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Abstract
We explore the non-Hermitian extension of quantum chemistry in the complex plane and its
link with perturbation theory. We observe that the physics of a quantum system is intimately
connected to the position of complex-valued energy singularities, known as exceptional points.
After presenting the fundamental concepts of non-Hermitian quantum chemistry in the
complex plane, including the mean-field Hartree–Fock approximation and Rayleigh–
Schrödinger perturbation theory, we provide a historical overview of the various research
activities that have been performed on the physics of singularities. In particular, we highlight
seminal work on the convergence behaviour of perturbative series obtained within
Møller–Plesset perturbation theory, and its links with quantum phase transitions. We also
discuss several resummation techniques (such as Padé and quadratic approximants) that can
improve the overall accuracy of the Møller–Plesset perturbative series in both convergent and
divergent cases. Each of these points is illustrated using the Hubbard dimer at half filling,
which proves to be a versatile model for understanding the subtlety of analytically-continued
perturbation theory in the complex plane.

Keywords: perturbation theory, complex plane, exceptional point, divergent series,
resummation

(Some figures may appear in colour only in the online journal)

1. Introduction

Perturbation theory is not usually considered in the complex
plane. Normally, it is applied using real numbers as one of very
few available tools for describing realistic quantum systems.
In particular, time-independent Rayleigh–Schrödinger pertur-
bation theory [1, 2] has emerged as an instrument of choice
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of the work, journal citation and DOI.

among the vast array of methods developed for this purpose
[3–9]. However, the properties of perturbation theory in the
complex plane are essential for understanding the quality of
perturbative approximations on the real axis.

In electronic structure theory, the workhorse of time-
independent perturbation theory is Møller–Plesset (MP) the-
ory [10], which remains one of the most popular methods
for computing the electron correlation energy [11, 12]. This
approach estimates the exact electronic energy by constructing
a perturbative correction on top of a mean-field Hartree–Fock
(HF) approximation [3]. The popularity of MP theory stems
from its black-box nature, size-extensivity, and relatively low
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computational scaling, making it easily applied in a broad
range of molecular research [6]. However, it is now widely
recognised that the series of MP approximations (defined for
a given perturbation order n as MPn) can show erratic, slow,
or divergent behaviour that limit its systematic improvability
[13–22]. As a result, practical applications typically employ
only the lowest-order MP2 approach, while the successive
MP3, MP4, and MP5 (and higher order) terms are generally
not considered to offer enough improvement to justify their
increased cost. Turning the MP approximations into a conver-
gent and systematically improvable series largely remains an
open challenge.

Our conventional view of electronic structure theory is cen-
tred around the Hermitian notion of quantised energy lev-
els, where the different electronic states of a molecule are
discrete and energetically ordered. The lowest energy state
defines the ground electronic state, while higher energy states
represent electronic excited states. However, an entirely dif-
ferent perspective on quantisation can be found by analyti-
cally continuing quantum mechanics into the complex domain.
In this inherently non-Hermitian framework, the energy lev-
els emerge as individual sheets of a complex multi-valued
function and can be connected as one continuous Riemann
surface [23]. This connection is possible because the order-
ability of real numbers is lost when energies are extended to
the complex domain. As a result, our quantised view of con-
ventional quantum mechanics only arises from restricting our
domain to Hermitian approximations.

Non-Hermitian Hamiltonians already have a long history in
quantum chemistry and have been extensively used to describe
metastable resonance phenomena [24]. Through the meth-
ods of complex-scaling [25] and complex absorbing poten-
tials [26–28], outgoing resonances can be stabilised as square-
integrable wave functions. In these situations, the energy
becomes complex-valued, with the real and imaginary com-
ponents allowing the resonance energy and lifetime to be
computed respectively. We refer the interested reader to the
excellent book by Moiseyev for a general overview [24].

The Riemann surface for the electronic energy E(λ) with
a coupling parameter λ can be constructed by analytically
continuing the function into the complex λ domain. In the
process, the ground and excited states become smoothly
connected and form a continuous complex-valued energy sur-
face. Exceptional points (EPs) can exist on this energy sur-
face, corresponding to branch point singularities where two (or
more) states become exactly degenerate [24, 28–34]. While
EPs can be considered as the non-Hermitian analogues of con-
ical intersections [35], the behaviour of their eigenvalues near
a degeneracy could not be more different. Incredibly, follow-
ing the eigenvalues around an EP leads to the interconversion
of the degenerate states, and multiple loops around the EP are
required to recover the initial energy [24, 28, 34]. In contrast,
encircling a conical intersection leaves the states unchanged.
Furthermore, while the eigenvectors remain orthogonal at a
conical intersection, the eigenvectors at an EP become iden-
tical and result in a self-orthogonal state [24]. An EP effec-
tively creates a ‘portal’ between ground and excited-states in
the complex plane [36, 37]. This transition between states

has been experimentally observed in electronics, microwaves,
mechanics, acoustics, atomic systems and optics [38–55].

The MP energy correction can be considered as a func-
tion of the perturbation parameter λ. When the domain of λ
is extended to the complex plane, EPs can also occur in the
MP energy. Although these EPs are generally complex-valued,
their positions are intimately related to the convergence of the
perturbation expansion on the real axis [56–62]. Furthermore,
the existence of an avoided crossing on the real axis is indica-
tive of a nearby EP in the complex plane. Our aim in this article
is to provide a comprehensive review of the fundamental rela-
tionship between EPs and the convergence properties of the
MP series. In doing so, we will demonstrate how understand-
ing the MP energy in the complex plane can be harnessed to
significantly improve estimates of the exact energy using only
the lowest-order terms in the MP series.

In section 2, we introduce the key concepts such as
Rayleigh–Schrödinger perturbation theory and the mean-field
HF approximation, and discuss their non-Hermitian analytic
continuation into the complex plane. Section 3 presents MP
perturbation theory and we report a comprehensive histori-
cal overview of the research that has been performed on the
physics of MP singularities. In section 4, we discuss sev-
eral resummation techniques for improving the accuracy of
low-order MP approximations, including Padé and quadratic
approximants. Finally, we draw our conclusions in section 5
and highlight our perspective on directions for future research.
Throughout this review, we present illustrative and pedagog-
ical examples based on the ubiquitous Hubbard dimer, rein-
forcing the amazing versatility of this powerful simplistic
model.

2. Exceptional points in electronic structure

2.1. Time-independent Schrödinger equation

Within the Born–Oppenheimer approximation, the exact
molecular Hamiltonian with N electrons and M (clamped)
nuclei is defined for a given nuclear framework as

Ĥ (R) = −1
2

N∑
i

∇2
i −

N∑
i

M∑
A

ZA

|ri − RA|
+

N∑
i< j

1
|ri − r j|

,

(1)
where ri defines the position of the ith electron, RA and ZA

are the position and charge of the Ath nucleus respectively,
and R = (R1, . . . , RM) is a collective vector for the nuclear
positions. The first term represents the kinetic energy of the
electrons, while the two following terms account for the elec-
tron–nucleus attraction and the electron–electron repulsion.

The exact many-electron wave function at a given nuclear
geometry Ψ(R) corresponds to the solution of the (time-
independent) Schrödinger equation

Ĥ(R)Ψ(R) = E(R)Ψ(R), (2)

with the eigenvalues E(R) providing the exact energies. The
energy E(R) can be considered as a ‘one-to-many’ function
since each input nuclear geometry yields several eigenval-
ues corresponding to the ground and excited states of the
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Figure 1. Exact energies for the Hubbard dimer (U = 4t) as functions of λ on the real axis (a) and in the complex plane (b). Only the real
component of the interacting closed-shell singlet energies are shown in the complex plane, becoming degenerate at the EP (black dot).
Following a contour around the EP (black solid) interchanges the states, while a second rotation (black dashed) returns the states to their
original energies.

exact spectrum. However, exact solutions to equation (2) are
only possible in the simplest of systems, such as the one-
electron hydrogen atom and some specific two-electron sys-
tems with well-defined mathematical properties [63–66]. In
practice, approximations to the exact Schrödinger equation
must be introduced, including perturbation theories and the
Hartree–Fock approximation considered in this review. In
what follows, we will drop the parametric dependence on the
nuclear geometry and, unless otherwise stated, atomic units
will be used throughout.

2.2. Exceptional points in the Hubbard dimer

To illustrate the concepts discussed throughout this article, we
consider the symmetric Hubbard dimer at half filling, i.e., with
two opposite-spin fermions. Analytically solvable models are
essential in theoretical chemistry and physics as their mathe-
matical simplicity compared to realistic systems (e.g., atoms
and molecules) allows new concepts and methods to be easily
tested while retaining the key physical phenomena.

Using the (localised) site basis, the Hilbert space of the
Hubbard dimer comprises the four configurations∣∣L↑L↓〉 ,

∣∣L↑R↓〉 ,
∣∣R↑L↓〉 ,

∣∣R↑R↓〉 ,

where Lσ (Rσ) denotes an electron with spin σ on the left
(right) site. The exact, or full configuration interaction (FCI),
Hamiltonian is then

H =

⎛
⎜⎜⎝

U −t −t 0
−t 0 0 −t
−t 0 0 −t
0 −t −t U

⎞
⎟⎟⎠ , (3)

where t is the hopping parameter and U is the on-site Coulomb
repulsion. We refer the interested reader to references [67, 68]
for more details about this system. The parameter U controls
the strength of the electron correlation. In the weak correlation
regime (small U), the kinetic energy dominates and the elec-
trons are delocalised over both sites. In the large-U (or strong
correlation) regime, the electron repulsion term becomes dom-
inant and the electrons localise on opposite sites to minimise

their Coulomb repulsion. This phenomenon is often referred
to as Wigner crystallisation [11].

To illustrate the formation of an EP, we scale the off-
diagonal coupling strength by introducing the complex param-
eter λ through the transformation t → λt to give the parame-
terised Hamiltonian Ĥ(λ). When λ is real, the Hamiltonian is
Hermitian with the distinct (real-valued) (eigen)energies

E∓ =
1
2

(
U ∓

√
(4λt)2 + U2

)
, (4a)

ET = 0, (4b)

ES = U. (4c)

While the open-shell triplet (ET) and singlet (ES) are inde-
pendent of λ, the closed-shell singlet ground state (E−) and
doubly-excited state (E+) couple strongly to form an avoided
crossing at λ = 0 (see figure 1(a)). In contrast, when λ is
complex, the energies may become complex-valued, with the
real components shown in figure 1(b). Although the imagi-
nary component of the energy is linked to resonance lifetimes
elsewhere in non-Hermitian quantum mechanics [24], its phys-
ical interpretation in the current context is unclear. Throughout
this work, we will generally consider and plot only the real
component of any complex-valued energies.

