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ABSTRACT: In this work, we show the advantages of using the Coulomb
hole plus screened exchange (COHSEX) approach in the calculation of
potential energy surfaces (PES). In particular, we demonstrate that, unlike
perturbative GW and partial self-consistent GW approaches, such as eigenvalue
self-consistent GW and quasi-particle (QP) self-consistent GW, the COHSEX
approach yields smooth PES without irregularities and discontinuities.
Moreover, we show that the ground-state PES obtained from the Bethe−
Salpeter equation (BSE), within the adiabatic connection fluctuation
dissipation theorem, built with QP energies obtained from perturbative
COHSEX on top of Hartree−Fock (BSE@COHSEX@HF) yield very accurate
results for diatomic molecules close to their equilibrium distance. When self-
consistent COHSEX QP energies and orbitals are used to build the BSE
equation, the results become independent of the starting point. We show that
self-consistency worsens the total energies but improves the equilibrium
distances with respect to BSE@COHSEX@HF. This is mainly due to the changes in the screening inside the BSE.

1. INTRODUCTION

In the last decade, the GW method1−4 has become a standard
tool in the quantum chemistry tool box. It has proved to be a
powerful approach for the calculation of ionization energies,
electron affinities, fundamental gaps, and so forth. However,
because of the complexity of the GW self-energy, which is non-
Hermitian and frequency-dependent, a fully self-consistent
approach is nontrivial.5−13 As a consequence, several
approximate GW schemes have been devised. The most
popular approaches are perturbative GW, also known as
G0W0,

14−19 eigenvalue self-consistent GW (evGW),20−23 and
quasi-particle (QP) self-consistent GW (qsGW).24−28 Within
G0W0, the GW self-energy is treated as a perturbation with
respect to a zeroth-order Hamiltonian with a simpler self-
energy, such as Hartree−Fock (HF), or a different
Hamiltonian altogether, such as a Kohn−Sham Hamiltonian.
The main drawback of G0W0 is its dependence on the choice of
the starting point, that is, the zeroth-order Hamilto-
nian.7,22,27−30 Within evGW, the dependence on the starting
point is reduced by updating the eigenvalues in a self-
consistent field procedure. However, the orbitals remain those
of the zeroth-order Hamiltonian. Finally, within qsGW, the
GW self-energy is approximated in such a way that it is both
Hermitian and frequency-independent. This allows for a simple
self-consistent procedure for both eigenvalues and orbitals
eliminating the influence of the starting point.
Although it is known that GW has some shortcomings, they

have, until recently, mainly appeared in the strongly correlated

regime.31−39 However, in two recent articles,40,41 we
uncovered an important shortcoming of the G0W0, evGW,
and qsGW approaches that appears in the weakly correlated
regime. All the three approaches suffer from unphysical
irregularities and even discontinuities (evGW and qsGW) in
important physical quantities such as QP energies, neutral
excitation energies, and correlation energies. We showed that
the problem could be traced back to the existence of multiple
close-lying solutions when the QP energy is close to a pole of
the self-energy.18,40−42 When the solution switches from one
branch to another one, it yields an irregularity or discontinuity
in the physical observable. The problem is more severe in
evGW and qsGW because, due to the self-consistency
procedure, an irregularity in one QP energy is transferred to
all QP energies through the self-consistent procedure.
This problem was again observed in the potential energy

surfaces (PES) of diatomic molecules.43 Accurate results were
obtained for the ground-state total energies from the adiabatic-
connection fluctuation−dissipation theorem (ACFDT)44−54

applied to the Bethe−Salpeter equation (BSE) formalism.55−58
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However, because the BSE calculations were performed on top
of a G0W0 calculation, irregularities appeared in the energy
curves because of the problem discussed above. As can be
anticipated from our discussion above, switching to evGW or
qsGW will not solve the problem. Below we will also explicitly
show that discontinuities indeed appear in the PES when
evGW or qsGW orbitals and energies are used to calculate the
total energy. In view of the above, it is desirable to find an
alternative approach to G0W0, evGW, and qsGW that does not
suffer from this drawback and yields accurate total energies at
an affordable computational cost.
In this work, we will consider the Coulomb hole plus

screened exchange (COHSEX) self-energy, which was
proposed a long time ago by Hedin,1,20,59 both perturbatively,
namely, on top of HF, and self-consistently (scCOHSEX).60

