	Chemistry of 1D Atoms	

Density-Functional Theory and Chemistry in One Dimension

Pierre-François Loos

Research School of Chemistry, Australian National University, Canberra, Australia

14ème Rencontre des Chimistes Théoriciens Francophones, École Nationale Supérieure de Chimie de Paris

July 2nd 2014

(4 冊 ト 4 三 ト 4 三 ト

Introduction	Chemistry of 1D Atoms	
•		
My collaborators		

Quantum Chemistry at ANU

Peter Gill Q-Chem president

Andrew Gilbert

Caleb Ball DFT

Giuseppe Barca HF excited states

Australian Government

Australian Research Council

Discovery Early Career Researcher Award 2013 + Discovery Project 2014

イロト イポト イヨト イヨト

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
Local-Density Approxima	ition		

RCTF 2014 - July 2nd 2014 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
Local-Density Approxima	ition		

Find the correlation energy of the infinite uniform electron gas (UEG) for all densities ρ Ceperley & Alder, Phys Rev Lett 45 (1980) 566

(4 冊 ト 4 三 ト 4 三 ト

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
Local-Density Approxima	ation		

- Find the correlation energy of the infinite uniform electron gas (UEG) for all densities ρ Ceperley & Alder, Phys Rev Lett 45 (1980) 566
- Treat a molecular density as a collection of tiny bits of UEG Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200 Perdew & Zunger, Phys Rev B 23 (1981) 5048 Perdew & Wang, Phys Rev B 45 (1992) 13244

伺 ト イヨト イヨト

	Density-Functional Theory	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	000			
Local-Density Approxima	ation			

- Find the correlation energy of the infinite uniform electron gas (UEG) for all densities ρ Ceperley & Alder, Phys Rev Lett 45 (1980) 566
- Treat a molecular density as a collection of tiny bits of UEG Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200 Perdew & Zunger, Phys Rev B 23 (1981) 5048 Perdew & Wang, Phys Rev B 45 (1992) 13244
- Intersection of the section of th
- © This is an attractive approach to molecular electronic structure
- © It also forms a foundation for more accurate approximations

伺 ト イヨト イヨト

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
Local-Density Approxima	ation		

- Find the correlation energy of the infinite uniform electron gas (UEG) for all densities ρ Ceperley & Alder, Phys Rev Lett 45 (1980) 566
- Treat a molecular density as a collection of tiny bits of UEG Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200 Perdew & Zunger, Phys Rev B 23 (1981) 5048 Perdew & Wang, Phys Rev B 45 (1992) 13244
- © The LDA is an *ab initio* model with no adjustable parameters
- © This is an attractive approach to molecular electronic structure
- © It also forms a foundation for more accurate approximations
- ©© Not very accurate for correlation energy (overestimated by roughly 100%)

(4 間) トイヨト イヨト

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
Generalized Local-Density	y Approximation		

The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent

イロト イポト イヨト イヨト

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
Generalized Local-Densit	y Approximation		

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!
 Gill & Loos, Theor Chem Acc 131 (2012) 1069
 Loos & Gill, J Chem Phys 138 (2013) 164124

	Density-Functional Theory	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	000			
Generalized Local-Densit	y Approximation			

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!
 Gill & Loos, Theor Chem Acc 131 (2012) 1069
 Loos & Gill, J Chem Phys 138 (2013) 164124
- We propose to follow an alternative route to heaven using finite-size UEGs!

	Density-Functional Theory	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	000			
Generalized Local-Density Approximation				

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!
 Gill & Loos, Theor Chem Acc 131 (2012) 1069
 Loos & Gill, J Chem Phys 138 (2013) 164124
- We propose to follow an alternative route to heaven using finite-size UEGs!
- We add a new local two-electron parameter

hole curvature:
$$\eta(\mathbf{r}) \propto 2\sum_{i}^{\mathsf{occ}} |
abla \psi_i|^2 - \frac{|
abla \rho|^2}{2
ho}$$