At non-zero values of U and t, these closed-shell singlets
can only become degenerate at a pair of complex conjugate
points in the complex λ plane

λEP = ±i
U
4t

, (5)

with energy

EEP =
U
2
. (6)

These λ values correspond to so-called EPs and connect the
ground and excited states in the complex plane. Crucially, the
ground- and excited-state wave functions at an EP become
identical rather than just degenerate. Furthermore, the energy
surface becomes non-analytic at λEP and a square-root singu-
larity forms with two branch cuts running along the imaginary
axis from λEP to ±i∞ (see figure 1(b)). Along these branch
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cuts, the real components of the energies are equivalent and
appear to give a seam of intersection, but a strict degeneracy is
avoided because the imaginary components are different.

On the real λ axis, these EPs lead to the singlet avoided
crossing at λ = Re(λEP). The ‘shape’ of this avoided cross-
ing is related to the magnitude of Im(λEP), with smaller values
giving a ‘sharper’ interaction. In the limit U/t → 0, the two
EPs converge at λEP = 0 to create a conical intersection with a
gradient discontinuity on the real axis. This gradient disconti-
nuity defines a critical point in the ground-state energy, where a
sudden change occurs in the electronic wave function, and can
be considered as a zero-temperature quantum phase transition
(QPT) [29, 69–75].

Remarkably, the existence of these square-root singulari-
ties means that following a complex contour around an EP in
the complex λ plane will interconvert the closed-shell ground
and excited states (see figure 1(b)). This behaviour can be seen
by expanding the radicand in equation (4a) as a Taylor series
around λEP to give

E± ≈ EEP ±
√

32t2λEP

√
λ− λEP. (7)

Parametrising the complex contour as λ(θ) = λEP + R exp(iθ)
gives the continuous energy pathways

E± (θ) ≈ EEP ±
√

32t2λEPR exp(iθ/2) (8)

such that E±(2π) = E∓(0) and E±(4π) = E±(0). As a result,
completely encircling an EP leads to the interconversion of the
two interacting states, while a second complete rotation returns
the two states to their original energies. Additionally, the
wave functions can pick up a geometric phase in the process,
and four complete loops are required to recover their starting
forms [24].

To locate EPs in practice, one must simultaneously solve

det[Ĥ(λ) − EÎ] = 0, (9a)

∂

∂E
det[Ĥ(λ) − EÎ] = 0, (9b)

where Î is the identity operator [76]. Equation (9a) is the well-
known secular equation providing the (eigen)energies of the
system. If the energy is also a solution of equation (9b), then
this energy value is at least two-fold degenerate. These degen-
eracies can be conical intersections between two states with
different symmetries for real values of λ [35], or EPs between
two states with the same symmetry for complex values of λ.

2.3. Rayleigh–Schrödinger perturbation theory

One of the most common routes to approximately solving
the Schrödinger equation is to introduce a perturbative expan-
sion of the exact energy. Within Rayleigh–Schrödinger per-
turbation theory, the time-independent Schrödinger equation
is recast as

Ĥ(λ)Ψ(λ) =
(
Ĥ(0) + λV̂

)
Ψ(λ) = E(λ)Ψ(λ), (10)

where Ĥ(0) is a zeroth-order Hamiltonian and V̂ = Ĥ − Ĥ(0)

represents the perturbation operator. Expanding the wave func-
tion and energy as power series in λ as

Ψ(λ) =
∞∑

k=0

λk Ψ(k), (11a)

E(λ) =
∞∑

k=0

λk E(k), (11b)

solving the corresponding perturbation equations up to a given
order n, and setting λ = 1 then yields approximate solutions to
equation (2).

Mathematically, equation (11b) corresponds to a Taylor
series expansion of the exact energy around the reference sys-
tem λ = 0. The energy of the target ‘physical’ system is recov-
ered at the point λ = 1. However, like all series expansions,
equation (11b) has a radius of convergence rc. When rc < 1,
the Rayleigh–Schrödinger expansion will diverge for the phys-
ical system. The value of rc can vary significantly between dif-
ferent systems and strongly depends on the particular decom-
position of the reference and perturbation Hamiltonians in
equation (10) [61]. From complex analysis [56], the radius of
convergence for the energy can be obtained by looking for the
non-analytic singularities of E(λ) in the complexλ plane. This
property arises from the following theorem [77]:

‘The Taylor series about a point z0 of a function over the
complex z plane will converge at a value z1 if the function is
non-singular at all values of z in the circular region centred
at z0 with radius |z1 − z0|. If the function has a singular point
zs such that |zs − z0| < |z1 − z0|, then the series will diverge
when evaluated at z1.’

As a result, the radius of convergence for a function is
equal to the distance from the origin of the closest singular-
ity in the complex plane, referred to as the ‘dominant’ sin-
gularity. This singularity may represent a pole of the func-
tion, or a branch point (e.g., square-root or logarithmic) in a
multi-valued function.

For example, the simple function

f(x) =
1

1 + x4
. (12)

is smooth and infinitely differentiable for x ∈ R, and one might
expect that its Taylor series expansion would converge in this
domain. However, this series diverges for x � 1. This diver-
gence occurs because f(x) has four poles in the complex plane
(eiπ/4, e−iπ/4, ei3π/4, and e−i3π/4) with a modulus equal to 1,
demonstrating that complex singularities are essential to fully
understand the series convergence on the real axis [56].

The radius of convergence for the perturbation series
equation (11b) is therefore dictated by the magnitude rc = |λc|
of the singularity in E(λ) that is closest to the origin. Note that
when |λ| = rc, one cannot a priori predict if the series is con-
vergent or not. For example, the series

∑∞
k=1λ

k/k diverges at
λ = 1 but converges at λ = −1.

Like the exact system in section 2.2, the perturbation energy
E(λ) represents a ‘one-to-many’ function with the output ele-
ments representing an approximation to both the ground and
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excited states. The most common singularities on E(λ) there-
fore correspond to non-analytic EPs in the complex λ plane
where two states become degenerate. Additional singularities
can also arise at critical points of the energy. A critical point
corresponds to the intersection of two energy surfaces where
the eigenstates remain distinct but a gradient discontinuity
occurs in the ground-state energy. In contrast, at a square-root
branch point, both the energies and the associated wave func-
tions of the intersecting surfaces become identical. Later we
will demonstrate how the choice of reference Hamiltonian con-
trols the position of these EPs, and ultimately determines the
convergence properties of the perturbation series.

2.4. Hartree–Fock theory

In the HF approximation, the many-electron wave function is
approximated as a single Slater determinant ΨHF(x1, . . . , xN),
where x = (σ, r) is a composite vector gathering spin and
spatial coordinates. This Slater determinant is defined as an
antisymmetric combination of N (real-valued) occupied one-
electron spin–orbitals φp(x), which are, by definition, eigen-
functions of the one-electron Fock operator

f̂ (x)φp(x) =
[
ĥ(x) + v̂HF(x)

]
φp(x) = εpφp(x). (13)

Here the (one-electron) core Hamiltonian is

ĥ(x) = −∇2

2
+

M∑
A

ZA

|r − RA|
(14)

and

v̂HF(x) =
N∑
i

[
Ĵi(x) − K̂i(x)

]
(15)

is the HF mean-field electron–electron potential with

Ĵi(x)φ j(x) =

(∫
φi(x′)

1
|r − r′|φi(x′)ńx′

)
φ j(x), (16a)

K̂i(x)φ j(x) =

(∫
φi(x′)

1
|r − r′|φ j(x′)ńx′

)
φi(x), (16b)

defining the Coulomb and exchange operators (respectively)
in the spin–orbital basis [3]. The HF energy is then defined as

EHF =
1
2

N∑
i

(hi + f i) , (17)

with the corresponding matrix elements

hi = 〈φi| ĥ |φi〉 , f i = 〈φi| f̂ |φi〉 . (18)

The optimal HF wave function is identified by using the vari-
ational principle to minimise the HF energy. For any system
with more than one electron, the resulting Slater determinant
is not an eigenfunction of the exact Hamiltonian Ĥ. However,
it is by definition an eigenfunction of the approximate many-
electron HF Hamiltonian constructed from the one-electron

Fock operators as

ĤHF =

N∑
i

f(xi). (19)

From hereon, i and j denote occupied orbitals, a and b denote
unoccupied (or virtual) orbitals, while p, q, r, and s denote
arbitrary orbitals.

In the most flexible variant of real HF theory (generalised
HF) the one-electron orbitals can be complex-valued and con-
tain a mixture of spin-up and spin-down components [78, 79].
However, the application of HF theory with some level of con-
straint on the orbital structure is far more common. Forcing the
spatial part of the orbitals to be the same for spin-up and spin-
down electrons leads to restricted HF (RHF) method, while
allowing different orbitals for different spins leads to the so-
called unrestricted HF (UHF) approach. [80]. The advantage
of the UHF approximation is its ability to correctly describe
strongly correlated systems, such as antiferromagnetic phases
[81] or the dissociation of the hydrogen dimer [82]. However,
by allowing different orbitals for different spins, the UHF wave
function is no longer required to be an eigenfunction of the
total spin operator Ŝ2, leading to ‘spin-contamination’.

2.5. Hartree–Fock in the Hubbard dimer

In the Hubbard dimer, the HF energy can be parametrised using
two rotation angles θα and θβ as

EHF(θ α, θ β) = −t
(
sin θ α + sin θ β

)
+

U
2

(
1 + cos θ α cos θ β

)
, (20)

where we have introduced occupied φσ
1 and unoccupied φσ

2
molecular orbitals for the spin-σ electrons as

φσ
1 = cos

(
θσ

2

)
Lσ + sin

(
θσ

2

)
Rσ , (21a)

φσ
2 = − sin

(
θσ

2

)
Lσ + cos

(
θσ

2

)
Rσ (21b)

Equations (20), (21a) and (21b) are valid for both RHF and
UHF. In the weak correlation regime 0 � U � 2t, the angles
which minimise the HF energy, i.e., ∂EHF/∂θ

σ = 0, are

θ α
RHF = θ β

RHF = π/2, (22)

giving the molecular orbitals

φσ
1,RHF =

Lσ +Rσ

√
2

, φσ
2,RHF =

Lσ −Rσ

√
2

, (23)

and the ground-state RHF energy (figure 2)

ERHF ≡ EHF(θ α
RHF, θ β

RHF) = −2t +
U
2
. (24)

Here, the molecular orbitals respectively transform accord-
ing to the Σ+

g and Σ+
u irreducible representations of the D∞h

point group that represents the symmetric Hubbard dimer.
We can therefore consider these as symmetry-pure molecular

5
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orbitals. However, in the strongly correlated regime U > 2t,
the closed-shell orbital restriction prevents RHF from mod-
elling the correct physics with the two electrons on opposite
sites.

