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Density-functional theory History

Idea behind density-functional theory (DFT)

Walter Kohn (1923-2016) Hohenberg-Kohn theorem

The ground state electronic energy is completely
determined by the electron density ρ

There is a one-to-one correspondence between ρ and the
energy E

Hohenberg-Kohn theorem shows that you can use the
electron density ρ(r) instead of the wave function
Ψ(r1, . . . , rn)

The functional connecting ρ and E is unknown....
The goal is to design functionals connecting the electron density with the energy...

Hohenberg & Kohn, Phys Rev 136 (1964) B864
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Density-functional theory Kohn-Sham theory

Kohn-Sham (KS) theory

In the KS formalism, one writes the total energy as

EKS[ρ] = TS[ρ] + Ene[ρ] + J[ρ] + Exc[ρ]

where

ρ(r) =
occ∑
i

ψ2
i (r) = electronic density

TS[ρ] =
occ∑
i

〈ψi | −
∇2

2
|ψi 〉 = non-interacting kinetic energy

Ene[ρ] = −
nuc∑
A

∫
ZAρ(r)

|RA − r |dr = electron-nucleus attraction

J[ρ] =
1

2

x ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 = classical Coulomb repulsion

Exc[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J[ρ]) = exchange-correlation energy

Kohn & Sham Phys Rev 140 (1965) A1133
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Density-functional theory Kohn-Sham theory

Density, Exchange and Correlation

The exchange-correlation energy is defined as

Exc[ρ, ζ] = Ex[ρ, ζ] + Ec[ρ, ζ]

=

∫
ρ(r)ex[ρ(r), ζ]dr +

∫
ρ(r)ec[ρ(r), ζ]dr

The total density is

ρ = ρα + ρβ

The spin polarization is

ζ =
ρα − ρβ

ρ
=

nα − nβ
n

The exchange energy is given by

Ex[ρ, ζ] = Ex,α[ρα] + Ex,β [ρβ ]

The correlation energy is given by

Ec[ρ, ζ] = Ec,αα[ρα] + Ec,ββ [ρβ ] + Ec,αβ [ρα, ρβ ]
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Density-functional theory Exchange functionals

Local density approximation (LDA) exchange

The LDA exchange energy (Dirac formula) is

E LDA
x,σ =

∫
ρσ(r)ex[ρσ(r)]dr = Cx

∫
ρσ(r)4/3dr σ = α, β

ex[ρσ] = Cxρ
1/3
σ

where

Cx = −3

2

(
3

4π

)1/3

= −0.930526 . . .

has been obtained based on the infinite uniform electron gas or jellium

Dirac, Proc Cam Phil Soc 26 (1930) 376
Loos & Gill, WIREs Comput Mol Sci (2016) 10.1002/wcms.1257
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Density-functional theory Exchange functionals

How good is LDA?

System Basis set Exact UHF Error LDA
H exact −0.3125 +0.0445

He (1S) STO-6G −1.0256 +0.1418
He (3S) ” −0.8562 +0.1007
Li (2S) ” −1.7808 +0.2433
Li (4S) ” −1.2379 +0.1497

Be ” −2.6675 +0.3546
B ” −3.7656 +0.4703
C ” −5.0733 +0.5872
N ” −6.6119 +0.7073
O ” −8.2223 +0.8331
F ” −10.0587 +0.9572

Ne ” −12.1448 +1.0838
H2

+ 6-31G** (R = 2.0) −0.3257 +0.0446
H2 6-31G** (R = 1.4) −0.6575 +0.09126

Rule of thumb: LDA underestimates the exchange by 10%
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Density-functional theory Exchange functionals

Generalized gradient approximation (GGA) exchange

Sham has shown that, for an “almost” uniform electron gas,

EGGA
x,σ ≈ E LDA

x,σ −
5

(36π)5/3

∫
ρσ(r)4/3x2

σdr

where

xσ =
|∇ρσ|
ρ

4/3
σ

is the reduced gradient.
The GGA exchange energy is

EGGA
x,σ = Cx

∫
F (xσ)ρσ(r)4/3dr

F (xσ) is usually called the enhancement factor

Sham, in Computational Methods in Band Theory, edited by P. M Marcus, J. F. Janak, and A. R.
Williams (Plenum, New York, 1971)
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Density-functional theory Exchange functionals

Fashionable GGAs

B88 [PRA 38 (1988) 3098]

FB88(x) = 1− 0.0042 x2

1 + 0.0252 x sinh−1 x

PW91 [PRB 46 (1992) 6671]

FPW91(x) = ugly

G96 [Mol Phys 89 (1996) 433]

FG96(x) = 1− x3/2

137

PBE [PRL 77 (1996) 3865]

FPBE(x) = 1.804− 0.804

1 + 0.0071x2
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Density-functional theory Exchange functionals

Are GGAs better than LDA?