Loos, Ball & Gill, J Chem Phys 140 (2014) 18A524

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Density-Functional Theory	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
	000			
GLDA in 1D				

$$E_{c}^{\mathsf{GLDA}}(\rho,\eta) = \Upsilon_{0}(\eta) \operatorname{\mathsf{F}}\left[1,\frac{3}{2},\Upsilon(\eta),\frac{\Upsilon_{0}(\eta)(1-\Upsilon(\eta))}{\Upsilon_{\infty}(\eta)} \rho^{-1}\right]$$

RCTF 2014 — July 2nd 2014 —

3

イロト イポト イヨト イヨト

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
GLDA in 1D			

$$\left| \mathsf{E}_{\mathrm{c}}^{\mathsf{GLDA}}(\rho,\eta) = \Upsilon_{0}(\eta) \, \mathsf{F}\left[1, \frac{3}{2}, \Upsilon(\eta), \frac{\Upsilon_{0}(\eta)(1-\Upsilon(\eta))}{\Upsilon_{\infty}(\eta)} \, \rho^{-1} \right] \right|$$

$\begin{array}{llll} \Upsilon_{0}(\eta) & = & \text{electrons are close to each other} & \Leftrightarrow & \text{perturbation theory} \\ \Upsilon(\eta) & = & \text{intermediate densities} & \Leftrightarrow & \text{quantum Monte Carlo} \\ \Upsilon_{\infty}(\eta) & = & \text{electrons are far apart} & \Leftrightarrow & \text{perturbation theory} \end{array}$	F(a, b, c, x)	=	Hypergeometric function	\Leftrightarrow	exact for small and large ρ
	${ } \Upsilon_0(\eta) \ \Upsilon(\eta) \ \Upsilon_\infty(\eta)$	= = =	electrons are close to each other intermediate densities electrons are far apart	\$ \$ \$	perturbation theory quantum Monte Carlo perturbation theory

3

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
GLDA in 1D			

$$\left| \mathsf{E}_{\mathrm{c}}^{\mathsf{GLDA}}(\rho,\eta) = \Upsilon_{0}(\eta) \, \mathsf{F}\left[1, \frac{3}{2}, \Upsilon(\eta), \frac{\Upsilon_{0}(\eta)(1-\Upsilon(\eta))}{\Upsilon_{\infty}(\eta)} \, \rho^{-1} \right] \right|$$

F(a, b, c, x)	=	Hypergeometric function	\Leftrightarrow	exact for small and large ρ
$\stackrel{\Upsilon_0(\eta)}{\Upsilon(\eta)} \ \stackrel{\Upsilon(\eta)}{\Upsilon_\infty(\eta)}$	= = =	electrons are close to each other intermediate densities electrons are far apart	\$ \$ \$	perturbation theory quantum Monte Carlo perturbation theory
	ſ			A ()

By construction,
$$E_{
m c}^{
m GLDA}(
ho,\eta=1)=E_{
m c}^{
m LDA}(
ho)$$

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Density-Functional Theory	Chemistry of 1D Atoms	
	000		
GLDA in 1D			

$$\left| \mathsf{E}_{\mathrm{c}}^{\mathsf{GLDA}}(\rho,\eta) = \Upsilon_{0}(\eta) \, \mathsf{F}\left[1, \frac{3}{2}, \Upsilon(\eta), \frac{\Upsilon_{0}(\eta)(1-\Upsilon(\eta))}{\Upsilon_{\infty}(\eta)} \, \rho^{-1} \right] \right|$$

$\Upsilon_0(\eta)$	=	electrons are close to each other	\Leftrightarrow	perturbation theory
$\Upsilon(\eta) \ \Upsilon_\infty(\eta)$	=	intermediate densities electrons are far apart	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	quantum Monte Carlo perturbation theory
	Г	0.54		

By construction,
$$E_{
m c}^{
m GLDA}(
ho,\eta=1)=E_{
m c}^{
m LDA}(
ho)$$

-	Electrons in a box $(L = \pi)$				Ele	ectrons in a	a harmonic	well $(k =$	1)	
	n = 2	n = 3	<i>n</i> = 4	n = 5	n = 6	n = 2	<i>n</i> = 3	<i>n</i> = 4	n = 5	<i>n</i> = 6
LDA	46	73	99	126	154	42	66	90	115	139
GLDA	11	27	45	65	86	13	29	46	65	84
FCI	10	26	46	68	92	14	32	52	74	101

Loos, Phys Rev A 89 (2014) 052523

 $\mathsf{PF} \; \mathsf{Loos} - \mathsf{http://rsc.anu.edu.au/}{\sim}\mathsf{loos/} -$

DFT and Chemistry in 1D

3

イロト イポト イヨト イヨト

		Chemistry of 1D Atoms				
		00000				
The Coulomb Operator Rules the 1D World!						

