]^{1/2} [\mathbf{a}_2 \mathbf{a}_2 | \mathbf{b}_2 \mathbf{b}_2]^{1/2}$$

With $\mathcal{O}(N^2)$ [$a_1 a_1 | b_1 b_1$] bound factors, we can upper bound $\mathcal{O}(N^4)$ [$a_1 a_2 | b_1 b_2$] integrals

Non-factorizable class bound

We seek a single number that bounds an entire class*

$$|[a_1a_2|b_1b_2]| \leq [\mathring{a}_1\mathring{a}_2|\mathring{b}_1\mathring{b}_2]$$

Factorizable class bound
 We combine the two previous ideas

$$\begin{aligned} |[a_1 a_2 | b_1 b_2]| &\leq [\mathring{a}_1 \mathring{a}_2 | \mathring{b}_1 \mathring{b}_2] \\ &\leq [\mathring{a}_1 \mathring{a}_1 | \mathring{b}_1 \mathring{b}_1]^{1/2} [\mathring{a}_2 \mathring{a}_2 | \mathring{b}_2 \mathring{b}_2]^{1/2} \end{aligned}$$

^{*}The simple [ppp|ppp] class is made of 729 integrals!

Our home-made bounds

We always use class bounds via SPBGs

$$|[a_1a_2a_3|b_1b_2b_3]| \leq [\mathring{a}_1\mathring{a}_2\mathring{a}_3|\mathring{b}_1\mathring{b}_2\mathring{b}_3]$$

- $\Rightarrow \sigma$ is optimized with an operator-specific metric
- \blacksquare [B_2], [B_4] and [B_6] are derived with Hölder's inequality

$$\left|\int \phi_1(\mathbf{r})\phi_2(\mathbf{r})d\mathbf{r}\right| \leq \left[\int \left|\phi_1(\mathbf{r})\right|^p d\mathbf{r}\right]^{1/p} \left[\int \left|\phi_2(\mathbf{r})\right|^q d\mathbf{r}\right]^{1/q},$$

for
$$p^{-1} + q^{-1} = 1$$
 and $p, q > 1$.

- We are **not** using Cauchy-Schwartz (i.e. p = q = 2)!
 - 1 they are usually weaker
 - 2 for three-electron integrals, they are not always simple

SPBGs

One-electron overlap integrals: $|[a|b]| \leq |\mathring{a}|\mathring{b}|$ $\log_{10}[\hat{s}|\hat{d}]$ $\log_{10}[\mathring{p}]\mathring{p}$ $\log_{10}[\hat{s}|\hat{p}]$ -10 -15 -15 $-15 \frac{}{-15}$ -10 -10-10-5 $\log_{10}|[s|p]|$ $\log_{10}|[s|d]|$ $\log_{10}|[p|p]|$ $\log_{10}[\mathring{p}|\mathring{d}]$ $\log_{10}[\vec{d}|\vec{d}]$ -10

-10

 $\log_{10}|[d|d]|$

-5

-10

 $\log_{10}|[p|d]|$

Performance of SPBGs

SPBGs

Results

Performance of shell-quartet bounds $[B_4]$ for two-electron integrals

Shell-quartet bounds

NB: tighter than Cauchy-Schwartz!

(non-factorizable bound)

$$\sqrt{\pi\lambda} \, rac{\mathcal{E}_{12}}{\mathcal{G}_{12}} \leq 1$$

(non-factorizable bound)

NB: we upper bound the fundamental integral!

Shell-sextet bounds

NB: All these integrals scale quadratically unlike $\mathcal{G}_{12}\mathcal{G}_{13}$, $\mathcal{E}_{12}\mathcal{E}_{13}$ or $\mathcal{S}_{12}\mathcal{S}_{13}$

Future work

Future work

- Efficient computation of fundamental integrals (Slater-based operators in particular)
- Recurrence relations and upper bounds for four-electron integrals (under progress)
- Specific recurrence relations for GTGs (three- and four-electron integrals) (under progress)
- Implementation in quantum chemistry softwares

People & Money

Collaborators and Funding

Collaborators:

Giuseppe Barca

Peter Gill

- Research School of Chemistry & Australian National University
- Australian Research Council: Discovery Early Career Researcher Award 2013 & Discovery Project 2014

Australian Government

Australian Research Council

