How Good are the Hartree-Fock Nodes?

(for spin-up electrons on a sphere)

Pierre-François Loos, ¹ Dario Bressanini² and Peter M. W. Gill¹

 $^{1}\mbox{Research School}$ of Chemistry, Australian National University, Canberra, Australia

²Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como, Italy

Molecular Electronic Structure, Amasya, Turkey

3rd September 2014

What's a node?

node = point in configuration space n for which

 $\Psi(\mathbf{n}) = 0$

What's a node?

node = point in configuration space \mathbf{n} for which $\Psi(\mathbf{n}) = 0$

What's a nodal pocket?

nodal pocket = region of configuration space in which electrons can travel **without** crossing a node

What's a node?

node = point in configuration space \mathbf{n} for which $\Psi(\mathbf{n}) = 0$

What's a nodal pocket?

nodal pocket = region of configuration space in
which electrons can travel without crossing a node

Why is it important to know the nodes?

- © Vanilla **DMC** algorithm converges to bosonic ground state
- © Nodes of the trial wave function has to be fixed: fixed-node (FN) approximation
- © FN-DMC gives exact energy iff the nodes are exact
- © FN error proportional to the square of the node displacement
- © FN error very hard to estimate
- On Nodes poorly understood due to high dimensionality of nodal hypersurface

Where are the nodes?

... when 2 electrons touch!

$$\Psi_{\mathsf{HF}}^{\mathsf{1D}} = \begin{vmatrix} e^{-i\,\phi_1} & 1 & e^{+i\,\phi_1} \\ e^{-i\,\phi_2} & 1 & e^{+i\,\phi_2} \\ e^{-i\,\phi_3} & 1 & e^{+i\,\phi_3} \end{vmatrix} \propto \mathit{r}_{\mathsf{12}}\,\mathit{r}_{\mathsf{13}}\,\mathit{r}_{\mathsf{23}}$$

Mitas, PRL 96 (2006) 240402 Loos & Gill, PRL 108 (2012) 083002

Where are the nodes?

... when 2 electrons touch!

$$\Psi_{\mathsf{HF}}^{1\mathsf{D}} = egin{array}{cccc} e^{-i\,\phi_1} & 1 & e^{+i\,\phi_1} \ e^{-i\,\phi_2} & 1 & e^{+i\,\phi_2} \ e^{-i\,\phi_3} & 1 & e^{+i\,\phi_3} \ \end{array} \propto \mathit{r}_{12}\,\mathit{r}_{13}\,\mathit{r}_{23}$$

Mitas, PRL 96 (2006) 240402 Loos & Gill, PRL 108 (2012) 083002

Reduced correlation energy (in millihartree) for n electrons on a ring

n	η	Seitz radius r _S										
		0	0.1	0.2	0.5	1	2	5	10	20	50	100
2	3/4	13.212	12.985	12.766	12.152	11.250	9.802	7.111	4.938	3.122	1.533	0.848
3	8/9	18.484	18.107	17.747	16.755	15.346	13.179	9.369	6.427	4.030	1.965	1.083
4	15/16	21.174	20.698	20.249	19.027	17.324	14.762	10.390	7.085	4.425	2.150	1.184
5	24/25	22.756	22.213	21.66	20.33	18.439	15.644	10.946	7.439	4.636	2.248	1.237
6	35/36	23.775	23.184	22.63	21.14	19.137	16.192	11.285	7.653	4.762	2.307	1.268
7	48/49	24.476	23.850	23.24	21.70	19.607	16.554	11.509	7.795	4.844	2.345	1.289
8	63/64	24.981	24.328	23.69	22.11	19.940	16.808	11.664	7.890	4.901	2.370	1.302
9	80/81	25.360	24.686	24.04	22.39	20.186	16.995	11.777	7.960	4.941	2.389	1.312
10	99/100	25.651	24.960	24.25	22.62	20.373	17.134	11.857	8.013	4.973	2.404	1.320
∞	1	27.416	26.597	25.91	23.962	21.444	17.922	12.318	8.292	5.133	2.476	1.358

Loos & Gill, JCP 138 (2013) 164124; Loos, Ball & Gill, ibid 140 (2014) 18A524

Electrons on a sphere are cool!

Electrons on a sphere are cool!

 One can hardly find something more simple and symmetric

Electrons on a sphere are cool!

- One can hardly find something more simple and symmetric
- and symmetry is your friend!

Electrons on a sphere are cool!

- One can hardly find something more simple and symmetric
- and symmetry is your friend!
- Ferromagnetic systems have minimal number of nodal pockets Mitas, PRL 96 (2006) 240402

Electrons on a sphere are cool!

- One can hardly find something more simple and symmetric
- and symmetry is your friend!
- Ferromagnetic systems have minimal number of nodal pockets Mitas, PRL 96 (2006) 240402
- One can create uniform electron gases

Electrons on a sphere are cool!