As the on-site repulsion is increased from 0, the HF approx-
imation reaches a critical value at U = 2t where an alternative
UHF solution appears with a lower energy than the RHF one.
Note that the RHF wave function remains a genuine solution of
the HF equations for U � 2t, but corresponds to a saddle point
of the HF energy rather than a minimum. This critical point
is analogous to the infamous Coulson–Fischer point identified
in the hydrogen dimer [82]. For U � 2t, the optimal orbital
rotation angles for the UHF orbitals become

θ α
UHF = arctan

(
− 2t√

U2 − 4t2

)
, (25a)

θ β
UHF = arctan

(
+

2t√
U2 − 4t2

)
, (25b)

with the corresponding UHF ground-state energy (figure 2)

EUHF ≡ EHF(θ α
UHF, θ β

UHF) = −2t2

U
. (26)

The molecular orbitals of the lower-energy UHF solution
do not transform as an irreducible representation of the D∞h

point group and therefore break spatial symmetry. Allowing
different orbitals for the different spins also means that the
overall wave function is no longer an eigenfunction of the
S2 operator and can be considered to break spin symmetry.
This combined spatial and spin symmetry-breaking occurs for
all U � 2t. Furthermore, time-reversal symmetry dictates that
this UHF wave function must be degenerate with its spin-
flipped counterpart, obtained by swapping θ α

UHF and θ β
UHF in

equations (25a) and (25b). This type of symmetry breaking
is also called a spin-density wave in the physics community
as the system ‘oscillates’ between the two symmetry-broken
configurations [83]. Spatial symmetry breaking can also occur
in RHF theory when a charge-density wave is formed from an
oscillation between the two closed-shell configurations with
both electrons localised on one site or the other [80, 84].

2.6. Self-consistency as a perturbation

The inherent non-linearity in the Fock eigenvalue problem
arises from self-consistency in the HF approximation, and is
usually solved through an iterative approach [85, 86]. Alter-
natively, the non-linear terms arising from the Coulomb and
exchange operators can be considered as a perturbation from
the core Hamiltonian (14) by introducing the transformation
U → λ U, giving the parametrised Fock operator

f̂ (x;λ) = ĥ(x) + λ v̂HF(x). (27)

The orbitals in the reference problem λ = 0 correspond to the
symmetry-pure eigenfunctions of the one-electron core Hamil-
tonian, while self-consistent solutions at λ = 1 represent the
orbitals of the true HF solution.

Figure 2. RHF and UHF energies in the Hubbard dimer as a
function of the correlation strength U/t. The symmetry-broken UHF
solution emerges at the coalescence point U = 2t (black dot), often
known as the Coulson–Fischer point.

For real λ, the self-consistent HF energies at given (real) U
and t values in the Hubbard dimer directly mirror the energies
shown in figure 2, with coalesence points at

λc = ±2t
U
. (28)

In contrast, when λ becomes complex, the HF equations
become non-Hermitian and each HF solution can be analyt-
ically continued for all λ values using the holomorphic HF
approach [87–89]. Remarkably, the coalescence point in this
analytic continuation emerges as a quasi-EP on the real λ axis
(figure 3), where the different HF solutions become equiv-
alent but not self-orthogonal [36]. By analogy with pertur-
bation theory, the regime where this quasi-EP occurs within
λc � 1 can be interpreted as an indication that the symmetry-
pure reference orbitals no longer provide a qualitatively accu-
rate representation for the true HF ground state at λ = 1.
For example, in the Hubbard dimer with U > 2t, one finds
λc < 1 and the symmetry-pure orbitals do not provide a
good representation of the HF ground state. In contrast, U <
2t yields λc > 1 and corresponds to the regime where the
HF ground state is correctly represented by symmetry-pure
orbitals.

We have recently shown that the complex scaled Fock oper-
ator (28) also allows states of different symmetries to be inter-
converted by following a well-defined contour in the complex
λ-plane [36]. In particular, by slowly varying λ in a similar
(yet different) manner to an adiabatic connection in density-
functional theory (DFT) [90–92], a ground-state wave func-
tion can be ‘morphed’ into an excited-state wave function
via a stationary path of HF solutions. This novel approach
to identifying excited-state wave functions demonstrates the
fundamental role of quasi-EPs in determining the behaviour
of the HF approximation. Furthermore, the complex-scaled
Fock operator can be used routinely to construct analytic con-
tinuations of HF solutions beyond the points where real HF
solutions coalesce and vanish [93].
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Figure 3. (a) Real component of the UHF angle θ α
UHF for λ ∈ C in the Hubbard dimer for U/t = 2. Symmetry-broken solutions correspond

to individual sheets and become equivalent at the quasi-EP λc (black dot). The RHF solution is independent of λ, giving the constant plane
at π/2. (b) The corresponding HF energy surfaces show a non-analytic point at the quasi-EP.

3. Møller–Plesset perturbation theory in the
complex plane

3.1. Background theory

In electronic structure, the HF Hamiltonian (19) is often used
as the zeroth-order Hamiltonian to define Møller–Plesset (MP)
perturbation theory [10]. This approach can recover a large
proportion of the electron correlation energy [94–96], and
provides the foundation for numerous post-HF approxima-
tions. With the MP partitioning, the parametrised perturbation
Hamiltonian becomes

Ĥ(λ) =
N∑
i

[
−∇2

i

2
−

M∑
A

ZA

|ri − RA|

]

+ (1 − λ)
N∑
i

v̂HF(xi) + λ

N∑
i< j

1
|ri − r j|

. (29)

Any set of orbitals can be used to define the HF Hamiltonian,
although either the RHF or UHF orbitals are usually chosen to
define the RMP or UMP series respectively. The MP energy at
a given order n (i.e., MPn) is then defined as

EMPn =

n∑
k=0

E(k)
MP, (30)

where E(k)
MP is the kth-order MP correction and

EMP1 = E(0)
MP + E(1)

MP = EHF. (31)

The second-order MP2 energy correction is given by

E(2)
MP =

1
4

∑
i j

∑
ab

|〈i j| |ab〉|2

εi + ε j − εa − εb
, (32)

where 〈pq| |rs〉 = 〈pq|rs〉 − 〈pq|sr〉 are the anti-symmetrised
two-electron integrals in the molecular spin–orbital basis [97]

〈pq|rs〉 =
∫∫

ńx1 ńx2
φ∗

p(x1)φ∗
q(x2)φr(x1)φs(x2)

|r1 − r2|
. (33)

While most practical calculations generally consider only
the MP2 or MP3 approximations, higher order terms can
be computed to understand the convergence of the MPn
series [15]. A priori, there is no guarantee that this series will
provide the smooth convergence that is desirable for a sys-
tematically improvable theory. In fact, when the reference HF
wave function is a poor approximation to the exact wave func-
tion, for example in multi-configurational systems, MP theory
can yield highly oscillatory, slowly convergent, or catastrophi-
cally divergent results [15, 16, 19, 21, 22, 98]. Furthermore, the
convergence properties of the MP series can depend strongly
on the choice of restricted or unrestricted reference orbitals.

Although practically convenient for electronic structure cal-
culations, the MP partitioning is not the only possibility and
alternative partitionings have been considered [99] including:
i) the Epstein–Nesbet (EN) partitioning which consists in tak-
ing the diagonal elements of Ĥ as the zeroth-order Hamilto-
nian [100, 101], ii) the weak correlation partitioning in which
the one-electron part is consider as the unperturbed Hamilto-
nian Ĥ(0) and the two-electron part is the perturbation opera-
tor V̂ , and iii) the strong coupling partitioning where the two
operators are inverted compared to the weak correlation parti-
tioning [102, 103]. While an in-depth comparison of these dif-
ferent approaches can offer insight into their relative strengths
and weaknesses for various situations, we will restrict our
current discussion to the convergence properties of the MP
expansion.

3.2. Early studies of Møller–Plesset convergence

Among the most desirable properties of any electronic struc-
ture technique is the existence of a systematic route to increas-
ingly accurate energies. In the context of MP theory, one
would like a monotonic convergence of the perturbation series
towards the exact energy such that the accuracy increases as
each term in the series is added. If such well-behaved conver-
gence can be established, then our ability to compute individ-
ual terms in the series becomes the only barrier to computing
the exact correlation in a finite basis set. Unfortunately, the
computational scaling of each term in the MP series increases
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with the perturbation order, and practical calculations must
rely on fast convergence to obtain high-accuracy results using
only the lowest order terms.

MP theory was first introduced to quantum chemistry
through the pioneering works of Bartlett et al in the context
of many-body perturbation theory [104], and Pople and co-
workers in the context of determinantal expansions [105, 106].
Early implementations were restricted to the fourth-order MP4
approach that was considered to offer state-of-the-art quanti-
tative accuracy [106, 107]. However, it was quickly realised
that the MP series often demonstrated very slow, oscillatory,
or erratic convergence, with the UMP series showing particu-
larly slow convergence [13–15]. For example, RMP5 is worse
than RMP4 for predicting the homolytic barrier fission of He2+

2
using a minimal basis set, while the UMP series monotonically
converges but becomes increasingly slow beyond UMP5 [16].
The first examples of divergent MP series were observed in
the N2 and F2 diatomics, where low-order RMP and UMP
expansions give qualitatively wrong binding curves [17].

The divergence of RMP expansions for stretched bonds
can be easily understood from two perspectives [20].
Firstly, the exact wave function becomes increasingly multi-
configurational as the bond is stretched, and the RHF wave
function no longer provides a qualitatively correct reference
for the perturbation expansion. Secondly, the energy gap
between the occupied and unoccupied orbitals associated with
the stretch becomes increasingly small at larger bond lengths,
leading to a divergence, for example, in the MP2 correc-
tion (32). In contrast, the origin of slow UMP convergence
is less obvious as the reference UHF energy remains quali-
tatively correct at large bond lengths and the orbital degener-
acy is avoided. Furthermore, this slow convergence can also
be observed in molecules with a UHF ground state at the
equilibrium geometry (e.g., CN−), suggesting a more funda-
mental link with spin-contamination in the reference wave
function [18].

