1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	

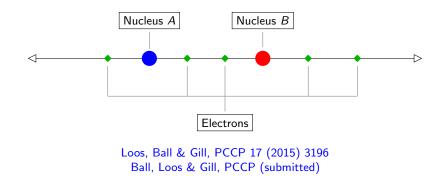
One-dimensional Chemistry

Pierre-François Loos

Research School of Chemistry, Australian National University, Canberra, Australia

NZ Institute of Chemistry Conference, Queenstown

22nd Aug 2016


(4) (2) (4) (4) (4)

NZIC16 - 22nd Aug 2016 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
00000			
1D Chemistry with the Cou	lomb operator		

What is one-dimensional Chemistry?

• • = • • =

NZIC16 - 22nd Aug 2016 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
00000			
1D Chemistry with the Coulomb operation	ator		

Why one dimension?

Experimental

- Carbon nanotubes
- Atomic or semi-conducting nanowires (quantum wires)
- (very) Strong magnetic fields
- Many others!

Theoretical

- Test/Model system for electron behaviour and electronic correlation
- Lower dimensionality is simpler mathematically
- Dimensional reduction:

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) \longrightarrow \Psi(x_1, x_2, \dots, x_n)$$

$$\rho(x, y, z) \longrightarrow \rho(x)$$

く 白戸 ト く ヨ ト く

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
00000			
1D Chemistry with the Coulomb opera	itor		

Complications

Pecularities of 1D

- The Coulomb operator $|x|^{-1}$ is strongly *singular* in 1D
- This prevents us from solving the Schrödinger equation using normal techniques

Loudon [Am J Phys 27 (1959) 649]

- Found a set of solutions for the hydrogen atom in 1D by examining a sequence of truncated Coulomb operators that approach the unmodified operator
- Concluded that the ground state has an *infinite* binding energy due to the electron 'falling' onto the nucleus

(日) (同) (三) (三)

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules		
000000				
1D Chemistry with the Coulomb operator				

Way around it

More recent work

- Chemists use softened Coulomb interactions (x² + 1)^{-1/2} to model experimentally available systems
 Wagner et al, PCCP 14 (2012) 8581
- Physicists argue over whether or not there is an infinite binding energy

Oliveira & Verri (2009 - 2012) and our work [PRL 108 (2012) 083002]

• There are an *infinite* number of treatments that work around the Coulomb singularity

イロト イポト イヨト イヨ

NZIC16 - 22nd Aug 2016 -

But the Dirichlet boundary conditions is the one to use:

$$\Rightarrow$$
 If $x_i = x_j$ or $x_i = x_A$ then $\Psi = 0$

PF Loos — http://rsc.anu.edu.au/~loos/ —

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
000000			
1D Chemistry with the Coul	omb operator		

Consequences of the Dirichlet boundary conditions

$\left(1 ight)$ Spin-blindness

The energy of the system is invariant under any change of spin coordinates. As a result we can ignore the spin coordinates.

2 Super-Pauli principle

Two electrons confined to one dimension cannot occupy the same quantum state regardless of spin. That is, only one electron may occupy each orbital.

3) Nuclear impenetrability

Electrons are unable to pass from one side of a nucleus to another, and no tunnelling can occur in 1D systems. This separates space into regions that electrons become trapped within.

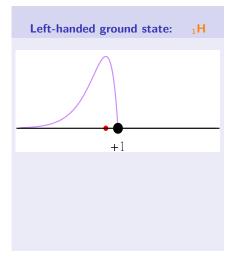
1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
000000			
1D Chemistry with the Could	omb operator		

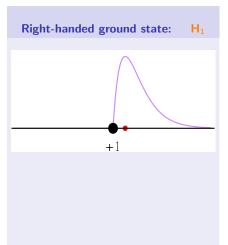
Notation

Notation

We use a special notation for 1D molecules to account for electrons occupying different domains.