- One can hardly find something more simple and symmetric
- 2 ... and symmetry is your friend!
- Ferromagnetic systems have minimal number of nodal pockets Mitas, PRL 96 (2006) 240402
- One can create uniform electron gases

Where are the nodes?

Spherical coordinates

$$x = \cos \phi \sin \theta$$

$$y = \sin \phi \sin \theta$$

$$z = \cos \theta$$

HF orbitals on a sphere: s, p, d, f, g, h, i, j, ...

 $\mathbf{z} = (0,0,1)$ is the unit vector of the z axis, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, $\mathbf{r}_{ii}^+ = \mathbf{r}_i + \mathbf{r}_j$ and $\mathbf{r}_{ii}^\times = \mathbf{r}_i \times \mathbf{r}_j$

sp state: ³P°

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & z_1 \\ 1 & z_2 \end{vmatrix}$$
$$= \mathbf{z} \cdot \mathbf{r}_{12}$$

$$\mathbf{z} = (0,0,1)$$
 is the unit vector of the z axis, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, $\mathbf{r}_{ij}^+ = \mathbf{r}_i + \mathbf{r}_j$ and $\mathbf{r}_{ij}^\times = \mathbf{r}_i \times \mathbf{r}_j$

sp state: ³P°

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & z_1 \\ 1 & z_2 \end{vmatrix}$$
$$= \mathbf{z} \cdot \mathbf{r}_{12}$$

$$p^2$$
 state: $^3P^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$
$$= \mathbf{z} \cdot \mathbf{r}_{12}^{\times}$$

$$\mathbf{z} = (0,0,1)$$
 is the unit vector of the z axis, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, $\mathbf{r}_{ij}^+ = \mathbf{r}_i + \mathbf{r}_j$ and $\mathbf{r}_{ij}^\times = \mathbf{r}_i \times \mathbf{r}_j$

sp state: ³P°

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & z_1 \\ 1 & z_2 \end{vmatrix}$$
$$= \mathbf{z} \cdot \mathbf{r}_{12}$$

 p^2 state: $^3P^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$
$$= \mathbf{z} \cdot \mathbf{r}_{12}^{\times}$$

sd state: ³D^e

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 \ y_1 \\ 1 & x_2 \ y_2 \end{vmatrix}$$
$$= (\mathbf{z} \cdot \mathbf{r}_{12}^+)(\mathbf{z} \cdot \mathbf{r}_{12})$$

 $\mathbf{z} = (0,0,1)$ is the unit vector of the z axis, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, $\mathbf{r}_{ij}^+ = \mathbf{r}_i + \mathbf{r}_j$ and $\mathbf{r}_{ij}^\times = \mathbf{r}_i \times \mathbf{r}_j$

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{\text{HF}}| = \text{volume of parallelepiped}$

p^3 state: ${}^4S^0$

$$\Psi_{HF} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{\mathsf{HF}}| = \mathsf{volume} \ \mathsf{of} \ \mathsf{parallelepiped}$

- HF
- FCI up to d functions

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{\text{HF}}| = \text{volume of parallelepiped}$

- HF
- FCI up to *d* functions
- FCI up to f functions

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{\mathsf{HF}}| = \mathsf{volume} \ \mathsf{of} \ \mathsf{parallelepiped}$

- HF
- FCI up to d functions
- FCI up to f functions
- FCI up to g functions

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{HF}|$ = volume of parallelepiped

HF nodes vs FCI nodes

- HF
- FCI up to d functions
- FCI up to f functions
- FCI up to g functions

Proof: great circles are nodes!

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{HF}|$ = volume of parallelepiped

HF nodes vs FCI nodes

- HF
- FCI up to d functions
- FCI up to f functions
- FCI up to g functions

Proof: great circles are nodes!

 $-\Psi' =$

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{HF}|$ = volume of parallelepiped

HF nodes vs FCI nodes

- HF
- FCI up to d functions
- FCI up to f functions
- FCI up to g functions

Proof: great circles are nodes!

p^3 state: ${}^4S^0$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
$$= \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$$

 $|\Psi_{HF}|$ = volume of parallelepiped

HF nodes vs FCI nodes

- HF
- FCI up to d functions
- FCI up to f functions
- FCI up to g functions

Proof: great circles are nodes!

$-\Psi''$!

Connection $2D \rightarrow 1D$

if
$$\theta_1 = \theta_2 = \theta_3 \neq 0$$
 or $\pi/2$

$$\Rightarrow \Psi_{\mathsf{HF}} = egin{array}{cccc} 1 & y_1 & z_1 \ 1 & y_2 & z_2 \ 1 & y_3 & z_3 \ \end{array} = \Psi_{\mathsf{HF}}^{\mathsf{1D}}$$

$$sp^2$$
 state: $^4D^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
$$= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13})$$

 sp^2 state: $^4D^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
$$= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13})$$

- HF
- FCI up to d functions

$$sp^2$$
 state: $^4D^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
$$= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13})$$

