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Abstract

The purpose of this document is to give a general presentation of quantum Monte Carlo
(QMC) methods for electronic systems. In particular, we give an overview of variational and
diffusion Monte Carlo methods and we provide simple examples to illustrate these methods.
For sake of general accessibility, there is absolutely no mathematical rigor in this document!
We use atomic units throughout.
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1 Monte Carlo method: a classic example!
Roughly speaking, Monte Carlo is a numerical integration method, or at least this is why it
is used in quantum chemistry! It was named by Stanislaw Ulam, who in 1946 became the first
mathematician to dignify this approach with a name, in honor of his uncle having a little issue
with gambling [1]. Nicolas Metropolis also made important contributions to the development of
such methods [2]. It is usually used in problems where it is too difficult or impossible to obtain
analytical expressions or the dimensionality of the integral is large. The method consists in
repeating random sampling many times to obtain numerical results: this is a non-deterministic
method.

1.1 Calculating π

The calculation of π with Monte Carlo is probably one of the most didactic example. It can be
done by throwing beans on a piece of paper,1 but we can also use a computer which is more
fun!

The idea is to draw a circle inscribed in a unit square. Given that the area of the circle and
the square have a ratio of π, we can obtain a numerical estimate using Monte Carlo.

A possible fortran77 code to calculate π with Monte Carlo could be:
1 program pi
2 c Declare variables
3 implicit none
4 integer seed ,i,n
5 double precision one ,four ,x,y,r,res
6 c Input data
7 one =1.0 d0
8 four =4.0 d0
9 seed =1234

10 res =0.0 d0
11 n =100000
12 c Initialize random number generator
13 call srand (seed)
14 c Start loop
15 do i=1,n
16 c Get two random numbers
17 x=rand (0)
18 y=rand (0)
19 c Calculate the radius
20 r=x**2+y**2
21 c Increment result if in circle
22 if(r.le .1) res=res+one
23 enddo
24 c Print the result
25 print *,’MC estimate of pi = ’,four*res/dble(n)
26 print *,’Exact value of pi = ’,four* datan (one)
27 c End of the program
28 return
29 end

To compile this code (using gfortran for example) and run it, just do:

prompt$ gfortran pi.f -o pi
prompt$ ./pi
MC estimate of pi = 3.1416400000000002
Exact value of pi = 3.1415926535897931

Few remarks (see Fig. 1):
1At least if you’re able to scatter them uniformly.
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• The random numbers have to be really random!2

• As you can see, one needs a large number of points N . Monte Carlo is known to converge
as 1/

√
N which is quite slow sadly.3

• The result will improve when N increases (trust me!).

• A Monte Carlo result should never be reported without error bars!

Extra question #1: show the 1/
√

N convergence with the pi.f program

(a) π ≈ 774
1000 = 3.096 (b) π ≈ 3962

5000 = 3.1696 (c) π ≈ 7948
10000 = 3.1792

Figure 1: Monte Carlo computation of π.

1.2 Average, variance and error

Suppose we want to determine the following quantity

I =
∫

Ω
f(x)dx, (1)

where Ω is a subset of Rn, x = (x1,x2, . . . ,xn) and f is a function behaving well enough to be
integrated in Ω. Let us generate N points (x̄1, x̄2, . . . , x̄N ) uniformly sampled in Ω. Monte
Carlo tells us that the estimate of the integral is given by the average (or mean):

I ≈ ⟨f⟩= 1
N

N∑
i=1

f(x̄i). (2)

The square of the error (or variance) associated with this average is

σ2 = 1
N(N −1)

N∑
i=1

[f(x̄i)−⟨f⟩]2 . (3)

How can we figure out the physical meaning of these quantities?
2We recommend using ranlux.
3However, this result does not depend on the number of dimensions of the integral, which is the promised

advantage of Monte Carlo integration against most deterministic methods that depend exponentially on the
dimension. Moreover, Monte Carlo algorithms can be easily parallelized!
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1.2.1 The normal distribution
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Figure 2: Normal distribution p(x) with σ = µ = 1.

Let us consider a particular kind of probability distribution called the normal distribution4

p(x) = 1
σ
√

2π
exp

[
−(x−µ)2

2σ2

]
, (4)

which is properly normalized, i.e. ∫ ∞

−∞
p(x)dx = 1. (5)

This function gives you, in most of the cases, the distribution of your results. The average/mean
of this distribution (i.e. the most probable result you can get)

µ =
∫ ∞

−∞
xp(x)dx, (6)

and the variance is
σ2 =

∫ ∞

−∞
(x−µ)2 p(x)dx. (7)

In Figure 2, we have represented p(x) for σ = µ = 1. The mean tells you where is centered the
curve and the variance gives you an idea of how spread the distribution is (i.e. the length of
the tail). If you get a mean energy equal to µ with a standard error5 of ±σ, we have∫ µ+σ

µ−σ
p(x) = erf

( 1√
2

)
≈ 68%, (8)

which means that you still have 32% of chance that the correct result is outside the range µ±σ.6
This shows that, although the error bar gives you an idea of the error you are doing in your
calculation, this is more than likely that your result is an outlier!

