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This workshop aims at illustrating how to compute exchange-correlation energies within density-
functional theory. Part of this document has been generously provided by Peter Gill, and was part
of his workshop at the previous Quaccs conference in 2014.

I. EXCHANGE-CORRELATION ENERGY

According to density-functional theory (DFT) [1], the
exchange (x) and correlation (c) energies can be written
as functionals of the electron density ρ(r) of a system. In
most approximate functionals, these energies are written
as integrals of functions of the density, for example

Ex =

∫
ex[ρ(r)] dr (1)

and this allows the exchange (or correlation) energy to
be computed much more quickly than by other methods
(e.g. Hartree-Fock theory, perturbation theory, coupled
cluster theory, etc.) The not-so-good news is that the
DFT estimates are approximate and, sometimes, they
can be far from the true values.

A. Radial Quadrature

There are many possible ways to estimate a general
radial integral from 0 to ∞. One of these is the Euler-
Maclaurin quadrature developed by Boys and Handy and
given by ∫ ∞

0

r2f(r)dr ≈
m∑
i=1

wif(ri) (2)

where the roots and weights are

ri = Ri2(m+ 1− i)−2 (3)

wi = 2R3(m+ 1)i5(m+ 1− i)−7 (4)

The parameter R is a scaling variable that allows the
quadrature to be tailored to a particular integral. If it
is well chosen, it can lead to more accurate results with
few quadrature points. We will assume (at least initially)
that R = 1.

Of course, the accuracy of these approximations de-
pends on the number m of points and the function f(r).
However, it has been found to be reasonably effective for
many of the radial integrals that arise in DFT calcula-
tions.

You have been given a Fortran subroutine called Eu-
lMac which computes these roots and weights for any
desired values of m and R.
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B. Angular Quadrature

There are many possible ways to estimate a general
angular integral over the surface of a unit sphere S. One
of these is the quadrature developed by Lebedev, which
extends the familiar octahedral 6-point rule. It is given
by

∫
S

g(x, y, z)dΩ ≈
M∑
j=1

Wjg(xj , yj , zj) (5)

where the roots (xj , yj , zj) and weights Wj are chosen
so that the quadrature is exact for as many low-degree
spherical harmonics as possible.

Of course, the accuracy of these approximations de-
pends on the number M of points and the function
g(x, y, z). However, it has been found to be reasonably
effective for many of the radial integrals that arise in
DFT calculations.

You have been given a Fortran subroutine called
Lebdev which computes these roots and weights for any
desired value of M .

C. Quadrature in 3D

In typical DFT calculations, we are faced with integrals
over all space

I =

∫
F (r)dr (6)

If an atomic nucleus forms a natural origin, we can ex-
press this integral in terms of spherical polar coordinates
and then estimate the radial and angular integrals using
the quadratures described above, i.e.

I =

∫ ∞
0

∫ π

0

∫ 2π

0

F (r, θ, φ) r2 sin θ dφ dθ dr (7)

≈
m∑
i=1

M∑
j=1

wiWjF (ri, θj , φj) (8)

You have been given a Fortran program that uses
this approximation to estimate the number of electrons
in the ground-state hydrogen atom by integrating its elec-
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tron density ρ(r) = ψH(r)2 over all space, i.e.

n =

∫
ρ(r)dr (9)

=

∫ ∞
0

∫ π

0

∫ 2π

0

exp(−2r)

π
r2 sin θ dφ dθ dr (10)

where

ψH(r) =
1√
π

exp(−r) (11)

Exercise 1: Explore the effects of using various num-
bers of radial and angular points. How many points are
required to estimate the number of electrons correctly
to within 10−3? How many are required to obtain 10−6

accuracy?

Exercise 2: Perform a similar study on the helium
atom with density

ρHe(r) =
19683

2048π
exp

(
−27

8
r

)
(12)

II. EXCHANGE FUNCTIONALS

A. Dirac–Slater exchange functional

The famous Dirac–Slater exchange functional (which
is the exchange part of the LDA) is [1]

ELDA
x [ρα(r)] = −3

2

(
3

4π

)1/3 ∫
ρα(r)4/3 dr (13)

where ρα(r) is the density of the α (or spin-up) electrons.

Exercise 3: Modify the Fortran program to com-
pute the LDA exchange energy of the hydrogen and he-
lium atoms. The true (Fock) exchange energies can be
found in Ref. [2]. How well does the LDA functional
perform using a large grid?

B. Becke 88 exchange functional

The famous 1988 Becke exchange functional (which is
the exchange part of BLYP) is [3]

EB88
x [ρα(r), xα(r)] = ELDA

x [ρα(r)]

− β
∫

ρα(r)4/3xα(r)2

1 + 6βxα(r) sinh−1 xα(r)
dr (14)

where β = 0.0042 and the reduced density gradient is
defined by

xα(r) =
|∇ρα(r)|
ρα(r)4/3

(15)

Exercise 4: Derive an expression for the reduced
density gradient of the hydrogen and helium atoms and
use this to compute its B88 exchange energy. How much
more accurate is it than the LDA estimate above?

III. CORRELATION FUNCTIONALS

A. LDA correlation functional

The 1980 WVN correlation functional (which is the
correlation part of the LDA) is defined in Ref. [4]. Be-
cause it is a very messy functional, I am going to provide
the fortran code to calculate the LDA correlation energy
for the hydrogen and helium atom.

Exercise 5: Using the hydrogen and helium atoms
again, compute the LDA correlation energies. How does
it compare with the exact values given in Ref. [5]?

B. LYP correlation functional

For a closed-shell system like the helium atom, the very
famous LYP correlation functional is defined as [5]:

eLYP
c (ρ) = −a ρ−1

1 + dρ−1/3

{
ρ+ bρ−2/3

[
CF ρ

5/3 − 2tW +

(
tW
9

+
∇2ρ

18

)]
e−cρ

−1/3

}
(16)
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where

tW =
|∇ρ|2

8ρ
− ∇

2ρ

8
(17)

CF =
3

10

(
3π2
)2/3

= 2.871 234 (18)

and a = 0.04918, b = 0.132, c = 0.2533 and d = 0.349
are fitting parameters.

Exercise 6: Compute the LYP correlation energies
for the helium atom. How does it compare with the LDA
value and exact value given in Ref. [5]?

IV. EXCHANGE-CORRELATION
FUNCTIONALS

A. BLYP exchange-correlation functional

The BLYP correlation functional combines the B88 ex-
change functional and the LYP correlation functional [6].

Exercise 7: Combining the previous results, com-
pute the BLYP exchange-correlation energy of the helium

atom.

B. B3LYP exchange-correlation hybrid functional

The extremely famous B3LYP exchange-correlation
functional combines the B88 and LDA exchange func-
tionals with the LDA and LYP correlation functionals,
adding on top of this some (exact) Fock exchange [7]. Its
usual definition is

EB3LYP
xc = ELDA

xc + a0∆Eexact
x + ax∆EB88

x + ac∆E
LYP
c

(19)
where

∆Eexact
x = Eexact

x − ELDA
x (20)

∆EB88
x = EB88

x − ELDA
x (21)

∆ELYP
c = ELYP

c − ELDA
c (22)

and

a0 = 0.20 ax = 0.72 ac = 0.81 (23)

Exercise 8: Combining the previous results, compute
the B3LYP exchange and correlation energies of the he-
lium atom.
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