Using the UHF framework allows the singlet ground state
wave function to mix with triplet wave functions, leading to
spin contamination where the wave function is no longer an
eigenfunction of the Ŝ2 operator. The link between slow UMP
convergence and this spin-contamination was first systemat-
ically investigated by Gill et al using the minimal basis H2

model [19]. In this work, the authors identified that the slow
UMP convergence arises from its failure to correctly predict
the amplitude of the low-lying double excitation. This erro-
neous description of the double excitation amplitude has the
same origin as the spin-contamination in the reference UHF
wave function, creating the first direct link between spin-
contamination and slow UMP convergence [19]. Lepetit et al
later analysed the difference between perturbation conver-
gence using the UMP and EN partitionings [21]. They argued
that the slow UMP convergence for stretched molecules arises
from (i) the fact that the MP denominator (see equation (32))
tends to a constant value instead of vanishing, and (ii) the
slow convergence of contributions from the singly-excited
configurations that strongly couple to the doubly-excited con-
figurations and first appear at fourth-order [21]. Drawing
these ideas together, we believe that slow UMP convergence

occurs because the single excitations must focus on removing
spin-contamination from the reference wave function, lim-
iting their ability to fine-tune the amplitudes of the higher
excitations that capture the correlation energy.

A number of spin-projected extensions have been derived
to reduce spin-contamination in the wave function and over-
come the slow UMP convergence. Early versions of these
theories, introduced by Schlegel [108, 109] or Knowles and
Handy [110, 111], exploited the ‘projection-after-variation’
philosophy, where the spin-projection is applied directly to
the UMP expansion. These methods succeeded in acceler-
ating the convergence of the projected MP series and were
considered as highly effective methods for capturing the elec-
tron correlation at low computational cost [111]. However,
the use of projection-after-variation leads to gradient discon-
tinuities in the vicinity of the UHF symmetry-breaking point,
and can result in spurious minima along a molecular binding
curve [108, 110]. More recent formulations of spin-projected
perturbations theories have considered the ‘variation-after-
projection’ framework using alternative definitions of the ref-
erence Hamiltonian [112, 113]. These methods yield more
accurate spin-pure energies without gradient discontinuities or
spurious minima.

3.3. Spin-contamination in the Hubbard dimer

The behaviour of the RMP and UMP series observed in H2

can also be illustrated by considering the analytic Hubbard
dimer with a complex-valued perturbation strength. In this sys-
tem, the stretching of the H–H bond is directly mirrored by
an increase in the ratio U/t. Using the ground-state RHF ref-
erence orbitals leads to the parametrised RMP Hamiltonian

HRMP (λ) =

⎛
⎜⎜⎜⎜⎝

−2t + U − λU/2 0 0 λU/2

0 U − λU/2 λU/2 0

0 λU/2 U − λU/2 0

λU/2 0 0 2t + U − λU/2

⎞
⎟⎟⎟⎟⎠

,

(34)
which yields the ground-state energy

E−(λ) = U − λU
2

− 1
2

√
(4t)2 + λ2U2. (35)

From this expression, the EPs can be identified as λEP =
±i4t/U, giving the radius of convergence

rc =

∣∣∣∣4t
U

∣∣∣∣ . (36)

Remarkably, these EPs are identical to the exact EPs discussed
in section 2.2. The Taylor expansion of the RMP energy can
then be evaluated to obtain the kth-order MP correction

E(k)
RMP = Uδ0,k −

1
2

Uk

(4t)k−1

(
1/2
k/2

)
. (37)

The RMP series is convergent at λ = 1 for U = 3.5t with
rc > 1, as illustrated for the individual terms at each pertur-
bation order in figure 4(b). In contrast, for U = 4.5t one finds
rc < 1, and the RMP series becomes divergent at λ = 1. The
corresponding Riemann surfaces for U = 3.5t and 4.5t are

8



J. Phys.: Condens. Matter 33 (2021) 283001 Topical Review

Figure 4. Convergence of the RMP series as a function of the perturbation order n for the Hubbard dimer at U/t = 3.5 (where rc > 1) and
4.5 (where rc < 1). The Riemann surfaces associated with the exact energies of the RMP Hamiltonian (34) are also represented for these two
values of U/t as functions of complex λ.

shown in figures 4(a) and (c), respectively, with the single EP at
λEP (black dot). We illustrate the surface |λ| = 1 using a verti-
cal cylinder of unit radius to provide a visual aid for determin-
ing if the series will converge at the physical case λ = 1. For
the divergent case, λEP lies inside this unit cylinder, while in
the convergent caseλEP lies outside this cylinder. In both cases,
the EP connects the ground state with the doubly-excited state,
and thus the convergence behaviour for the two states using the
ground-state RHF orbitals is identical. Note that, when λEP lies

on the unit cylinder, we cannot a priori determine whether the
perturbation series will converge or not.

The behaviour of the UMP series is more subtle than
the RMP series as the spin-contamination in the wave
function introduces additional coupling between the singly-
and doubly-excited configurations. Using the ground-state
UHF reference orbitals in the Hubbard dimer yields the
parametrised UMP Hamiltonian

HUMP (λ) =

⎛
⎜⎜⎜⎝
−2t2λ/U 0 0 2t2λ/U

0 U − 2t2λ/U 2t2λ/U 2t
√

U2 − (2t)2λ/U

0 2t2λ/U U − 2t2λ/U −2t
√

U2 − (2t)2λ/U

2t2λ/U 2t
√

U2 − (2t)2λ/U −2t
√

U2 − (2t)2λ/U 2U(1 − λ) + 6t2λ/U

⎞
⎟⎟⎟⎠ . (38)

While a closed-form expression for the ground-state energy
exists, it is cumbersome and we eschew reporting it. Instead,
the radius of convergence of the UMP series can be obtained
numerically as a function of U/t, as shown in figure 5. These
numerical values reveal that the UMP ground-state series has
rc > 1 for all U/t and always converges. However, in the
strong correlation limit (large U/t), this radius of conver-
gence tends to unity, indicating that the convergence of the
corresponding UMP series becomes increasingly slow. Fur-
thermore, the doubly-excited state using the ground-state UHF
orbitals has rc < 1 for almost any value of U/t, reaching the
limiting value of 1/2 for U/t →∞. Hence, the excited-state
UMP series will always diverge.

The convergence behaviour can be further elucidated by
considering the full structure of the UMP energies in the com-
plexλ-plane (see figures 6(a) and (c)). These Riemann surfaces
are illustrated for U = 3t and 7t alongside the perturbation
terms at each order in figure 6(b). At U = 3t, the RMP series is
convergent at λ = 1, while RMP becomes divergent at λ = 1
for U = 7t. The ground-state UMP expansion is convergent in
both cases, although the rate of convergence is significantly

slower for larger U/t as the radius of convergence becomes
increasingly close to one (figure 5).

As the UHF orbitals break the spatial and spin symme-
try, new coupling terms emerge between the electronic states
that cause fundamental changes to the structure of EPs in the
complex λ-plane. For example, while the RMP energy shows
only one EP between the ground and doubly-excited states
(figure 4), the UMP energy has two pairs of complex-conjugate
EPs: one connecting the ground state with the singly-excited
open-shell singlet, and the other connecting this single excita-
tion to the doubly-excited second excitation (figure 6). This
new ground-state EP always appears outside the unit cylin-
der and guarantees convergence of the ground-state energy.
However, the excited-state EP is moved within the unit cylin-
der and causes the convergence of the excited-state UMP
series to deteriorate. Our interpretation of this effect is that
the symmetry-broken orbital optimisation has redistributed
the strong coupling between the ground- and doubly-excited
states into weaker couplings between all states, and has thus
sacrificed convergence of the excited-state series so that the
ground-state convergence can be maximised.
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Figure 5. Radius of convergence rc for the RMP ground state (red),
the UMP ground state (blue), and the UMP excited state (orange)
series of the Hubbard dimer as functions of the ratio U/t.

Since the UHF ground state already provides a good
approximation to the exact energy, the ground-state sheet of
the UMP energy is relatively flat and the corresponding EP in
the Hubbard dimer always lies outside the unit cylinder. The
slow convergence observed in stretched H2 [19] can then be
seen as this EP moves increasingly close to the unit cylinder
at large U/t and rc approaches one (from above). Further-
more, the majority of the UMP expansion in this regime is
concerned with removing spin-contamination from the wave
function rather than improving the energy. It is well-known
that the spin-projection needed to remove spin-contamination
can require non-linear combinations of highly-excited deter-
minants [96], and thus it is not surprising that this process
proceeds very slowly as the perturbation order is increased.

3.4. Classifying types of convergence

As computational implementations of higher-order MP
terms improved, the systematic investigation of convergence
behaviour in a broader class of molecules became possible.
Cremer and He introduced an efficient MP6 approach and used
it to analyse the RMP convergence of 29 atomic and molecu-
lar systems [114]. They established two general classes: ‘class
A’ systems that exhibit monotonic convergence; and ‘class B’
systems for which convergence is erratic after initial oscilla-
tions. By analysing the different cluster contributions to the
MP energy terms, they proposed that class A systems generally
include well-separated and weakly correlated electron pairs,
while class B systems are characterised by dense electron clus-
tering in one or more spatial regions [114]. In class A systems,
they showed that the majority of the correlation energy arises
from pair correlation, with little contribution from triple exci-
tations. On the other hand, triple excitations have an important
contribution in class B systems, including orbital relaxation to
doubly-excited configurations, and these contributions lead to
oscillations of the total correlation energy.

Using these classifications, Cremer and He then intro-
duced simple extrapolation formulas for estimating the exact
correlation energy ΔE using terms up to MP6 [114]

ΔEA = E(2)
MP + E(3)

MP + E(4)
MP +

E(5)
MP

1 − (E(6)
MP/E(5)

MP)
, (39a)

ΔEB = E(2)
MP + E(3)

MP +
(

E(4)
MP + E(5)

MP

)
exp

(
E(6)

MP/E(5)
MP

)
.