System Basis set Exact Error
UHF LDA B88 G96

H exact −0.3125 +0.0445 +0.0026 +0.0011
He (1S) STO-6G −1.0256 +0.1418 +0.0005 −0.0029
He (3S) STO-6G −0.8562 +0.1007 −0.0051 −0.0085
Li (2S) ” −1.7808 +0.2433 +0.0061 +0.0026
Li (4S) ” −1.2379 +0.1497 −0.0024 −0.0026

Be ” −2.6675 +0.3546 +0.0094 +0.0092
B ” −3.7656 +0.4703 +0.0079 +0.0082
C ” −5.0733 +0.5872 +0.0078 +0.0078
N ” −6.6119 +0.7073 +0.0125 +0.0103
O ” −8.2223 +0.8331 −0.0038 −0.0054
F ” −10.0587 +0.9572 −0.0158 −0.0191

Ne ” −12.1448 +1.0838 −0.0197 −0.0278
H2

+ 6-31G** (R = 2.0) −0.3257 +0.0446 −0.0003 −0.0025
H2 6-31G** (R = 1.4) −0.6575 +0.0913 +0.0026 −0.0011

Rule of thumb: GGAs are really good...
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Density-functional theory Correlation functionals

LDA correlation

The VWN correlation functional is

eLDA
c (rs , ζ) = eLDA

c (rs , 0) + ea(rs)
Υc(ζ)

Υ′′c (0)
(1− ζ4) + [eLDA

c (rs , 1)− eLDA
c (rs , 0)]Υc(ζ)ζ4

where

1

ρ
=

4π

3
r 3
s Υc(ζ) =

Υx(ζ)− 2

21/3 − 1
Υx(ζ) =

(1− ζ)4/3 + (1 + ζ)4/3

2

and

ec/a(x) = A

{
ln

x2

X (x)
+

2b

Q
tan−1

(
Q

2x + b

)
−

bx0

X (x0)

[
ln

(x − x0)2

X (x)
+

2(b + 2x0)

Q
tan−1 Q

2x + b

]}

x =
√
rs X (x) = x2 + bx + c Q =

√
4c − b2

It has been obtained based on the infinite uniform electron gas

Rule of thumb: VWN usually overestimates by 100%...

Ceperley & Alder, PRL 45 (1980) 566
Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200
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Density-functional theory Correlation functionals

GGA correlation

For example, the LYP correlation functional is [Lee, Yang & Parr, PRB 37 (1988) 785]

a, b, c and d are determined by fitting to data for He [Colle & Salvetti, TCA 37 (1975) 329]

There is no same-spin correlation in LYP

Perdew has also developed similar functionals called PW86, PW91 and PBE
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Density-functional theory Hybrid functionals

The B3LYP functional

The widely-used B3LYP functional is an hybrid functional and is defined as
[Becke, JCP 98 (1993) 5648]

EB3LYP
xc = (1 − a)ELDA

x + aEHF
x + bEB88

x + (1 − c)ELDA
c + cELYP

c

where

a ≈ 0.2 b ≈ 0.7 c ≈ 0.8

B3LYP used VWN3 (not VWN5)!

Subsequent versions denoted B97 and B98 employed ten fitting parameters...

PBE with HF exchange gives PBE0 (or sometimes calls PBE1PBE) with a = 0.25

TPSS with HF exchange gives TPSSh with a = 0.1
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Density-functional theory Hybrid functionals

A zoo of functionals

Pick your poison...

Burke, JCP 136 (2012) 150901

PF Loos (RSC, ANU) DFT with finite and infinite UEGs Massey University — 1st June 2016 — 13 / 28



Density-functional theory Hybrid functionals

Jacob’s ladder of DFT

Level Name Variables Examples
1 LDA ρ VWN,PZ81,Xα
2 GGA ρ,∇ρ BLYP,OLYP,PW86,PW91,PBE,PBEsol
3 meta-GGA ρ,∇ρ,∇2ρ,τ BR,B95,TPSS,SCAN
4 hyper-GGA + HF exchange BH&H, B3LYP,B3PW91,O3LYP,PBE0
5 generalized-RPA + HF virtual orbitals OEP2
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Density-functional theory DFT successes and pitfalls

The good, the bad and the ugly...

DFT successes

Sometimes predicts reaction energetics with amazing accuracy

Often predicts molecular structures of high quality

Often predicts vibrational frequencies that agree well with experiment

Vertical transition energies to low-lying excited states very good

and many others...

DFT failures

H2
+, He2

+ and other odd-electron bonds: self-interaction error

Relative alkane energies, large extended π systems, Diels-Alder reaction, etc.