Chemistry in 1D with the Coulomb operator $|x|^{-1}$

Loos, Ball & Gill (submitted)

PF Loos — http://rsc.anu.edu.au/~loos/ —

DFT and Chemistry in 1D

RCTF 2014 - July 2nd 2014 -

通 ト イヨ ト イヨト

		Chemistry of 1D Atoms				
		00000				
Can a Wavepacket Go Through the Coulomb Potential?						

Impenetrability of the 1D Coulomb potential: H atom

Newton, J Phys A 27 (1994) 4717; Nunez-Yepez et al., Phys Rev A 83 (2011) 064101.

イロト イポト イヨト イヨト

3

RCTF 2014 - July 2nd 2014 -

PF Loos — http://rsc.anu.edu.au/~loos/ —

	Density-Functional Theory	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
Hydrogen Atom				

Hydrogen atom in 1D

Left-handed ground state: 1H

Right-handed ground state: H₁

RCTF 2014 - July 2nd 2014 -

Loudon, Am J Phys 27 (1959) 649

PF Loos — http://rsc.anu.edu.au/~loos/ —

	Chemistry of 1D Atoms	
	00000	
Hydrogen Atom		

Hydrogen atom in 1D

Left-handed ground state: 1H

Right-handed ground state: H₁

Loudon, Am J Phys 27 (1959) 649

RCTF 2014 - July 2nd 2014 -

- 4 間 と 4 き と 4 き と

	Chemistry of 1D Atoms	
	000000	
Helium Atom		

Helium atom in 1D

・ロト ・聞ト ・ヨト ・ヨト

э

RCTF 2014 - July 2nd 2014 -

	Chemistry of 1D Atoms	
	000000	
Helium Atom		

Helium atom in 1D

・ロト ・聞 ト ・ヨト ・ヨト

3

RCTF 2014 - July 2nd 2014 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Chemistry of 1D Atoms	
	000000	
1D Atoms		

More 1D atoms...

Lithium: $\mu = 1.5$ and R = 2.8

Beryllium: $\mu = 0$ and R = 2.1

Boron: $\mu = 1.9$ and R = 4.7

DFT and Chemistry in 1D

Carbon: $\mu = 0$ and R = 3.7

RCTF 2014 - July 2nd 2014 -

		Chemistry of 1D Atoms	
		00000	
Mendeleev's Periodic Ta	able		

Periodic trends in 1D atoms

1D atoms have only two sides

PF Loos - http://rsc.anu.edu.au/~loos/ -

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	: Table		

Periodic trends in 1D atoms

- 1D atoms have only two sides
- Shells hold only two electrons

PF Loos — http://rsc.anu.edu.au/~loos/ —

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	Table		

Periodic trends in 1D atoms

- 1D atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell

(4 間) トイヨト イヨト

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	: Table		

Periodic trends in 1D atoms

- ID atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell
- Even electron \Rightarrow filled shell

(4 冊 ト 4 三 ト 4 三 ト

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	: Table		

Periodic trends in 1D atoms

- ID atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell
- Even electron \Rightarrow filled shell
- Odd electron ⇒ reactive

通 ト イヨ ト イヨト

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	: Table		

Periodic trends in 1D atoms

- 1D atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell
- Even electron \Rightarrow filled shell
- Odd electron \Rightarrow reactive
- Even electron \Rightarrow unreactive

通 ト イ ヨ ト イ ヨ ト

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	Table		

Periodic trends in 1D atoms

- ID atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell
- Even electron \Rightarrow filled shell
- Odd electron \Rightarrow reactive
- Even electron ⇒ unreactive
- Odd electron \Rightarrow "alkali metals"

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	Table		

Periodic trends in 1D atoms

- ID atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell
- Even electron \Rightarrow filled shell
- Odd electron ⇒ reactive
- Even electron ⇒ unreactive
- Odd electron \Rightarrow "alkali metals"
- Even electron \Rightarrow "noble gases"