(39b)

These class-specific formulas reduced the mean absolute error
from the FCI correlation energy by a factor of four compared to
previous class-independent extrapolations, highlighting how
one can leverage a deeper understanding of MP convergence
to improve estimates of the correlation energy at lower com-
putational costs. In section 4, we consider more advanced
extrapolation routines that take account of EPs in the complex
λ-plane.

In the late 90s, Olsen et al discovered an even more con-
cerning behaviour of the MP series [57]. They showed that the
series could be divergent even in systems that were considered
to be well understood, such as Ne or the HF molecule [57, 115].
Cremer and He had already studied these two systems and
classified them as class B systems [114]. However, Olsen and
co-workers performed their analysis in larger basis sets con-
taining diffuse functions, finding that the corresponding MP
series becomes divergent at (very) high order. The discovery
of this divergent behaviour is particularly worrying as large
basis sets are required to get meaningful and accurate ener-
gies [116, 117]. Furthermore, diffuse functions are particularly
important for anions and/or Rydberg excited states, where the
wave function is inherently more diffuse than the ground state
[118, 119].

Olsen et al investigated the causes of these divergences and
the different types of convergence by analysing the relation
between the dominant singularity (i.e., the closest singularity
to the origin) and the convergence behaviour of the series [58].
Their analysis is based on Darboux’s theorem: [77]

‘In the limit of large order, the series coefficients become
equivalent to the Taylor series coefficients of the singularity
closest to the origin’.

Following this theory, a singularity in the unit circle is des-
ignated as an intruder state, with a front-door (or back-door)
intruder state if the real part of the singularity is positive (or
negative).

Using their observations in reference [57], Olsen and col-
laborators proposed a simple method that performs a scan of
the real axis to detect the avoided crossing responsible for the
dominant singularities in the complex plane [58]. By mod-
elling this avoided crossing using a two-state Hamiltonian, one
can obtain an approximation for the dominant singularities as
the EPs of the two-state matrix(

α δ
δ β

)
︸ ︷︷ ︸

H

=

(
α+ αs 0

0 β + βs

)
︸ ︷︷ ︸

H(0)

+

(
−αs δ
δ −βs

)
︸ ︷︷ ︸

V

, (40)

where the diagonal matrix is the unperturbed Hamiltonian
matrix H(0) with level shifts αs and βs, and V represents the
perturbation.

The authors first considered molecules with low-lying
doubly-excited states with the same spatial and spin symme-
try as the ground state [58]. In these systems, the exact wave
function has a non-negligible contribution from the doubly-
excited states, and thus the low-lying excited states are likely
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Figure 6. Convergence of the UMP series as a function of the perturbation order n for the Hubbard dimer at U/t = 3 and 7. The Riemann
surfaces associated with the exact energies of the UMP Hamiltonian (38) are also represented for these two values of U/t as functions of λ.

to become intruder states. For CH2 in a diffuse, yet rather small
basis set, the series is convergent at λ = 1 at least up to the
50th order, and the dominant singularity lies close (but outside)
the unit circle, causing slow convergence of the series. These
intruder-state effects are analogous to the EP that dictates the
convergence behaviour of the RMP series for the Hubbard
dimer (figure 4). Furthermore, the authors demonstrated that
the divergence for Ne is due to a back-door intruder state that
arise when the ground state undergoes sharp avoided crossings
with highly diffuse excited states. This divergence is related to
a more fundamental critical point in the MP energy surface that
we will discuss in section 3.5.

Finally, reference [57] proved that the extrapolation formu-
las of Cremer and He [114] (see equations (39a) and (39b))
are not mathematically motivated when considering the com-
plex singularities causing the divergence, and therefore can-
not be applied for all systems. For example, the HF molecule
contains both back-door intruder states and low-lying doubly-
excited states that result in alternating terms up to 10th order.
The series becomes monotonically convergent at higher orders
since the two pairs of singularities are approximately the same
distance from the origin.

More recently, this two-state model has been extended to
non-symmetric Hamiltonians as [59]

(
α δ1

δ2 β

)
︸ ︷︷ ︸

H

=

(
α 0
0 β + γ

)
︸ ︷︷ ︸

H(0)

+

(
0 δ2

δ1 −γ

)
︸ ︷︷ ︸

V

. (41)

This extension allows various choices of perturbation to be
analysed, including coupled cluster perturbation expansions
[120–124] and other non-Hermitian perturbation methods.
Note that new forms of perturbation expansions only occur
when the sign of δ1 and δ2 differ. Using this non-Hermitian
two-state model, the convergence of a perturbation series can
be characterised according to a so-called ‘archetype’ that
defines the overall ‘shape’ of the energy convergence [59].
For Hermitian Hamiltonians, these archetypes can be sub-
divided into five classes (zigzag, interspersed zigzag, tri-
adic, ripples, and geometric), while two additional archetypes
(zigzag-geometric and convex-geometric)are observed in non-
Hermitian Hamiltonians. The geometric archetype appears to

be the most common for MP expansions [59], but the rip-
ples archetype corresponds to some of the early examples
of MP convergence [15, 21, 22, 98]. The three remaining
Hermitian archetypes seem to be rarely observed in MP pertur-
bation theory. In contrast, the non-Hermitian coupled cluster
perturbation theory [120–124], exhibits a range of archetypes
including the interspersed zigzag, triadic, ripple, geomet-
ric, and zigzag-geometric forms. This analysis highlights the
importance of the primary singularity in controlling the high-
order convergence, regardless of whether this point is inside or
outside the complex unit circle [15, 58].

3.5. Møller–Plesset critical point

In the early 2000s, Stillinger reconsidered the mathematical
origin behind the divergent series with odd–even sign alter-
nation [125]. This type of convergence behaviour corresponds
to Cremer and He’s class B systems with closely spaced elec-
tron pairs and includes Ne, HF, F−, and H2O [114]. Stillinger
proposed that these series diverge due to a dominant singular-
ity on the negative real λ axis, corresponding to a multielec-
tron autoionisation threshold [125]. To understand Stillinger’s
argument, consider the parametrised MP Hamiltonian in the
form

Ĥ(λ) =
N∑
i

⎡
⎢⎢⎢⎢⎣

independent of λ︷ ︸︸ ︷
−1

2
∇2

i −
M∑
A

ZA

|ri − RA|

+ (1 − λ)v̂HF(xi)︸ ︷︷ ︸
repulsive for λ<1

+ λ

N∑
i< j

1
|ri − r j|︸ ︷︷ ︸

attractive for λ<0

⎤
⎥⎥⎥⎥⎦ . (42)

The mean-field potential v̂HF essentially represents a nega-
tively charged field with the spatial extent controlled by the
extent of the HF orbitals, usually located close to the nuclei.
When λ is negative, the mean-field potential becomes increas-
ingly repulsive, while the explicit two-electron Coulomb inter-
action becomes attractive. There is therefore a negative criti-
cal point λc where it becomes energetically favourable for the
electrons to dissociate and form a bound cluster at an infinite
separation from the nuclei [125]. This autoionisation effect is
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closely related to the critical point for electron binding in two-
electron atoms (see reference [126]). Furthermore, a similar
set of critical points exists along the positive real axis, corre-
sponding to single-electron ionisation processes [127]. While
these critical points are singularities on the real axis, their exact
mathematical form is difficult to identify and remains an open
question.

To further develop the link between the critical point and
types of MP convergence, Sergeev and Goodson investigated
the relationship with the location of the dominant singularity
that controls the radius of convergence [128]. They demon-
strated that the dominant singularity in class A systems cor-
responds to an EP with a positive real component, where the
magnitude of the imaginary component controls the oscilla-
tions in the signs of successive MP terms [129, 130]. In con-
trast, class B systems correspond to a dominant singularity on
the negative real λ axis representing the MP critical point. The
divergence of class B systems, which contain closely spaced
electrons (e.g., F−), can then be understood as the HF potential
v̂HF is relatively localised and the autoionization is favoured
at negative λ values closer to the origin. With these insights,
they regrouped the systems into new classes: i) α singulari-
ties which have ‘large’ imaginary parts, and ii) β singularities
which have very small imaginary parts [128, 131].

The existence of the MP critical point can also explain why
the divergence observed by Olsen et al in the Ne atom and
the HF molecule occurred when diffuse basis functions were
included [57]. Clearly diffuse basis functions are required for
the electrons to dissociate from the nuclei, and indeed using
only compact basis functions causes the critical point to disap-
pear. While a finite basis can only predict complex-conjugate
branch point singularities, the critical point is modelled by a
cluster of sharp avoided crossings between the ground state
and high-lying excited states [127]. Alternatively, Sergeev et al
demonstrated that the inclusion of a ‘ghost’ atom also allows
the formation of the critical point as the electrons form a bound
cluster occupying the ghost atom orbitals [127]. This effect
explains the origin of the divergence in the HF molecule as
the fluorine valence electrons jump to the hydrogen at a suf-
ficiently negative λ value [127]. Furthermore, the two-state
model of Olsen and collaborators [58] was simply too min-
imal to understand the complexity of divergences caused by
the MP critical point.

When a Hamiltonian is parametrised by a variable such
as λ, the existence of abrupt changes in the eigenstates as a
function of λ indicate the presence of a zero-temperature QPT
[29, 69–75]. Meanwhile, as an avoided crossing becomes
increasingly sharp, the corresponding EPs move increasingly
close to the real axis. When these points converge on the real
axis, they effectively ‘annihilate’ each other and no longer
behave as EPs. Instead, they form a ‘critical point’ singular-
ity that resembles a conical intersection, and the convergence
of a pair of complex-conjugate EPs on the real axis is therefore
diagnostic of a QPT [132, 133].

Since the MP critical point corresponds to a singularity on
the real λ axis, it can immediately be recognised as a QPT with
respect to varying the perturbation parameter λ. However, a
conventional QPT can only occur in the thermodynamic limit,

which here is analogous to the complete basis set limit [134].
The MP critical point and corresponding β singularities in a
finite basis must therefore be modelled by pairs of complex-
conjugate EPs that tend towards the real axis, exactly as
described by Sergeev et al [127] In contrast, α singulari-
ties correspond to large avoided crossings that are indicative
of low-lying excited states which share the symmetry of the
ground state [128], and are thus not manifestations of a QPT.
Notably, since the exact MP critical point corresponds to the
interaction between a bound state and the continuum, its func-
tional form is more complicated than a conical intersection and
remains an open question.