Although the physics inside the COHSEX self-energy is very
similar to that included in the GW self-energy, unlike the GW
self-energy, it is Hermitian and frequency-independent. As a
consequence, COHSEX calculations can be done self-
consistently using standard numerical techniques (i.e., by
simple diagonalization of a Fock-like operator). A self-
consistent COHSEX calculation can also be used as a starting
point for a G0W0 or evGW calculation.60−66 Such an approach
generally yields accurate energy gaps, but this would of course
suffer from the same irregularities and discontinuities
mentioned above. Thanks to its numerical efficiency COHSEX
can be used to perform calculations on large systems.67,68 The
COHSEX approach can also be used to calculate ionic
gradients.69 Instead, the irregularities and discontinuities in
G0W0, evGW, and qsGW could prevent a straightforward
calculation of these quantities. Finally, we note that improve-
ments of the COHSEX method have been proposed.70

The main goal of this work is twofold. We want to show that
(i) physical observables, and in particular PES, obtained within
the COHSEX approach do not suffer from irregularities and
discontinuities and (ii) the PES and equilibrium geometries
obtained from the BSE using perturbative COHSEX QP
energies (i.e., BSE@COHSEX@HF) are comparable in
accuracy to those obtained within BSE@G0W0@HF. We
illustrate both points by calculating the PES and equilibrium
distances (Req) of several diatomic molecules. Furthermore, we
want to demonstrate that (iii) although the COHSEX and
G0W0 energy gaps are quite different, the influence of this
difference on the PES and equilibrium distances is small and
(iv) for the diatomic molecules studied here, perturbative
COHSEX, that is, BSE@COHSEX@HF, yields PES that are in
better agreement with the reference values than self-consistent
COHSEX, that is, BSE@scCOHSEX. Instead, the values of Req
obtained within BSE@scCOHSEX are slightly improved with
respect to BSE@COHSEX@HF when compared to the
reference data.
The paper is organized as follows. In Section 2, we describe

the theory behind the COHSEX approach and we also briefly
discuss the theory of G0W0 and partially self-consistent GW
methods. We report and discuss our results in Section 3.
Finally, in Section 4, we draw the conclusions from our work.

2. THEORY

The key variable within many-body perturbation theory is the
one-body Green’s function G. In the absence of time-
dependent fields and at zero temperature, it is defined as

τ τ ψ ψ

τ ψ ψ

′ = − Θ ⟨Ψ | ̂ ̂ ′ |Ψ ⟩

+ Θ − ⟨Ψ | ̂ ′ ̂ |Ψ ⟩

τ

τ

− ̂ − †

† ̂ −

r r r r

r r

G i

i

( , , ) ( ) ( )e ( )

( ) ( )e ( )

N i H E N

N i H E N

0
( )

0

0
( )

0

N N

N N

0

0

(1)

where ĤN is the Hamiltonian of the N-electron system, Ψ0
N is

its ground-state wave function, E0
N is the ground-state energy,

Θ is the Heaviside step function, while ψ̂† and ψ̂ are creation
and annihilation operators, respectively. In practice, the one-
body Green’s function can be obtained from the solution of the
following Dyson equation

∫ ∫ ∫ ∫
τ τ

τ τ τ τ τ τ τ
′ = ′

+ − Σ ′ −
r r r r

r r r r r r r r

G G

G G

( , , ) ( , , )

d d d d ( , , ) ( , , ) ( , , )c

HF

1 2 1 2 HF 1 1 1 2 2 2 1 2

(2)

where GHF is the one-body Green’s function within the HF
approximation and Σc is the correlation part of the self-energy,
which has to be approximated in practical calculations.