Examples:


 ${}_1\text{H}_2\text{Li}_1 \qquad {}_1\text{H}_1\text{Li}_2 \qquad {}_1\text{He}_3\text{B}_3\text{H}_1 \qquad \text{H}_3\text{B}_3$

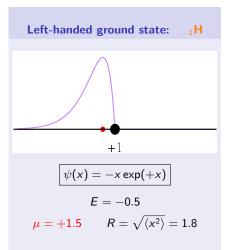

NZIC16 - 22nd Aug 2016 -

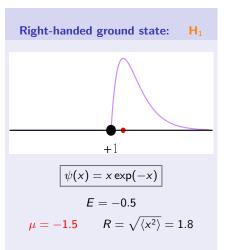
PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	0000		
Hydrogen atom			

"Chirality" in 1D: Hydrogen atom

(ロ) (部) (目) (日) (日)


PF Loos - http://rsc.anu.edu.au/~loos/ -

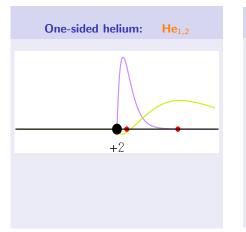

How does Chemistry work in one dimension?

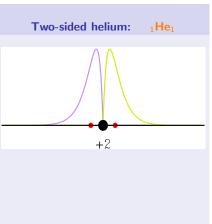
▶ ◀ ≧ ▶ ≧ ∽ ♀ (NZIC16 — 22nd Aug 2016 —

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	00000		
Hydrogen atom			

"Chirality" in 1D: Hydrogen atom

・ロト ・聞 ト ・ヨト ・ヨト


3

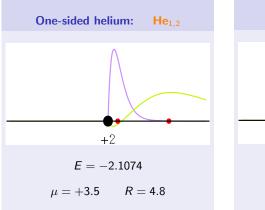

NZIC16 - 22nd Aug 2016 -

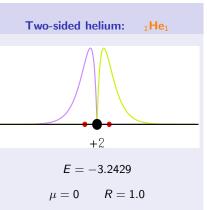
PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	0000		
Helium atom			

Helium atom in 1D

・ロト ・聞 ト ・ ヨト ・ ヨト

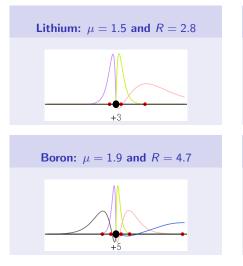

3


NZIC16 - 22nd Aug 2016 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	0000		
Helium atom			

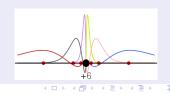
Helium atom in 1D


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

NZIC16 - 22nd Aug 2016 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	00000		
1D Atoms			


More 1D atoms...

Beryllium: $\mu = 0$ and R = 2.1

Carbon: $\mu = 0$ and R = 3.7

PF Loos — http://rsc.anu.edu.au/~loos/ —

How does Chemistry work in one dimension?

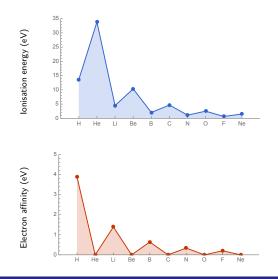
NZIC16 - 22nd Aug 2016 -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	00000		
1D Atoms			

Ionisation energies and electron affinities (in eV)

Atom	Ionisation energies	Electron affinities
Н	13.606	3.893
He	33.822	
Li	4.486	1.395
Be	10.348	_
В	2.068	0.643
С	4.670	
Ν	1.125	0.340
0	2.515	
F	0.666	0.203
Ne	1.518	_