3.6. Critical points in the Hubbard dimer

The simplified site basis of the Hubbard dimer makes explicitly
modelling the ionisation continuum impossible. Instead, we
can use an asymmetric version of the Hubbard dimer [67, 68]
where we consider one of the sites as a ‘ghost atom’ that acts
as a destination for ionised electrons being originally localised
on the other site. To mathematically model this scenario in
this asymmetric Hubbard dimer, we introduce a one-electron
potential −ε on the left site to represent the attraction between
the electrons and the model ‘atomic’ nucleus, where we define
ε > 0. The reference Slater determinant for a doubly-occupied
atom can be represented using RHF orbitals (see equation (21))
with θ α

RHF = θ β
RHF = 0, which corresponds to strictly localising

the two electrons on the left site. With this representation, the
parametrised asymmetric RMP Hamiltonian becomes

Hasym (λ) =

⎛
⎜⎜⎜⎜⎝

2(U − ε) − λU −λt −λt 0

−λt (U − ε) − λU 0 −λt

−λt 0 (U − ε) − λU −λt

0 −λt −λt λU

⎞
⎟⎟⎟⎟⎠

.

(43)
For the ghost site to perfectly represent ionised electrons,

the hopping term between the two sites must vanish (i.e.,
t = 0). This limit corresponds to the dissociative regime in the
asymmetric Hubbard dimer as discussed in reference [68], and
the RMP energies become

E− = 2(U − ε) − λU, (44a)

ES = (U − ε) − λU, (44b)

E+ = Uλ, (44c)

as shown in figure 7(a) (dashed lines). The RMP critical
point then corresponds to the intersection E− = E+, giving the
critical λ value

λc = 1 − ε

U
. (45)

Clearly the radius of convergence rc = |λc| is controlled
directly by the ratio ε/U, with a convergent RMP series at
λ = 1 occurring for ε > 2U. The on-site repulsion U controls
the strength of the HF potential localised around the ‘atomic
site’, with a stronger repulsion encouraging the electrons to
be ionised at a less negative value of λ. Large U can be physi-
cally interpreted as strong electron repulsion effects in electron
dense molecules. In contrast, smaller ε gives a weaker attrac-
tion to the atomic site, representing strong screening of the
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Figure 7. RMP critical point using the asymmetric Hubbard dimer with ε = 2.5U. (a) Exact critical points with t = 0 occur on the negative
real λ axis (dashed). (b) Modelling a finite basis using t = 0.1 yields complex-conjugate EPs close to the real axis, giving a sharp avoided
crossing on the real axis (solid). (c) Convergence of the ground-state EP onto the real axis in the limit t → 0.

Figure 8. Electron density ρatom on the ‘atomic’ site of the
asymmetric Hubbard dimer with ε = 2.5U. The autoionisation
process associated with the critical point is represented by the
sudden drop on the negative λ axis. In the idealised limit t = 0, this
process becomes increasingly sharp and represents a
zero-temperature QPT.

nuclear attraction by core and valence electrons, and again a
less negativeλ is required for ionisation to occur. Both of these
factors are common in atoms on the right-hand side of the peri-
odic table, e.g., F, O, Ne. Molecules containing these atoms are
therefore often class β systems with a divergent RMP series
due to the MP critical point [128, 131].

The critical point in the exact case t = 0 is represented by
the gradient discontinuity in the ground-state energy on the
negative real λ axis (figure 7(a): solid lines), mirroring the
behaviour of a QPT [134]. The autoionisation process is man-
ifested by a sudden drop in the ‘atomic site’ electron density
ρatom (figure 8). However, in practical calculations performed
with a finite basis set, the critical point is modelled as a cluster
of branch points close to the real axis. The use of a finite basis
can be modelled in the asymmetric dimer by making the sec-
ond site a less idealised destination for the ionised electrons
with a non-zero (yet small) hopping term t. Taking the value
t = 0.1 (figure 7(a): dashed lines), the critical point becomes
an avoided crossing with a complex-conjugate pair of EPs
close to the real axis (figure 7(b)). In contrast to the exact crit-
ical point with t = 0, the ground-state energy remains smooth
through this avoided crossing, with a more gradual drop in
the atomic site density. In the limit t → 0, these EPs approach

the real axis (figure 7(c)) and the avoided crossing becomes a
gradient discontinuity, mirroring Sergeev’s discussion on finite
basis set representations of the MP critical point [131].

Returning to the symmetric Hubbard dimer, we showed in
section 3.3 that the slow convergence of the strongly correlated
UMP series was due to a complex-conjugate pair of EPs just
outside the radius of convergence.These EPs have positive real
components and small imaginary components (see figure 6),
suggesting a potential connection to MP critical points and
QPTs (see section 3.5). For λ > 1, the HF potential becomes
an attractive component in Stillinger’s Hamiltonian displayed
in equation (42), while the explicit electron–electron inter-
action becomes increasingly repulsive. Closed-shell critical
points along the positive real λ axis may then represent points
where the two-electron repulsion overcomes the attractive HF
potential and a single electron dissociates from the molecule
(see reference [131]).

In contrast, spin symmetry-breaking in the UMP reference
creates different HF potentials for the spin-up and spin-down
electrons. Consider one of the two reference UHF solutions
where the spin-up and spin-down electrons are localised on the
left and right sites respectively. The spin-up HF potential will
then be a repulsive interaction from the spin-down electron
density that is centred around the right site (and vice-versa).
As λ becomes greater than 1 and the HF potentials become
attractive, there will be a sudden driving force for the electrons
to swap sites. This swapping process can also be represented
as a double excitation, and thus an avoided crossing will occur
for λ � 1 (figure 9(a)). While this appears to be an avoided
crossing between the ground and first-excited state, the pres-
ence of an earlier excited-state avoided crossing means that the
first-excited state qualitatively represents the reference double
excitation forλ > 1/2. We can visualise this swapping process
by considering the difference in the electron density on the left
and right sites, defined for each spin as

Δρσ = ρσR − ρσL, (46)

where ρσL (ρσR) is the spin-σ electron density on the left (right)
site. This density difference is shown for the UMP ground-
state at U = 5t in figure 10 (solid lines). Here, the transfer of
the spin-up electron from the right site to the left site can be
seen as λ passes through 1 (and similarly for the spin-down
electron).
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Figure 9. The UMP ground-state EP in the symmetric Hubbard dimer becomes a critical point in the strong correlation limit (i.e., large
U/t). (a) As U/t increases, the avoided crossing on the real λ axis becomes increasingly sharp. (b) The avoided crossing at U = 5t
corresponds to EPs with non-zero imaginary components. (c) Convergence of the EPs at λEP onto the real axis for U/t →∞.

Figure 10. Difference in the electron densities on the left and right
sites for the UMP ground state in the symmetric Hubbard dimer (see
equation (46)). At λ = 1, the spin-up electron transfers from the
right site to the left site, while the spin-down electron transfers in the
opposite direction. In the strong correlation limit (large U/t), this
process becomes increasingly sharp and represents a
zero-temperature QPT.

The ‘sharpness’ of the avoided crossing is controlled by
the correlation strength U/t. For small U/t, the HF poten-
tials will be weak and the electrons will delocalise over the
two sites, both in the UHF reference and the exact wave func-
tion. This delocalisation dampens the electron swapping pro-
cess and leads to a ‘shallow’ avoided crossing (solid lines
in figure 9(a)) that corresponds to EPs with non-zero imag-
inary components (figure 9(b)). As U/t becomes larger, the
HF potentials become stronger and the on-site repulsion dom-
inates the hopping term to make electron delocalisation less
favourable. In other words, the electrons localise on individual
sites to form a Wigner crystal. These effects create a stronger
driving force for the electrons to swap sites until, eventu-
ally, this swapping occurs suddenly at λ = 1, as shown for
U = 50t in figure 10 (dashed lines). In this limit, the ground-
state EPs approach the real axis (figure 9(c)) and the avoided
crossing creates a gradient discontinuity in the ground-state
energy (dashed lines in figure 9(a)). We therefore find that, in
the strong correlation limit, the symmetry-broken ground-state
EP becomes a new type of MP critical point and represents a
QPT as the perturbation parameter λ is varied. Remarkably,
this argument explains why the dominant UMP singularity lies

so close, but always outside, the radius of convergence (see
figure 5).

4. Resummation methods

It is frequently stated that ‘the most stupid thing to do with a
series is to sum it.’ Nonetheless, quantum chemists are basi-
cally doing this on a daily basis. As we have seen through-
out this review, the MP series can often show erratic, slow,
or divergent behaviour. In these cases, estimating the correla-
tion energy by simply summing successive low-order terms is
almost guaranteed to fail. Here, we discuss alternative tools
that can be used to sum slowly convergent or divergent series.
These so-called ‘resummation’ techniques form a vast field
of research and thus we will provide details for only the
most relevant methods. We refer the interested reader to more
specialised reviews for additional information [77, 135].

4.1. Padé approximant

The failure of a Taylor series for correctly modelling the MP
energy function E(λ) arises because one is trying to model
a complicated function containing multiple branches, branch
points, and singularities using a simple polynomial of finite
order. A truncated Taylor series can only predict a single sheet
and does not have enough flexibility to adequately describe
functions such as the MP energy. Alternatively, the description
of complex energy functions can be significantly improved by
introducing Padé approximants [136], and related techniques
[56, 137].

A Padé approximant can be considered as the best approxi-
mation of a function by a rational function of given order. More
specifically, a [dA/dB] Padé approximant is defined as

E[dA/dB](λ) =
A(λ)
B(λ)

=

∑dA
k=0ak λ

k

1 +
∑dB

k=1bk λk
, (47)

where the coefficients of the polynomials A(λ) and B(λ) are
determined by collecting and comparing terms for each power
of λ with the low-order terms in the Taylor series expan-
sion. Padé approximants are extremely useful in many areas
of physics and chemistry [138–141] as they can model poles,
which appear at the roots of B(λ). However, they are unable
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Figure 11. RMP ground-state energy as a function of λ in the Hubbard dimer obtained using various truncated Taylor series and
approximants at U/t = 3.5 (left) and U/t = 4.5 (right).