2.1. COHSEX Self-Energy. In this section, we discuss the
COHSEX self-energy and, in particular, its correlation part. We
will compare it to the GW self-energy as the two self-energies
are similar. The correlation parts of the GW and COHSEX
self-energies are given by

τ τ τ ηΣ ′ = ′ ′ +r r r r r riG W( , , ) ( , , ) ( , , )c
GW

p (3a)

τ τ ω

δ τ η δ τ η

Σ ′ = ′ ′ =

× [ + + − ]

r r r r r riG W( , , ) ( , , ) ( , , 0)

( ) ( ) /2

c p
COHSEX

(3b)

where Wp = W − v is the difference between the screened
Coulomb interaction W and the bare Coulomb interaction v, δ
is the Dirac delta function, and η is a positive infinitesimal that
ensures the correct time ordering. The main difference
between the two approximations is that the GW self-energy
contains a dynamical (i.e., frequency-dependent) Wp, while the
COHSEX self-energy has a static (i.e., frequency-independent)
Wp. A Fourier transformation of eqs 3a and 3b yields the
following two expressions

∫ω
π

ω ω ω ωΣ ′ = ′ ′ + ′ ′ ′ηω′r r r r r r
i d G W( , , )

2
e ( , , ) ( , , )c

GW i
p

(4a)

η η ω

ψ ψ ψ ψ ω

Σ ′ = [ ′ − + ′ ] ′ =

= ⟨Ψ | ̂ ̂ ′ − ̂ ′ ̂ |Ψ ⟩ ′ =† †

r r r r r r r r

r r r r r r
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1
2

( ) ( ) ( ) ( ) ( , , 0)
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N N
p

COHSEX

0 0

(4b)

and clearly shows that the COHSEX self-energy is static. We
note that to better understand the screened exchange (SEX)
and the Coulomb hole (COH) parts of the COHSEX self-
energy, it is useful to rewrite eq 4b according to

ψ ψ ω

δ ω

Σ ′ = − ⟨Ψ | ̂ ′ ̂ |Ψ ⟩ ′ =

+ − ′ =

†r r r r r r

r r r r

W

W

( , ) ( ) ( ) ( , , 0)

( ) ( , , 0)
c

N N
p

p

COHSEX
0 0

1
2 (5)

where we used the anti-commutator relation for the field
operators, that is, ψ̂(r′)ψ̂†(r) + ψ̂†(r′)ψ̂(r) = δ(r − r′). The
first term on the right-hand side of eq 5 when combined with
the HF exchange part of the self-energy, that is

ψ ψΣ ′ = −⟨Ψ | ̂ ′ ̂ |Ψ ⟩ ′†r r r r r rv( , ) ( ) ( ) ( , )x
N NHF

0 0 (6)

yields the screened exchange self-energy. The second term on
the right-hand side of eq 5 is the (static) Coulomb hole self-
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energy because Wp(r, r, ω = 0) is the Coulomb potential at r
because of the Coulomb hole created by an electron present at
r.
We can express Wp as

∫ ∫ω χ ω′ = ′r r r r r r r r r rW v v( , , ) d d ( , ) ( , , ) ( , )p 1 2 1 1 2 2

(7)

where the (reducible) polarizability χ can be written as

∑χ ω
ρ ρ

ω η
ρ ρ

ω η
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m m
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m

(8)

in which Ωm is a neutral excitation energy and ρm is the
corresponding transition density. The latter is defined as

∑ ∑ρ ϕ ϕ= +r r rX Y( ) ( ) ( ) ( )m
i a

m
ia

i a

occ virt

(9)

where ϕp are either the (real-valued) HF spatial orbitals ϕp
HF

(for a COHSEX@HF calculation) or the (real-valued)
scCOHSEX spatial orbitals ϕp

COHSEX, that is, the eigenfunctions
of the COHSEX Hamiltonian ĤCOHSEX = ĤHF + Σ̂c

COHSEX. In
the following, the index m labels the single excitations; i and j
are occupied orbitals; a and b are unoccupied orbitals; while p,
q, r, and s indicate arbitrary orbitals.
The neutral excitation energies Ωm and the transition

amplitudes (X + Y)m
ia are obtained from a random-phase

approximation (RPA) calculation
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where (Xm,Ym)
T is the eigenvector that corresponds to Ωm and

δ δ= ϵ − ϵ + |ia jbA ( ) 2( )ia jb ij ab a i, (11a)

= |ia bjB 2( )ia jb, (11b)

where ϵp are either the HF orbital energies ϵp
HF (for a

COHSEX@HF calculation) or the scCOHSEX orbital
energies ϵp

COHSEX (i.e., the eigenvalues of ĤCOHSEX), and
(pq|rs) are the bare two-electron integrals defined as