- HF
- FCI up to d functions
- FCI up to f functions

 sp^2 state: $^4D^e$

$$\begin{split} \Psi_{\mathsf{HF}} &= \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} \\ &= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13}) \end{split}$$

- HF
- FCI up to d functions
- FCI up to f functions
- FCI up to g functions

$$sp^2$$
 state: $^4D^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
$$= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13})$$

- HF
- FCI up to *d* functions
- FCI up to f functions
- FCI up to g functions
- FCI up to h functions

sp^2 state: $^4D^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
$$= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13})$$

'Experimental" non-proof

sp^2 state: $^4D^e$

$$\Psi_{\mathsf{HF}} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
$$= \mathbf{z} \cdot (\mathbf{r}_{12} \times \mathbf{r}_{13})$$

'Experimental" non-proof

HF nodes vs FCI nodes

The HF nodes of the sp^2 state are **not** exact!

... but not too bad!

sp^3 state: ${}^5S^0$

$$\begin{split} \Psi_{\mathsf{HF}} &= \begin{vmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{vmatrix} \\ &= (\textbf{r}_{12} + \textbf{r}_{34})(\textbf{r}_{12}^{\times} + \textbf{r}_{34}^{\times}) \end{split}$$

HF nodes vs FCI nodes: small circles?

sp^3 state: ${}^5S^0$

$$\begin{split} \Psi_{\mathsf{HF}} &= \begin{vmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{vmatrix} \\ &= (\textbf{r}_{12} + \textbf{r}_{34})(\textbf{r}_{12}^{\times} + \textbf{r}_{34}^{\times}) \end{split}$$

- HF
- FCI up to d functions

sp^3 state: ${}^5S^0$

$$\begin{split} \Psi_{\mathsf{HF}} &= \begin{vmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{vmatrix} \\ &= (\textbf{r}_{12} + \textbf{r}_{34})(\textbf{r}_{12}^{\times} + \textbf{r}_{34}^{\times}) \end{split}$$

- HF
- FCI up to d functions
- FCI up to f functions

sp^3 state: ${}^5S^0$

$$\Psi_{\mathsf{HF}} = egin{array}{ccccc} 1 & x_1 & y_1 & z_1 \ 1 & x_2 & y_2 & z_2 \ 1 & x_3 & y_3 & z_3 \ 1 & x_4 & y_4 & z_4 \ \end{array} \ = (\mathbf{r}_{12} + \mathbf{r}_{34})(\mathbf{r}_{12}^{ imes} + \mathbf{r}_{34}^{ imes})$$

- HF
- FCI up to *d* functions
- FCI up to f functions
- FCI up to g functions

sp^3 state: ${}^5S^0$

$$\begin{split} \Psi_{\mathsf{HF}} &= \begin{vmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{vmatrix} \\ &= (\textbf{r}_{12} + \textbf{r}_{34})(\textbf{r}_{12}^{\times} + \textbf{r}_{34}^{\times}) \end{split}$$

- HF
- FCI up to *d* functions
- FCI up to f functions
- FCI up to g functions
- FCI up to *h* functions

sp^3 state: ${}^5S^0$

$$\begin{split} \Psi_{\mathsf{HF}} &= \begin{vmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{vmatrix} \\ &= (\textbf{r}_{12} + \textbf{r}_{34})(\textbf{r}_{12}^{\times} + \textbf{r}_{34}^{\times}) \end{split}$$

Exact or not exact?

sp³ state: ⁵S^o

$$\Psi_{\mathsf{HF}} = egin{array}{ccccc} 1 & x_1 & y_1 & z_1 \ 1 & x_2 & y_2 & z_2 \ 1 & x_3 & y_3 & z_3 \ 1 & x_4 & y_4 & z_4 \ \end{array} \ = (\mathbf{r}_{12} + \mathbf{r}_{34})(\mathbf{r}_{12}^{ imes} + \mathbf{r}_{34}^{ imes})$$

Exact or not exact?

HF nodes vs FCI nodes: small circles?

The HF nodes of the sp^3 state could be exact! ... if not, they're really good!

For same-spin electrons on a sphere,

HF nodes are amazingly accurate (sometimes exact)

- HF nodes are amazingly accurate (sometimes exact)
- FCI doesn't always improve the nodes

- HF nodes are amazingly accurate (sometimes exact)
- FCI doesn't always improve the nodes
- FN-DMC should yield very accurate energies

- HF nodes are amazingly accurate (sometimes exact)
- FCI doesn't always improve the nodes
- FN-DMC should yield very accurate energies
- It can be used to get near-exact energies of uniform electron gases
 ... and create new density functionals

- HF nodes are amazingly accurate (sometimes exact)
- FCI doesn't always improve the nodes
- FN-DMC should yield very accurate energies
- It can be used to get near-exact energies of uniform electron gases
 ... and create new density functionals
- It can be generalized to more electrons and higher dimensions

Collaborators and Funding

Peter Gill

Dario Bressanini

Australian Government

Australian Research Council

Discovery Early Career Researcher Award 2013 + Discovery Project 2014