Table 1. RMP ground-state energy estimate at λ = 1 of the Hubbard dimer
provided by various truncated Taylor series and Padé approximants at
U/t = 3.5 and 4.5. We also report the distance of the closest pole to the
origin |λc| provided by the diagonal Padé approximants.

|λc| E−(λ = 1)

Method Degree U/t = 3.5 U/t = 4.5 U/t = 3.5 U/t = 4.5

Taylor 2 −1.015 63 −1.015 63
3 −1.015 63 −1.015 63
4 −0.869 08 −0.615 17
5 −0.869 08 −0.615 17
6 −0.925 18 −0.868 58

Padé [1/1] 2.29 1.78 −1.611 11 −2.642 86
[2/2] 2.29 1.78 −0.821 24 −0.484 46
[3/3] 1.73 1.34 −0.919 95 −0.819 29
[4/4] 1.47 1.14 −0.905 79 −0.748 66
[5/5] 1.35 1.05 −0.907 78 −0.762 77

Exact 1.14 0.89 −0.907 54 −0.760 40

to model functions with square-root branch points (which
are ubiquitous in the singularity structure of perturbative
methods) and more complicated functional forms appearing
at critical points (where the nature of the solution undergoes
a sudden transition). Despite this limitation, the successive
diagonal Padé approximants (i.e., dA = dB) often define a con-
vergent perturbation series in cases where the Taylor series
expansion diverges.

Figure 11 illustrates the improvement provided by diago-
nal Padé approximants compared to the usual Taylor expan-
sion in cases where the RMP series of the Hubbard dimer
converges (U/t = 3.5) and diverges (U/t = 4.5). More quan-
titatively, table 1 gathers estimates of the RMP ground-state
energy at λ = 1 provided by various truncated Taylor series
and Padé approximants for these two values of the ratio U/t.
While the truncated Taylor series converges laboriously to the
exact energy as the truncation degree increases at U/t = 3.5,
the Padé approximants yield much more accurate results. Fur-
thermore, the distance of the closest pole to the origin |λc| in
the Padé approximants indicate that they provide a relatively
good approximation to the position of the true branch point sin-
gularity in the RMP energy. For U/t = 4.5, the Taylor series
expansion performs worse and eventually diverges, while the
Padé approximants still offer relatively accurate energies and
recovers a convergent series.

Figure 12. UMP energies in the Hubbard dimer as a function of λ
obtained using various approximants at U/t = 3.

We can expect the UMP energy function to be much more
challenging to model properly as it contains three connected
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Table 2. Estimate for the distance of the closest singularity (pole or branch point) to the origin |λc| in
the UMP energy function of the Hubbard dimer provided by various truncated Taylor series and
approximants at U/t = 3 and 7. The truncation degree of the Taylor expansion n of E(λ) and the
number of branch points nbp = max(2dp, dq + dr) generated by the quadratic approximants are also
reported.

|λc| E−(λ = 1)

Method n nbp U/t = 3 U/t = 7 U/t = 3 U/t = 7

Taylor 2 −0.740 74 −0.291 55
3 −0.781 89 −0.296 90
4 −0.822 13 −0.302 25
5 −0.857 69 −0.307 58
6 −0.888 82 −0.312 89

Padé [1/1] 2 9.000 49.00 −0.750 00 −0.291 67
[2/2] 4 0.974 1.003 0.750 00 −17.93 75
[3/3] 6 1.141 1.004 −1.108 96 −1.498 56
[4/4] 8 1.068 1.003 −0.853 96 −0.335 96
[5/5] 10 1.122 1.004 −0.972 54 −0.355 13

Quadratic [2/1, 2] 6 4 1.086 1.003 −1.010 09 −0.534 72
[2/2, 2] 7 4 1.082 1.003 −1.005 53 −0.534 63
[3/2, 2] 8 6 1.082 1.001 −1.005 68 −0.524 73
[3/2, 3] 9 6 1.071 1.002 −0.999 73 −0.531 02
[3/3, 3] 10 6 1.071 1.002 −0.999 66 −0.531 03

(Pole-free) [3/0, 2] 6 6 1.059 1.003 −1.137 12 −0.571 99
[3/0, 3] 7 6 1.073 1.002 −1.003 35 −0.531 13
[3/0, 4] 8 6 1.071 1.002 −1.000 74 −0.531 16
[3/0, 5] 9 6 1.070 1.002 −1.000 42 −0.531 14
[3/0, 6] 10 6 1.070 1.002 −1.000 39 −0.531 13

Exact 1.069 1.002 −1.000 00 −0.531 13

branches (see figures 6(a) and (c)). Figure 12 and table 2
indicate that this is indeed the case. In particular, figure 12
illustrates that the Padé approximants are trying to model the
square root branch point that lies close to λ = 1 by placing a
pole on the real axis (e.g., [3/3]) or with a very small imag-
inary component (e.g., [4/4]). The proximity of these poles
to the physical point λ = 1 means that any error in the Padé
functional form becomes magnified in the estimate of the exact
energy, as seen for the low-order approximants in table 2. How-
ever, with sufficiently high degree polynomials, one obtains
accurate estimates for the position of the closest singularity
and the ground-state energy at λ = 1, even in cases where
the convergence of the UMP series is incredibly slow (see
figure 6(b)).

4.2. Quadratic approximant

Quadratic approximants are designed to model the singularity
structure of the energy function E(λ) via a generalised version
of the square-root singularity expression [77, 135, 142]

E[dP/dQ,dR](λ) =
1

2Q(λ)

[
P(λ) ±

√
P2(λ) − 4Q(λ)R(λ)

]
,

(48)
with the polynomials

P(λ) =
dP∑

k=0

pkλ
k, Q(λ) =

dQ∑
k=0

qkλ
k, R(λ) =

dR∑
k=0

rkλ
k, (49)

defined such that dP + dQ + dR = n − 1, and n is the trunca-
tion order of the Taylor series of E(λ). Recasting equation (48)
as a second-order expression in E(λ), i.e.,

Q(λ)E2(λ) − P(λ)E(λ) + R(λ) ∼ Oλn+1, (50)

and substituting E(λ) by its nth-order expansion and the poly-
nomials by their respective expressions (49) yields n + 1 lin-
ear equations for the coefficients pk, qk, and rk (where we are
free to assume that q0 = 1). A quadratic approximant, char-
acterised by the label [dP/dQ, dR], generates, by construction,
nbp = max(2dp, dq + dr) branch points at the roots of the
polynomial P2(λ) − 4Q(λ)R(λ) and dq poles at the roots of
Q(λ).

Generally, the diagonal sequence of quadratic approxi-
mant, i.e., [0/0, 0], [1/0, 0], [1/0, 1], [1/1, 1], [2/1, 1], is of
particular interest as the order of the corresponding Taylor
series increases on each step. However, while a quadratic
approximant can reproduce multiple branch points, it can only
describe a total of two branches. This constraint can hamper
the faithful description of more complicated singularity struc-
tures such as the MP energy surface. Despite this limitation,
reference [129] demonstrates that quadratic approximants pro-
vide convergent results in the most divergent cases considered
by Olsen and collaborators [57, 115] and Leininger et al [98].

As a note of caution, reference [135] suggests that low-
order quadratic approximants can struggle to correctly model
the singularity structure when the energy function has poles in
both the positive and negative half-planes. In such a scenario,
the quadratic approximant will tend to place its branch points
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Figure 13. Comparison of the [3/2, 2] and [3/0, 4] quadratic approximants with the exact UMP energy surface in the complex λ plane in the
Hubbard dimer with U/t = 3. Both quadratic approximants correspond to the same truncation degree of the Taylor series and model the
branch points using a radicand polynomial of the same order. However, the [3/2, 2] approximant introduces poles into the surface that limits
it accuracy, while the [3/0, 4] approximant is free of poles.

in-between, potentially introducing singularities quite close to
the origin. The remedy for this problem involves applying a
suitable transformation of the complex plane (such as a bilin-
ear conformal mapping) which leaves the points at λ = 0 and
λ = 1 unchanged [143].

For the RMP series of the Hubbard dimer, the [0/0, 0]
and [1/0, 0] quadratic approximants are quite poor approxi-
mations, but the [1/0, 1] version perfectly models the RMP
energy function by predicting a single pair of EPs at
λEP = ±i4t/U. This is expected from the form of the RMP
energy (see equation (35)), which matches the ideal target for
quadratic approximants. Furthermore, the greater flexibility of
the diagonal quadratic approximants provides a significantly
improved model of the UMP energy in comparison to the Padé
approximants or Taylor series. In particular, these quadratic
approximants provide an effective model for the avoided cross-
ings (figure 12) and an improved estimate for the distance
of the closest branch point to the origin. Table 2 shows that
they provide remarkably accurate estimates of the ground-state
energy at λ = 1.

While the diagonal quadratic approximants provide signif-
icantly improved estimates of the ground-state energy, we can
use our knowledge of the UMP singularity structure to develop
even more accurate results. We have seen in previous sections
that the UMP energy surface contains only square-root branch
cuts that approach the real axis in the limit U/t →∞. Since
there are no true poles on this surface, we can obtain more
accurate quadratic approximants by taking dq = 0 and increas-
ing dr to retain equivalent accuracy in the square-root term
(see equation (48)). Figure 13 illustrates this improvement for
the pole-free [3/0, 4] quadratic approximant compared to the
[3/2, 2] approximant with the same truncation degree in the
Taylor expansion. Clearly, modelling the square-root branch
point using dq = 2 has the negative effect of introducing spu-
rious poles in the energy, while focussing purely on the branch
point with dq = 0 leads to a significantly improved model.
Table 2 shows that these pole-free quadratic approximants pro-
vide a rapidly convergent series with essentially exact energies
at low order.

Finally, to emphasise the improvement that can be gained
by using either Padé, diagonal quadratic, or pole-free quadratic

Table 3. Estimate and associated error of the exact UMP energy of
the Hubbard dimer at U/t = 7 for various approximants using up to
ten terms in the Taylor expansion.

Method E−(λ = 1) % Abs.error

Taylor 10 −0.333 38 37.150
Padé [5/5] −0.355 13 33.140
Quadratic (diagonal) [3/3, 3] −0.531 03 0.019
Quadratic (pole-free) [3/0, 6] −0.531 13 0.05
Exact −0.531 13

approximants, we collect the energy and error obtained using
only the first 10 terms of the UMP Taylor series in table 3.
The accuracy of these approximants reinforces how our under-
standing of the MP energy surface in the complex plane can
be leveraged to significantly improve estimates of the exact
energy using low-order perturbation expansions.

4.3. Shanks transformation

While the Padé and quadratic approximants can yield a con-
vergent series representation in cases where the standard MP
series diverges, there is no guarantee that the rate of conver-
gence will be fast enough for low-order approximations to be
useful. However, these low-order partial sums or approximants
often contain a remarkable amount of information that can be
used to extract further information about the exact result. The
Shanks transformation presents one approach for extracting
this information and accelerating the rate of convergence of
a sequence [56, 144].