∬ ϕ ϕ ϕ ϕ| = ′ ′ ′ ′r r r r r r r rpq rs v( ) d d ( ) ( ) ( , ) ( ) ( )p q r s (12)

While the GW self-energy is non-Hermitian and frequency-
dependent, the COHSEX self-energy is both static and
Hermitian as can be verified from the expression one obtains
by inserting eq 8 into 4b (with Wp given by 7)

∬ ∑

ψ ψ ψ ψ
ρ ρ
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Ω
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( , )

c
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1 2 1
1 2

2

(13)

Moreover, it is important to note that the COHSEX self-
energy has no poles. More precisely, its denominator never
vanishes because Ωm are real and positive for finite systems.
Owing to the Hermiticity and frequency independence of the
COHSEX self-energy, Ψ0

N can be represented by a single
Slater determinant. Following the Slater−Condon rules, the
matrix elements in the above equation can then be rewritten as
sums of products of orbitals. We obtain

∬
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The matrix element Σc,pq
COHSEX = ⟨ϕp|Σc

COHSEX|ϕq⟩ can now be
written as

∑ ∑ ∑Σ =
[ | ][ | ]

Ω
−

[ | ][ | ]
Ω
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,
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where the screened two-electron integrals are defined as

∑[ | ] = | +pq m pq ia X Y( )( )
ia

m
ia

(16)

When COHSEX is performed using first-order perturbation
theory with respect to HF, the perturbation is given by
ĤCOHSEX − ĤHF = Σ̂c

COHSEX. The perturbative COHSEX orbital
energies can thus be obtained from

ϵ = ϵ + Σp p c pp
COHSEX HF

,
COHSEX

(17)

Instead, within scCOHSEX, both the eigenvalues and
eigenfunctions of the COHSEX Hamiltonian have to be
calculated repeatedly until a self-consistent result is obtained.

2.2. G0W0. Given the difficulty of evaluating the GW self-
energy mentioned above, one often uses a perturbative
approach called G0W0 in which the self-energy is calculated
perturbatively with respect to a simpler zeroth-order
Hamiltonian, such as a self-energy for which a self-consistent
solution is more easily obtained. In this work, we will use the
HF Green’s function as our zeroth-order Green’s function. Its
spectral representation is given by

∑ω
ϕ ϕ

ω η μ
′ =

′

− ϵ − − ϵ
r r

r r
G

i
( , , )

( ) ( )

sign( )p

p p

p p
HF

HF HF

HF HF
(18)

with μ being the chemical potential. Within the G0W0
approximation, the frequency integral in eq 4a can be
performed analytically and one obtains the following matrix
elements of the G0W0 self-energy

∑ ∑

∑

ω
ω η

ω η
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[ | ] [ | ]
− ϵ + Ω −

+
[ | ] [ | ]
− ϵ − Ω +
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i

pa m qa m
i

( ) 2c pq
G W

m i i m

a a m

,

occ HF HF

HF HF

virt HF HF

HF HF

0 0

(19)

where the superscript in Ωm
HF and [pq|m]HF indicates that these

quantities are obtained from HF eigenvalues and orbitals.
Contrary to the COHSEX self-energy, the above self-energy is
dynamical and has poles. The QP energies can then be
obtained from the poles of G obtained by solving the Dyson eq
2 (in frequency space) with the above self-energy. This yields
the so-called QP equation

ω ω= ϵ + Σ
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑRe ( )p c pp

G WHF
,
0 0

(20)

Because of the frequency dependence of the self-energy, the
G0W0 QP equation has, in general, multiple solutions ϵp s

G W
,
0 0.
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The solution ϵ ≡ ϵ =p
G W

p s
G W

, 0
0 0 0 0 with the largest spectral weight

ϵ =Z ( )p p s
G W

, 0
0 0 with

ω
ω

= −
Σ

∂ω

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ
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ÑÑÑÑÑÑÑÑÑÑÑÑÑ
Z ( ) 1

Re ( )
p

c pp
G W

,

1
0 0

(21)

is called the QP solution (or simply QP), while the other
solutions (s > 0) are called satellites and share the rest of the
spectral weight. In practice, the QP equation is often simplified
by Taylor expanding the self-energy to first order around ϵp