ト イヨト イヨト

		Chemistry of 1D Atoms	
		000000	
Mendeleev's Periodic	Table		

Periodic trends in 1D atoms

- ID atoms have only two sides
- Shells hold only two electrons
- Odd electron \Rightarrow unfilled shell
- Even electron \Rightarrow filled shell
- Odd electron ⇒ reactive
- Even electron ⇒ unreactive
- Odd electron \Rightarrow "alkali metals"
- Even electron \Rightarrow "noble gases"

ト イヨト イヨト

		Chemistry of 1D Atoms		
		00000		
Mendeleev's Periodic Table				

Periodic trends in 1D atoms

- 1D atoms have only two sides
 Shells hold only two electrons
 Odd electron ⇒ unfilled shell
 Even electron ⇒ filled shell
 Odd electron ⇒ reactive
 Even electron ⇒ unreactive
 Odd electron ⇒ "alkali metals"
 - Even electron \Rightarrow "noble gases"

		Chemistry of 1D Atoms	Chemistry of 1D Molecules	
			0000	
One-Electron Diatomics	5			

- 4 同 ト 4 回 ト 4 回 ト

RCTF 2014 - July 2nd 2014 -

The H_2^+ molecule in 1D

The H_1H^+ state: $\mu = 0$

The HH_1^+ state: $\mu \neq 0$

		Chemistry of 1D Atoms 000000	Chemistry of 1D Molecules ●○○○○		
One-Electron Diatomics					

The H_2^+ molecule in 1D

The H_1H^+ state: $\mu = 0$

Potential energy curves for H₂⁺

The HH_1^+ state: $\mu \neq 0$

RCTF 2014 - July 2nd 2014 -

PF Loos — http://rsc.anu.edu.au/~loos/ —

	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		0000	
One-Electron Diatomics			

One-electron diatomic molecules in 1D

Electron densities for one-electron diatomics

▲ □ ► < □ ►</p>

PF Loos — http://rsc.anu.edu.au/~loos/ —

	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		00000	
Two-Electron Diatomics			

The $\rm H_2$ molecule in 1D

The H_{1,2}H state

The ₁HH₁ state

The H₁H₁ state

The HH_{1,2} state

(4 間) トイヨト イヨト

RCTF 2014 - July 2nd 2014 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		00000	
Two-Electron Diatomics			

Two-electron diatomic molecules in 1D

	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		00000	
Two-Electron Diatomics			

Two-electron diatomic molecules in 1D

Electron densities for two-electron diatomics

RCTF 2014 - July 2nd 2014 -

1D atoms are bound by one-electron bonds!!

	Chemistry of 1D Atoms	Chemistry of 1D Molecules	
		00000	
Hydrogen nanowire			

Lego-style formation of 1D polymers

- A single H₁ atom has a dipole moment
- \Rightarrow Two H₁ atoms will feel dipole-dipole attraction
 - The resulting H₁H₁ molecule also has a dipole moment
- \Rightarrow H₁H₁ and H₁ will feel dipole-dipole attraction
 - The resulting H₁H₁H₁ molecule also has a dipole moment
- \Rightarrow H₁H₁H₁ and H₁ will feel dipole-dipole attraction

$$\overrightarrow{H_1} + \overrightarrow{H_1} \longrightarrow \overrightarrow{H_1H_1}$$

$$\overrightarrow{H_1H_1} + \overrightarrow{H_1} \longrightarrow \overrightarrow{H_1H_1H_1}$$

$$\overrightarrow{H_1H_1H_1} + \overrightarrow{H_1} \longrightarrow \overrightarrow{H_1H_1H_1}$$

RCTF 2014 - July 2nd 2014 -

	Chemistry of 1D Atoms	Conclusion
		•
Final Remarks		i i

Take-home messages

- All uniform electron gases are equal, but some are more equal than others!
- GLDA improves LDA (a lot)
- 1D chemistry is very different from 3D chemistry
- Electrons cannot penetrate the nuclei
- Periodic Table has only two groups: alkali metals and noble gases
- Dipole-dipole contribution to bonding is important
- 1D atoms are bound by one-electron bonds!