Consider the partial sums Sn =
∑n

k=0sk defined from the
truncated summation of an infinite series S =

∑∞
k=0sk. If the

series converges, then the partial sums will tend to the exact
result

lim
n→∞

Sn = S. (51)

The Shanks transformation attempts to generate increasingly
accurate estimates of this limit by defining a new series as

T(Sn) =
Sn+1Sn−1 − S2

n

Sn+1 − 2Sn + Sn−1
. (52)

17



J. Phys.: Condens. Matter 33 (2021) 283001 Topical Review

Table 4. Acceleration of the diagonal Padé approximant sequence
for the RMP energy of the Hubbard dimer at U/t = 3.5 and 4.5
using the Shanks transformation.

E−(λ = 1)

Method Degree Series term U/t = 3.5 U/t = 4.5

Padé [1/1] S1 −1.611 11 −2.642 86
[2/2] S2 −0.821 24 −0.484 46
[3/3] S3 −0.919 95 −0.819 29
[4/4] S4 −0.905 79 −0.748 66
[5/5] S5 −0.907 78 −0.762 77

Shanks T(S2) −0.908 98 −0.774 32
T(S3) −0.907 57 −0.760 96
T(S4) −0.907 53 −0.760 42

Exact −0.907 54 −0.760 40

This series can converge faster than the original partial sums
and can thus provide greater accuracy using only the first
few terms in the series. However, it is only designed to
accelerate converging partial sums with the approximate form
Sn ≈ S + αβn. Furthermore, while this transformation can
accelerate the convergence of a series, there is no guaran-
tee that this acceleration will be fast enough to significantly
improve the accuracy of low-order approximations.

To the best of our knowledge, the Shanks transformation
has never previously been applied to accelerate the conver-
gence of the MP series. We have therefore applied it to the
convergent Taylor series, Padé approximants, and quadratic
approximants for RMP and UMP in the symmetric Hubbard
dimer. The UMP approximants converge too slowly for the
Shanks transformation to provide any improvement, even in
the case where the quadratic approximants are already very
accurate. In contrast, acceleration of the diagonal Padé approx-
imants for the RMP cases can significantly improve the esti-
mate of the energy using low-order perturbation terms, as
shown in table 4. Even though the RMP series diverges at
U/t = 4.5, the combination of diagonal Padé approximants
with the Shanks transformation reduces the absolute error in
the best energy estimate to 0.002% using only the first 10
terms in the Taylor series. This remarkable result indicates just
how much information is contained in the first few terms of a
perturbation series, even if it diverges.

4.4. Analytic continuation

Recently, Mihálka et al have studied the effect of differ-
ent partitionings, such as MP or EN theory, on the posi-
tion of branch points and the convergence properties of
Rayleigh–Schrödinger perturbation theory [61] (see also refer-
ences [145–147]). Taking the equilibrium and stretched water
structures as an example, they estimated the radius of conver-
gence using quadratic Padé approximants. The EN partitioning
provided worse convergence properties than the MP partition-
ing, which is believed to be because the EN denominators are
generally smaller than the MP denominators. To remedy the
situation, they showed that introducing a suitably chosen level
shift parameter can turn a divergent series into a convergent
one by increasing the magnitude of these denominators [61].

Figure 14. Comparison of the scaled RMP10 Taylor expansion with
the exact RMP energy as a function of λ for the Hubbard dimer at
U/t = 4.5. The two functions correspond closely within the radius
of convergence.

However, like the UMP series in stretched H2 [21], the cost of
larger denominators is an overall slower rate of convergence.

In a later study by the same group, they used analytic con-
tinuation techniques to resum a divergent MP series such as a
stretched water molecule [60]. Any MP series truncated at a
given order n can be used to define the scaled function

EMPn(λ) =
n∑

k=0

λkE(k)
MP. (53)

Reliable estimates of the energy can be obtained for values ofλ
where the MP series is rapidly convergent (i.e., for |λ| < rc),
as shown in figure 14 for the RMP10 series of the symmet-
ric Hubbard dimer with U/t = 4.5. These values can then be
analytically continued using a polynomial- or Padé-based fit
to obtain an estimate of the exact energy at λ = 1. However,
choosing the functional form for the best fit remains a difficult
and subtle challenge.

This technique was first generalised using complex scal-
ing parameters to construct an analytic continuation by solving
the Laplace equations [148]. It was then further improved by
introducing Cauchy’s integral formula [62]

E(λ) =
1

2πi

∮
C

E(λ′)
λ′ − λ

, (54)

which states that the value of the energy can be computed at
λ inside the complex contour C using only the values along
the same contour. Starting from a set of points in a ‘trusted’
region where the MP series is convergent, their approach self-
consistently refines estimates of the E(λ′) values on a con-
tour that includes the physical point λ = 1. The shape of
this contour is arbitrary, but there must be no branch points
or other singularities inside the contour. Once the contour
values of E(λ′) are converged, Cauchy’s integral formula
equation (54) can be invoked to compute the value at E(λ = 1)
and obtain a final estimate of the exact energy. The authors
illustrate this protocol for the dissociation curve of LiH and the
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stretched water molecule and obtained encouragingly accurate
results [62].

5. Concluding remarks

To accurately model chemical systems, one must choose a
computational protocol from an ever growing collection of
theoretical methods. Until the Schrödinger equation is solved
exactly, this choice must make a compromise on the accu-
racy of certain properties depending on the system that is
being studied. It is therefore essential that we understand
the strengths and weaknesses of different methods, and why
one might fail in cases where others work beautifully. In
this review, we have seen that the success and failure of
perturbation-based methods are directly connected to the
position of exceptional point singularities in the complex
plane.

We began by presenting the fundamental concepts behind
non-Hermitian extensions of quantum chemistry into the com-
plex plane, including the Hartree–Fock approximation and
Rayleigh–Schrödinger perturbation theory. We then provided
a comprehensive review of the various research that has been
performed around the physics of complex singularities in per-
turbation theory, with a particular focus on Møller–Plesset
theory. Seminal contributions from various research groups
have revealed highly oscillatory, slowly convergent, or catas-
trophically divergent behaviour of the restricted and/or unre-
stricted MP perturbation series [13–22]. In particular, the
spin-symmetry-broken unrestricted MP series is notorious for
giving incredibly slow convergence [16, 18–20]. All these
behaviours can be rationalised and explained by the position of
EPs and other singularities that arise when perturbation theory
is extended across the complex plane.

The classifications of different convergence types devel-
oped by Cremer and He [114], Olsen et al [57–59, 115], or
Sergeev and Goodson [127–131] are particularly worth high-
lighting. In Cremer and He is original classification, ‘class
A’ systems exhibit monotonic convergence and generally cor-
respond to weakly correlated electron pairs, while ‘class B’
systems show erratic convergence after initial oscillations and
generally contain spatially dense electron clusters [114]. Fur-
ther insights were provided by Olsen and co-workers who
employed a two-state model to understand the various conver-
gence behaviours of Hermitian and non-Hermitian perturba-
tion series [57–59, 115]. The careful analysis from Sergeev
and Goodson later refined these classes depending on the
position of the singularity closest to the origin, giving α
singularities which have large imaginary component, and β
singularities which have a very small imaginary component
[127–131]. Remarkably, the position of β singularities close
to the real axis can be justified as a critical point where one
(or more) electron is ionised from the molecule, creating a
QPT [125]. We have shown that the slow convergence of
symmetry-broken MP approximations can also be driven by
a β singularity and is closely related to these QPTs.

We have also discussed several resummation techniques
that can be used to improve energy estimates for both

convergent and divergent series, including Padé and quadratic
approximants. Furthermore, we have provided the first
illustration of how the Shanks transformation can acceler-
ate convergence of MP approximants to improve the accu-
racy of low-order approximations. Using these resummation
and acceleration methods to turn low-order truncated MP
series into convergent and systematically improvable series
can dramatically improve the accuracy and applicability of
these perturbative methods. However, the application of these
approaches requires the evaluation of higher-order MP coeffi-
cients (e.g., MP3, MP4, MP5, etc) that are generally expensive
to compute in practice. There is therefore a strong demand for
computationally efficient approaches to evaluate general terms
in the MP series, and the development of stochastic [149–153],
or linear-scaling approximations [154, 155] may prove fruitful
avenues in this direction.

The present review has only considered the convergence
of the MP series using the RHF or UHF reference orbitals.
However, numerous recent studies have shown that the use
of orbitals optimised in the presence of the MP2 correc-
tion [156–158] or Kohn–Sham DFT orbitals can significantly
improve the accuracy of the MP3 correction [159, 160], partic-
ularly in the presence of symmetry-breaking. Beyond intuitive
heuristics, it is not clear why these alternative orbitals provide
such accurate results, and a detailed investigation of their MP
energy function in the complex plane is therefore bound to pro-
vide fascinating insights. Furthermore, the convergence prop-
erties of the excited-state MP series using orbital-optimised
higher energy HF solutions [161–164] remains entirely unex-
plored [165, 166].

Finally, the physical concepts and mathematical tools pre-
sented in this manuscript have been illustrated on the sym-
metric (or asymmetric in one occasion) Hubbard dimer at
half-filling. Although extremely simple, these illustrations
highlight the incredible versatility of the Hubbard model for
understanding the subtle features of perturbation theory in the
complex plane, alongside other examples such as Kohn–Sham
DFT [67, 167], linear-response theory [68], many-body pertur-
bation theory [168–173], ensemble DFT [174–178], thermal
DFT [179, 180], wave function methods [181–183], and many
more. In particular, we have shown that the Hubbard dimer
contains sufficient flexibility to describe the effects of sym-
metry breaking, the MP critical point, and resummation tech-
niques, in contrast to the more minimalistic models considered
previously. We therefore propose that the Hubbard dimer pro-
vides the ideal arena for further developing our fundamental
understanding and applications of perturbation theory.

Perturbation theory is not usually considered in the complex
plane. But when it is, a lot can be learnt about the perfor-
mance of perturbation theory on the real axis. These insights
can allow incredibly accurate results to be obtained using
only the lowest-order terms in a perturbation series. Yet per-
turbation theory represents only one method for approximat-
ing the exact energy, and few other methods have been con-
sidered through similar complex non-Hermitian extensions.
There is therefore much still to be discovered about the exis-
tence and consequences of EPs throughout electronic structure
theory.
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