HF.
The result is the so-called linearized QP equation given by

ϵ = ϵ + ϵ Σ ϵ
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑZ ( )Re ( )p

G W
p p p c pp

G W
p

HF HF
,

HF0 0 0 0
(22)

When the self-energy has poles close to a solution of the QP
equation, the above linearization is not justified. Moreover, it
leads to irregularities in physical observables such as PES. This
can be understood as follows.
Although the self-energy in the linearized QP equation is

independent of the frequency, its denominator could still
vanish. This happens when ϵp

HF = ϵi
HF − Ωm

HF or when ϵp
HF =

ϵa
HF + Ωm

HF. When calculating a single QP for a single
configuration of an atom or a molecule, it is not very probable
that such an event occurs. However, when a large number of
QPs and/or configurations is considered, for example, when
calculating a PES, it becomes inevitable. As an example, let us
consider the simplest PES, namely, the variation of the total
energy of a diatomic molecule as a function of the interatomic
distance R. In such a case, ϵp

HF and Ωm
HF could be considered

functions of R and the conditions that the self-energy has a
vanishing denominator can be written as

ϵ = ϵ − ΩR R R( ) ( ) ( )p i m
HF HF HF

(23a)

ϵ = ϵ + ΩR R R( ) ( ) ( )p a m
HF HF HF

(23b)

Therefore, Σ [ϵ ]R( )c pp
G W

p,
HF0 0 can be considered an implicit

function of R that has poles. From the above conditions, it is
clear that in a region equal to 2Ω0

HF(R) + ϵLUMO
HF (R) −

ϵHOMO
HF (R) around the Fermi level, no poles can occur, where
Ω0

HF is the smallest neutral excitation energy and ϵLUMO
HF and

ϵHOMO
HF are the HF energies of the lowest unoccupied molecular
orbital (LUMO) and the highest occupied molecular orbital
(HOMO), respectively. However, because, in general, the
variation with respect to R of the left- and right-hand sides of
eqs 23a and 23b is different, it is unavoidable that outside of
this range, one of the two above conditions is met for some
values R = Rp. In the vicinity of these Rp values, the self-energy
[see eq 19] and its corresponding renormalization factor Zp
[see eq 21] vary rapidly, leading to irregularities in the QP
energies and, hence, in the PES. We note that satisfaction of
either eqs 23a or 23b will ensure an irregularity and that they
can never be met simultaneously.
2.3. Partially Self-Consistent GW. The main drawback of

the G0W0 approach is its dependence on the starting point, that
is, the orbitals and energies of the zeroth-order Hamiltonian.
Because, as mentioned above, from a numerical point of view,
fully self-consistent GW is nontrivial, the so-called partial self-
consistent GW methods have been developed to reduce or
eliminate the starting point dependence. Within evGW, one
only updates the eigenvalues in the self-energy, while in qsGW,
one symmetrizes the G0W0 self-energy according to

Σ = Σ ϵ + Σ ϵ
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ

1
2

Re ( ) ( )c pq
GW

c pq
G W

p
GW

c pq
G W

q
GW

,
qs

,
qs

,
qs0 0 0 0

(24)

The above self-energy is frequency-independent and
Hermitian and is, hence, suitable for a standard self-consistent
procedure. Therefore, in this partially self-consistent scheme,
both the eigenvalues and orbitals are updated.
However, the evGW and qsGW approaches suffer from the

same problem as G0W0 because the self-energies have poles
when considered as (implicit) functions of the geometry. In
fact, the problem is even more severe because, due to the self-
consistent procedure, an irregularity in one QP energy is
transferred to all the other QP energies. As a consequence, in
some regions of the geometry space, there is more than one
branch of solutions and discontinuities appear when a solution
switches from one branch to another.
To be more precise, let us consider a diatomic molecule. For

certain internuclear distances Rd, two solutions of the QP
equation can have equal weight but not equal energies. Just
before this point Rd, one of the two solutions will be picked up
in the self-consistent procedure because it has a slightly larger
weight than the other solution. Instead, just after Rd, the roles
are reversed and the other solution will be picked up because it
is now the one with the slightly larger weight. Because the two
solutions have different energies, there is a sudden jump of the
QP energy at Rd causing a discontinuity. This scenario occurs
whenever a solution of the QP equation lies close to a pole of
the self-energy.40,41 It can happen for any state, occupied or
virtual, except those close to the Fermi level because, as
mentioned before, the self-energy has no poles there. More
details and analysis of the origin of irregularities and
discontinuities in GW approaches can be found in refs.40,41