4... also called the drunkard’s walk for obvious reasons. Peter Gill will probably give you an experimental
demonstration during this week.

5Standard means that it is based on the normal distribution.
6This nasty guy is called an outlier and it happens all the time!
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Take-home message #1: be careful with errors!

2 Variational Monte Carlo

2.1 Theory

Within quantum chemistry, variational Monte Carlo (VMC) is used to obtain expectation values
(mainly energies7). Using more confusing words, we could say that, in VMC, the expectation
value of the Hamiltonian with respect to a trial wave function is obtained using a stochastic
integration technique.

2.1.1 Basics

Suppose we want to know the electronic energy of a system for which we know a trial wave
function ΨT(r), where r = {r1,r2, . . . ,rn} are the coordinates of the electrons. The energy is
given by

EVMC =
∫

ΨT(r)Ĥ ΨT(r)dr∫
ΨT(r)2 dr

, (9)

where Ĥ is the Hamiltonian of the system. Using a very involved mathematical trick, Eq. (9)
can be recast

EVMC =
∫ Ĥ ΨT(r)

ΨT(r) ΨT(r)2 dr∫
ΨT(r)2 dr

, (10)

where

EL = Ĥ ΨT(r)
ΨT(r)

(11)

is the local energy. Equation (10) means that, if you are samplig the local energy (11) with
the probablity distribution Ψ2

T, you will get the variational energy of the wave function ΨT. In
other words, the method is only as good as the variational trial wave function itself! Note that
the VMC energy is an upper bound to the exact ground state energy: unless you are
using a wave function which does not satisfy the right boundary conditions (and it’s usually a
bad idea), the energy you will obtain is always higher than the exact energy.

Take-home message #2: VMC gives the variational energy of ΨT, no more, no less!

2.1.2 How to optimize variational parameters in VMC?

Usually the trial wave function is of the form ΨT(r,c), where c = (c1, c2, . . . , cM ) are variational
parameters.8 Pratically, optimizing the variational parameters of the trial wave function is
by far the trickiest part of the calculation and one has to be (most of the time) very patient.
People are usually optimizing these coefficients by energy minimization or variance minimization
[3, 4, 5].

7The energy corresponds to the expectation value of the Hamiltonian.
8The form of ΨT depends on the problem to be solved and c can be a mixture of linear or non-linear parameters.
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2.2 Example

2.2.1 Helium atom

Let us consider the following simple trial wave function for the helium atom as an example:

ΨT(r1, r2) = exp[−2(r1 + r2)] . (12)

In terms of r1, r2 and r12 = |r1−r2|, the Hamiltonian of the He atom is

Ĥ =−1
2

[ ∂2

∂r2
1

+ 2
r1

∂

∂r1
+ ∂2

∂r2
2

+ 2
r2

∂

∂r2
+2 ∂2

∂r2
12

+ 4
r12

∂

∂r12
+ r2

1 + r2
12− r2

2
r1 r12

∂2

∂r1 r12

+ r2
2 + r2

12− r2
1

r2 r12

∂2

∂r2 r12

]
− 2

r1
− 2

r2
+ 1

r12
. (13)

The energy of the trial wave function (12) can be easily obtained in closed form E = −11/4,
and we would like to reproduce this result using VMC. The local energy for this wave function
is

EL = Ĥ ΨT
ΨT

= 1
r12
−4. (14)

2.2.2 VMC fortran77 code

1 program HeVMC
2 c Declare variables
3 implicit none
4 integer seed ,ie ,ne ,it ,nEq ,nAc
5 c Number of electrons
6 parameter (ne =2)
7 double precision energy ,error ,elocal ,dtvmc ,psi ,psip ,w,r12 ,weight ,
8 $ accept ,zero ,pt5 ,one ,two ,four ,x,y,z,xp ,yp ,zp ,r,rp
9 dimension x(ne),y(ne),z(ne),xp(ne),yp(ne),zp(ne),