Weak interactions due to dispersion forces (van der Waals)

Charge-transfer excited, core-excited and Rydberg states

Strongly-correlated systems

and many others...
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Local-density approximation

Back to basics: LDA in practice...

The local-density approximation (LDA)

Find the exchange and correlation energy of the
infinite uniform electron gas (UEG) for all densities ρ

Treat a molecular density as a collection of tiny bits of UEG

Ex/c =

∫
ex/c(r)ρ(r)dr ≈

∑
k

wkex/c(rk)ρ(rk)

, The LDA is an ab initio model with no adjustable parameters

, This is an attractive approach to molecular electronic structure

, It also forms a foundation for more accurate approximations

/ Not very accurate for exchange energy: underestimate by roughly 10%

// Not very accurate for correlation energy: overestimate by roughly 100%
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Local-density approximation Overview

What do we want to do?

1 eLDA
x and eLDA

c are based on Fermi fluid (FF) state of the UEG

2 However, since Overhauser, we know that the FF state is never
the HF ground state of the UEG

3 Indeed, one can always find a lower, symmetry-broken (SB)
state

4 The Wigner crystal (WC) state is an example of SB states

5 Using SBHF energies, we want to create new LDA-type xc
functionals that we call SBLDA functionals

6 We ultimately want to do it for three-dimensional systems but
we are lazy...

7 We will construct eSBLDA
c for ferromagnetic (ζ = 1) 1D systems

Fergus Rogers

Caleb Ball
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LDA/SBLDA in 1D LDA correlation functional in 1D

LDA for 1D systems [Loos, JCP 138 (2013) 064108]

The LDA correlation functional in 1D is

eLDA
c (rs) = t2

3∑
j=0

cj t
j(1− t)3−j t =

√
1 + 4 k rs − 1

2 k rs
rs =

1

2ρ

with k = 0.418268 and

c0 = k η0, c1 = 4 k η0 + k3/2η1, c2 = 5 ε0 + ε1/k, c3 = ε0,

and the high-density and low-density expansions

ec(rs) = ε0 + ε1 rs + O(r 2
s ), rs � 1

ec(rs) =
η0

rs
+

η1

r
3/2
s

,+O(r−2
s ), rs � 1

●
●

●

●

●

●

●
●

●
●

� �� �� �� �� ���

-�����

-�����

-�����

-�����

-�����

�����

��
� ��
�
�
(�
�)

where

ε0 = − π2

360
, ε1 = +0.00845, η0 = − ln(

√
2π) + 3/4, η1 = +0.359933,

The LDA and DMC correlation energies agree to within 0.1 millihartree
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LDA/SBLDA in 1D SBLDA correlation functional

Definition of the SBLDA correlation functional
[Rogers, Ball & Loos, PRB (in press) arXiv:1605.07602]

The “usual” definition of the correlation energy is (Löwdin equivalent)

eFF
c (rs) = e(rs)− eFF

HF(rs)

We are going to use an alternative definition (Pople equivalent)

eSB
c (rs) = e(rs)− eSB

HF(rs)

= eFF
c (rs) + ∆eSB

HF(rs).

Therefore, we define the SBLDA functional as

eSBLDA
c (rs) = eLDA

c (rs) + ∆eSB
HF(rs)

We only need to calculate the SB stabilisation

∆eSB
HF(rs) = lim

n→∞
∆eSB

HF(rs , n)

via extrapolation to the thermodynamic limit (n→∞)
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LDA/SBLDA in 1D SBHF calculations

SBHF calculations for the 1D UEG: ∆eSB
HF (in millihartree)

Wigner-Seitz radius rs
n rSB

s 0.5 1 2 5 10 15 20 50 75 100
9 1.22 0 0 2.685 6.852 6.226 5.187 4.392 2.267 1.628 1.273

19 0.79 0 0.666 5.042 7.695 6.621 5.445 4.583 2.346 1.678 1.311
29 0.64 0 1.576 5.525 7.860 6.698 5.496 4.621 2.361 1.688 1.319
39 0.55 0 1.985 5.700 7.920 6.727 5.515 4.635 2.366 1.692 1.321
49 0.50 0 2.188 5.784 7.949 6.741 5.524 4.642 2.369 1.694 1.323
59 0.46 0.000 2.302 5.830 7.965 6.749 5.529 4.646 2.370 1.695 1.324
69 0.43 0.008 2.371 5.859 7.975 6.754 5.532 4.648 2.371 1.695 1.324
79 0.41 0.143 2.418 5.878 7.982 6.757 5.534 4.650 2.372 1.695 —
89 0.40 0.198 2.450 5.891 7.986 6.759 5.535 4.651 2.372 — —
99 0.38 0.244 2.473 5.901 7.989 6.760 5.536 4.652 — — —

109 0.36 0.281 2.490 — — — — — — — —
119 0.35 0.312 2.503 — — — — — — — —
129 0.35 0.337 — — — — — — — — —

.
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.