2.4. Correlation Energy. We calculate the correlation
energies at the BSE level using an approach based on the
ACFDT.44−46 We note that the ACFDT formalism is formally
derived for a local potential, while here the potential, that is,
the self-energy, is nonlocal. We strictly follow the ACFDT
procedure described in ref 43 and the details can be found
there. For the sake of completeness, we briefly discuss some
details of the calculation of the BSE total energy. The main
difference with ref 43 is that the QP energies and orbitals
appearing in the equations below are those pertaining to the
COHSEX self-energy instead of the G0W0 self-energy. Finally,
we note that the approach described below is compatible only
with a QP calculation but not fully self-consistent GW because
it requires orbitals and orbital energies as input.
Within the ACFDT formalism, the BSE correlation energy

can be written as an integral over the coupling constant λ,
which adiabatically connects the noninteracting system (λ = 0)
with the fully interacting system (λ = 1) according to43,50−54

∫ λ= λE KP
1
2

Tr( )dc
BSE

0

1

(25)

where the polarizability matrix Pλ is given by
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where

δ δ λ= ϵ − ϵ + [ | − ]λ λia jb WA ( ) 2( )ia jb ij ab a i ij ab,
,BSE

, (28)

λ= [ | − ]λ λia bj WB 2( )ia jb ib aj,
,BSE

, (29)

with

∬ ϕ ϕ ω ϕ ϕ= ′ ′ = ′ ′λ λr r r r r r r rW Wd d ( ) ( ) ( , , 0) ( ) ( )pq rs p q r s,

(30)

Finally, the interaction kernel K is given by
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1,BSE BSE (31)

with Ãia,jb
BSE = 2(ia|bj). We note that eq 25 is referred to as

“extended Bethe−Salpeter (XBS)” in ref 52. An important
point to make here is that, in contrast to Kohn−Sham density
functional theory where the electron density is fixed along the
adiabatic path,44,45 the density is not maintained in the present
BSE formalism as the coupling constant varies. Therefore, an
additional contribution to eq 25 originating from the variation
of the Green’s function along the adiabatic connection path
should be, in principle, added.71 However, as it is commonly
done,47,48,52,72 we shall neglect it in the present study.
The BSE total energy EBSE of the system can then be written

as

= + +E E E Ec
BSE nuc HF BSE

(32)

where Enuc and EHF are the nuclear energy and the HF energy,
respectively. We note that for a BSE@scCOHSEX calculation,
EHF is calculated with the scCOHSEX orbitals.

3. RESULTS
All systems under investigation have a closed-shell singlet
ground state. Hence, the restricted HF formalism has been
systematically employed in the present study. The infinitesimal
η is set to zero for all calculations. The numerical integration
required to compute the correlation energy along the adiabatic
path (see eq 25) is performed with a 21-point Gauss−
Legendre quadrature. All the calculations have been performed
with the software QuAcK,73 freely available on GitHub.
QuAcK uses Gaussian-type orbitals and its implementation
closely follows that of MOLGW.74 In particular, the frequency
integral in the G0W0 self-energy is done exactly, that is, we
solve eq 10 and use the neutral excitation energies in eq 19.
The threshold for the convergence of the QP energies was set
to 10−6 Ha and 10−5 Ha in the HF and scCOHSEX
calculations, respectively. We have used the DIIS technique
to accelerate convergence.75,76 As one-electron basis sets, we
employ the Dunning family (cc-pVXZ) defined with Cartesian
Gaussian functions. Finally, we note that we diagonalize eq 10,
which is a (OV) × (OV) matrix (where O and V are the
number of occupied and virtual orbitals). Because a complete
diagonalization scales as N3, with N being the number of
electrons, for a matrix of size N × N, computing the screening
in such a way scales as (OV)3, that is, N6. Several techniques
exist to improve the scaling of the calculation of the
screening.77−81