10 $ r(ne),rp(ne)
11 save zero ,pt5 ,one ,two ,four
12 data zero ,pt5 ,one ,two ,four
13 $ /0.0d0 ,0.5d0 ,1.0d0 ,2.0d0 ,4.0 d0/
14 666 format (’ Acceptance ratio = ’,F15 .10 , ’ %’ ,/
15 $ ’ Total energy = ’,F15 .10 , ’ AU ’ ,/
16 $ ’ Standard error +/-’,F15 .10 , ’ AU ’ ,/
17 $ ’ ’ ,/
18 $ ’ Exact energy = ’,F15 .10 , ’ AU ’)
19 c Input data
20 seed =12345
21 nEq =100000
22 nAc =100000
23 accept =zero
24 energy =zero
25 error =zero
26 weight =zero
27 dtvmc =0.4 d0
28 c Initialize random number generator
29 call srand (seed)
30 c Generate initial position of electrons
31 do ie=1,ne
32 x(ie )= two*rand (0) - one
33 y(ie )= two*rand (0) - one
34 z(ie )= two*rand (0) - one
35 enddo
36 c Compute r1 and r2
37 do ie=1,ne
38 r(ie )=x(ie )**2+ y(ie )**2+ z(ie )**2
39 r(ie )= dsqrt (r(ie ))
40 enddo
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41 c Calculate the wave function
42 psi=dexp(-two *(r(1)+r (2)))
43 c Start equilibration / accumulation
44 do it=1, nEq+nAc
45 c Propose a move
46 do ie=1,ne
47 xp(ie )=x(ie )+ dtvmc *( two*rand (0) - one)
48 yp(ie )=y(ie )+ dtvmc *( two*rand (0) - one)
49 zp(ie )=z(ie )+ dtvmc *( two*rand (0) - one)
50 enddo
51 c Compute new values of r1 and r2
52 do ie=1,ne
53 rp(ie )= xp(ie )**2+ yp(ie )**2+ zp(ie )**2
54 rp(ie )= dsqrt (rp(ie ))
55 enddo
56 c Calculate the new wave function
57 psip=dexp(-two *( rp (1)+ rp (2)))
58 c Compute the ratio w
59 w=( psip/psi )**2
60 c Calculate the energy if accumulation phase
61 if(it.gt.nEq) then
62 r12 =( xp (1) - xp (2))**2+( yp (1) - yp (2))**2+( zp (1) - zp (2))**2
63 r12= dsqrt (r12)
64 c Calculate local energy
65 elocal =one/r12 -four
66 c Accumulate energy
67 energy = energy +w* elocal
68 error = error +(w* elocal )**2
69 weight = weight +w
70 endif
71 c Accept or reject the move
72 if(rand (0). le.min(w,one )) then
73 accept = accept +one
74 do ie=1,ne
75 x(ie )= xp(ie)
76 y(ie )= yp(ie)
77 z(ie )= zp(ie)
78 psi=psip
79 enddo
80 endif
81 c End of equilibration / accumulation
82 enddo
83 c Print various results
84 accept = accept /dble(nEq+nAc )*100. d0
85 error =error - energy **2/ dble(nAc)
86 energy = energy /dble(nAc)
87 error = dsqrt ( error /( dble(nAc -1)* dble(nAc )))
88 write (* ,666) accept ,energy ,error , -11. d0 /4.0 d0
89 c End of the program
90 return
91 end

Extra question #2: find the energy of ΨT(r1, r2) = (1+ r12/2)exp[−2(r1 + r2)]

2.2.3 Comments

• A rough estimate of the number of iterations during equilibration can be obtained using
the formula

Neq = λ2

D∆τVMC A
, (15)

where λ is the largest physically relevant length-scale of the system, D is the dimen-
sionality, ∆τVMC is the VMC ”time-step” and A is the VMC acceptance [6]. The
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number of equilibration moves should be substantially larger than the above estimate of
the correlation period.

• In VMC, the time-step ∆τVMC is usually chosen to have an acceptance around 50% i.e.
A = 1/2 [6].

• It is usually a good idea to use more than one configuration during a VMC run.

3 Diffusion Monte Carlo

3.1 Theory

Diffusion Monte Carlo (DMC) is a stochastic projector technique for solving the many-body
Schrödinger equation [7, 8, 9]. This is an exact method, within statistical errors.

3.1.1 Why is it called diffusion Monte Carlo?

The starting point here is the many-body time-dependent Schrödinger equation written in imag-
inary time:

∂Φ(r, τ)
∂τ

= (Ĥ−S)Φ(r, τ). (16)

For τ →∞, the steady-state solution of Eq. (16) for S close to the ground state energy is
the exact ground state wave function Φ(r) [10]. DMC generates configurations (or walkers)
distributed according to the product of the trial wave function ΨT(r) and the exact ground
state wave function Φ(r, τ):

ρ(r, τ) = ΨT(r)Φ(r, τ). (17)