.

.

.
∞ 0 0.476 2.570 5.938 8.002 6.767 5.540 4.655 2.372 1.695 1.324

rSB
s (n) =

1.13535

ln n − 1.61346
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LDA/SBLDA in 1D Extrapolation

Extrapolation to the thermodynamic limit

∆eSB
HF(rs , n) = ∆eSB

HF(rs) + An−2

rs −eFF
c −eSB

c 1 − eSB
c /eFF

c
0 27.416 27.416 0%
0.5 23.962 23.486 2%
1 21.444 18.874 12%
2 17.922 11.984 33%
5 12.318 4.316 65%
10 8.292 1.525 82%
15 6.319 0.779 88%
20 5.133 0.478 91%
50 2.476 0.104 96%
100 1.358 0.034 97%

rs=0.5

rs=1

rs=2

rs=5

rs=10

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

�-�

Δ
� �
�
�
�
(�
��
�)
-
Δ
� �
�
�
�
(�
�)

Lee & Drummond, PRB 83 (2011) 245114
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LDA/SBLDA in 1D Fit of the SB stabilisation

Fit of the SB stabilisation

∆eSB
HF(rs) = r 2

s
a0 + a1rs + a2r

2
s − η0r

3
s

b0 + b1r 5
s + b2r

11/2
s + r 6

s

0 20 40 60 80 100

0.000

0.002

0.004

0.006

0.008

��

Δ
� �
�
�
�

By construction, ∆eSB
HF(rs = 0) = 0 and ∆eSB

HF(rs →∞) = −η0

rs
+ O(r−3/2

s )

Maximum error of 7 microhartrees compared to data
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LDA/SBLDA in 1D Wigner crystal in 1D

Creation of a Wigner Crystal in 1D

0 π 2 π

θ

ρ

-20 -10 0 10 20

�

ϵ
Figure: Electronic density ρ as a function of θ (left) and orbital energies ε as a function of m
(right) for the HF (solid line) and SBHF (dashed line) solutions for n = 19 at rs = 5.
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Results Two electrons in a box

Two electrons in a one-dimensional box
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Figure: Error in correlation energy ∆Ec for two electrons in a box of length L with MP2, LDA and
SBLDA.

Loos, Ball & Gill, JCP 140 (2014) 18A524;
Loos, PRA 89 (2014) 052523;
Rogers, Ball & Loos, PRB (in press) arXiv:1605.07602
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Results 1D atoms

Ionization energies and electron affinities in 1D atoms

Ionization energy Electron affinity
Atom A −−→ A+ + e– A + e– −−→ A–

MP3 LDA SBLDA MP3 LDA SBLDA
H 13.606 14.125 14.013 3.893 4.327 4.154
He 33.895 34.393 34.325 — — 0
Li 4.522 4.895 4.712 1.395 1.717 1.512
Be 10.408 10.822 10.669 — — 0
B 2.099 2.386 2.190 0.638 0.875 0.688
C 4.730 5.056 4.865 — — 0
N 1.14 1.38 1.20 0.34 0.51 0.37
O 2.56 2.83 2.63 — — —
F 0.68 0.87 0.72 0.2 0.3 0.2
Ne 1.5 1.7 1.5 — — —

Loos, Ball & Gill, PCCP, 17 (2015) 3196;
Rogers, Ball & Loos, PRB (in press) arXiv:1605.07602
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Results One- and two-electron diatomics

LDA and SBLDA for one- and two-electron diatomics

H2
+

HeH2+

He2
3+
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Figure: Self-interaction error in H2
+ (green),

HeH2+ (red) and He2
3+ (blue) calculated with

LDA (solid) and SBLDA (dashed) as a function
of the bond length.
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Figure: Error in correlation energy ∆Ec in H2

calculated with LDA and SBLDA as a function of
the bond length.

Loos, Ball & Gill, PCCP, 17 (2015) 3196;
Rogers, Ball & Loos, PRB (in press) arXiv:1605.07602
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Results Future and Current work

What we are currently doing...

For three-dimensional systems,

One has to consider exchange and correlation

Are errors in exchange and correlation still cancelling nicely?

One has to consider spin polarization

How do we link properly the paramagnetic and ferromagnetic states?

One has to consider various symmetry-broken states

Are incommensurate crystals real?!

Trail, Towler & Needs, PRB 68 (2003) 045107;
Baguet, Delyon, Bernu & Holzmann, PRL 111 (2013) 166402; PRB 90 (2014) 165131
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