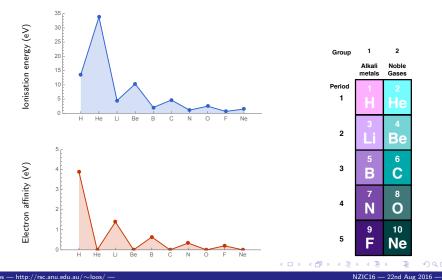
▶ < 문 ► < 문 ►</p>


PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	00000		
1D Atoms			

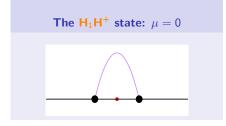
э

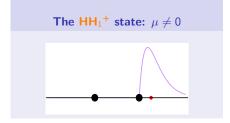
э NZIC16 - 22nd Aug 2016 -


The periodic table in 1D

PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	00000		
1D Atoms			

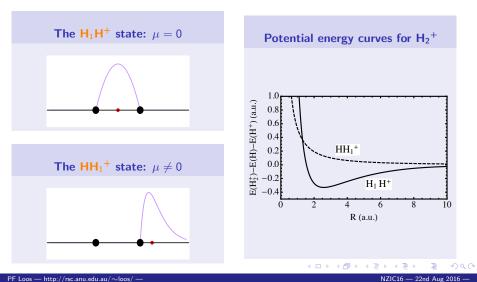

The periodic table in 1D



PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		0000	
One-Electron Diatomics			

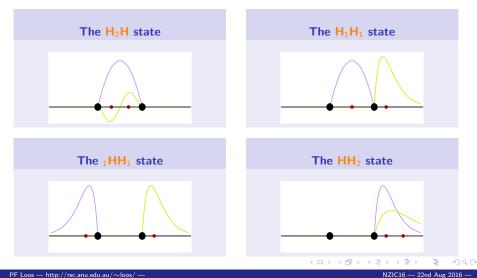
The H_2^+ molecule in 1D


PF Loos - http://rsc.anu.edu.au/~loos/ -

How does Chemistry work in one dimension?

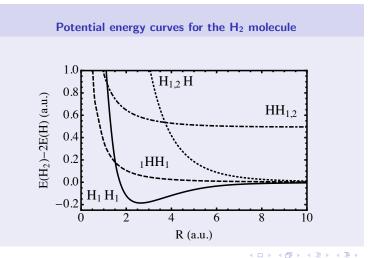
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		0000	
One-Electron Diatomics			


The H_2^+ molecule in 1D

PF Loos - http://rsc.anu.edu.au/~loos/ -

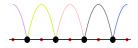
1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		0000	
Two-Electron Diatomics			


The H_2 molecule in 1D

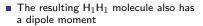
PF Loos - http://rsc.anu.edu.au/~loos/ -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		0000	
Two-Electron Diatomics			

Two-electron diatomic molecules in 1D


PF Loos - http://rsc.anu.edu.au/~loos/ -

How does Chemistry work in one dimension?


NZIC16 - 22nd Aug 2016 -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		0000	
Hydrogen nanowire			

Lego-style formation of 1D polymers

- A single H₁ atom has a dipole moment
- $\Rightarrow \mathsf{Two}\;\mathsf{H}_1 \text{ atoms will feel dipole-dipole} \\ \mathsf{attraction}$

- $\Rightarrow~H_1H_1~\text{and}~H_1$ will feel dipole-dipole attraction
 - The resulting H₁H₁H₁ molecule also has a dipole moment
- $\Rightarrow \ H_1H_1H_1 \ \text{and} \ H_1 \ \text{will feel dipole-dipole} \\ attraction$

 $H_1 + H_1 \longrightarrow H_1 H_1$

 $\mathsf{H}_1\mathsf{H}_1 + \mathsf{H}_1 \longrightarrow \mathsf{H}_1\mathsf{H}_1\mathsf{H}_1$

 $\mathsf{H}_1\mathsf{H}_1\mathsf{H}_1+\mathsf{H}_1 \xrightarrow{} \mathsf{H}_1\mathsf{H}_1\mathsf{H}_1\mathsf{H}_1$

< ロ > < 同 > < 回 > < 回 > < 回 >

NZIC16 - 22nd Aug 2016 -

1D Chemistry	Chemistry of 1D Atoms	Chemistry of 1D Molecules	Conclusion
			•
People & Money			

Collaborators and Funding

Collaborators:

Caleb Ball

Peter Gill

- Research School of Chemistry & Australian National University
- Australian Research Council:

Discovery Early Career Researcher Award 2013 & Discovery Project 2014

Australian Government

Australian Research Council Image: Image:

PF Loos — http://rsc.anu.edu.au/~loos/ — How does Chemistry work in one dimension?