Using (17), Eq. (16) can be splitted into three contributions

∂ρ(r, τ)
dτ

= 1
2
∇2ρ(r, τ)︸ ︷︷ ︸
diffusion

+∇· [F (r)ρ(r, τ)]︸ ︷︷ ︸
drift

− [EL(r)−ET]ρ(r, τ)︸ ︷︷ ︸
branching

, (18)

where
F (r) = ∇ΨT(r)

ΨT(r)
(19)

is the quantum force.
When the trial wave function has the correct nodes, the DMC method yields the exact

energy with only a statistical error that can be made arbitrarily small by increasing the number
of Monte Carlo steps. Thus, the quality of the trial wave function is paramount to achieve high
accuracy [11, 12]. This can be easily understood knowing that the statistical error decreases as
C/
√

N , where C is a constant and N is the number of iterations. We can’t really do anything
about the N−1/2 behavior but we can try to reduce C by improving ΨT. However, when ΨT
gets more complicated, the calculation becomes more expensive and the parameters get harder
to optimize.

3.1.2 DMC algorithm

Here, we present a simplified version of the DMC algorithm. See Refs. [9, 11] for an efficient
and elegant implementation of DMC.

1. Generate initial configuration of walkers (usually using VMC).
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2. Do diffusion and drift: move each walker r′
i← ri + χ + F (ri)∆τDMC, where ∆τDMC is

the DMC time-step and χ is a Gaussian random number of mean zero and variance
∆τDMC.9

3. Do branching: create w̄i = int(wi +η) copies of walker i, where

wi = exp
[
−∆τDMC

(
EL(r)+EL(r′)

2
−S

)]
(20)

is the weight of walker i and η is a random number between 0 and 1.

4. Accumulate samples for calculation of averages: E← E +wiEL(r′)

5. Repeat steps 2. to 4. until the statistical error is sufficiently small and update sometimes
S to make sure that the branching process doesn’t go pear-shaped.

Few remarks:

• The exact energy is obtained only for ∆τDMC = 0 (time-step error). The limit is usually
obtained by linear extrapolation using small values of ∆τDMC.

• Ouch! The statistical error increases when ∆τDMC decreases.

• The number of iterations during equilibration can be estimated using (15) with ∆τDMC
and A = 1.

3.1.3 Fixed-node approximation

The major problem is that the previous algorithm doesn’t work for fermions (hence electrons).
Indeed, it always converges to the lowest-energy state which is usually the nodeless bosonic
ground state (unless you’re very lucky!). People call that the sign problem [13, 14, 15]. In terms
of the DMC algorithm this means that a fixed-node approximation should be used; that is,
the fermionic ground-state wave function is expressed as some non-negative function multiplied
by a function that has a certain nodal surface [16].10 In other words, each walker stays in its
nodal pocket [17, 18] (see Fig. 3). If a walker crosses a nodal surface during the drift and
diffusion processes, it is killed.

What is a node?
nodes = points in space n for which Ψ(n) = 0.

What is a nodal pocket?
nodal pocket = region of space in which electrons can travel without crossing a node.

The DMC method finds the best energy for a given choice of nodal surface, providing an
upper bound for the ground-state energy. The exact ground state energy is reached if and only
if the nodal surface is exact. The energy difference between the fixed-node approximation and
the exact value is called the fixed-node error and nobody knows how to quantity it accurately
[19].

9In fortran77, this can be computed as chi = dsqrt(-two*dtau*dlog(rand(0)))*dcos(pi*rand(0))
10The nodes of the trial wave function are usually used.
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Nodal pocket 
Ψ(r)<0 

Nodal pocket 
Ψ(r)>0 

Figure 3: Nodal surfaces and nodal pockets.

Take-home message #3: DMC is exact if and only if the nodes are exact!

3.1.4 DMC recipe

1. Obtain a good trial wave function using VMC (see above).

2. Perform calculations for various values of ∆τDMC (not too small).

3. Extrapolate to ∆τDMC = 0 using linear fit.

4. Published!!

3.2 Example

3.2.1 Helium atom

We propose to use the same example as above and try to improve the variational result (EVMC =
−11/4). Don’t worry about fixed-node errors, the spatial part of the He ground-state wave
function is totally symmetric! For information, the exact energy of He is approximately [20]

EHe = 2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37 . . . . (21)

3.2.2 DMC fortran77 code

1 program HeDMC
2 c Declare variables
3 implicit none
4 c Some very smart coding
5 bla bla bla
6 c End of the program
7 return
8 end
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4 QMC Sofwares
For my own research, I use a software called CASINO [21] but there are many other softwares
available on the market. CASINO is developed by a group in Cambridge from the Cavendish
laboratory. The CASINO user guide contains details about the various methods and algorithms
used in QMC calculations. Each year, Mike Towler organizes a very nice conference/workshop
in Tuscany. See http://vallico.net/casinoqmc/ for more details.
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