3.1. Irregularities and Discontinuities in G0W0, evGW,
and qsGW. We have previously described in detail the
problem of irregularities and discontinuities in physical

observables obtained from G0W0 and partially self-consistent
GW approaches.40,41 Here, we want to remind the reader that
these problems are also present in total energy calculations and
we want to show that, instead, there are no such problems in
the COHSEX method. In Figure 1, we report the BSE total

energy of the LiF molecule as a function of the interatomic
distance in the vicinity of its equilibrium distance. The BSE
correlation energy is calculated on top of G0W0@HF,
COHSEX@HF, evGW@HF, qsGW, and scCOHSEX. We
used a relatively small basis set, namely, Dunning’s cc-pVDZ
basis, because for larger basis sets, the qsGW approach does
not yield converged results for many values of R. This,
however, does not change the conclusions of this section. We
note that within qsGW, the entire set of energies and orbitals is
updated at each iteration. We see that all four results are within
a range of about 10 mHartree. However, the PES obtained
from BSE@G0W0@HF shows irregularities, while the PES
obtained from BSE@evGW@HF and BSE@qsGW shows
discontinuities. In fact, the different branches of solutions
can clearly be seen, especially around 3.4 bohr. Instead, the
BSE total energies obtained on top of a COHSEX calculation,
that is, BSE@COHSEX@HF and BSE@scCOHSEX, yield a
PES that is a smooth function of the interatomic distance.
Finally, we note that including self-consistency in COHSEX

and GW tends to lower the total energies and that including
self-consistency for both QP energies and orbitals lowers the
total energy more than just including self-consistency for the
QP energies. Moreover, the effect of self-consistency on the
total energies in COHSEX, going from COHSEX@HF to
scCOHSEX, is roughly identical to the effect on GW, going
from G0W0@HF to evGW@HF.

3.2. Ground-State PES. In Figures 2−9, we report the
BSE total energies on top of COHSEX@HF, G0W0@HF, and
scCOHSEX as a function of the interatomic distance around
the equilibrium distance for the following diatomic molecules:
H2, LiH, LiF, HCl, N2, CO, BF, and F2, respectively. They are
the same molecules that were studied in ref 43. We also use the
same basis set, namely, Dunning’s cc-pVQZ. For comparison,
we also report the PES obtained with coupled-cluster (CC)
methods of increasing accuracy: CC2,82 CCSD,83 and CC3.84

At the equilibrium distance, the CC3 approach has been
shown to yield total energies that are very close to those

Figure 1. BSE total energy of the LiF molecule in the cc-pVDZ basis
as a function of the internuclear distance. The calculations were done
at intervals of 0.002 bohr.
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obtained with higher-order CC approaches, such as CCSDT
and CCSDT(Q).43 Therefore, we can consider it to be the
reference method. We also compare to the PES obtained
within BSE@HF in which the BSE is solved using HF orbital
energies.
In the only case for which we have an exact result (for the

given basis set), namely, the H2 PES obtained from full
configuration interaction (FCI), all BSE total energies are
roughly the same. We also note that no irregularities are visible
in the BSE@G0W0@HF curve. In the case of LiH, the second
smallest molecule in the set, an irregularity appears in the

BSE@G0W0@HF curve around 3.08 bohr. We also observe
that the smooth BSE@COHSEX@HF total−energy curves are
the closest to the reference CC3 values, while BSE@
scCOHSEX and BSE@G0W0@HF yield almost identical
energies. For the LiF molecule, there are large irregularities
in the PES obtained within BSE@G0W0@HF around 2.9 bohr,
which impedes a straightforward determination of the
equilibrium distance (see below). Another large irregularity
appears around 3.4 bohr. Again, the smooth BSE@COHSEX@
HF curve is closer to that obtained within CC3 than the BSE@
G0W0@HF curve, although the differences are small. Similar to
the LiF results obtained above for the small cc-pVDZ basis, we
observe again that including self-consistency in the COHSEX

Figure 2. Total energy of the H2 molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Figure 3. Total energy of the LiH molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Figure 4. Total energy of the LiF molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Figure 5. Total energy of the HCl molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Figure 6. Total energy of the N2 molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Figure 7. Total energy of the CO molecule in the cc-pVQZ basis as a
function of the internuclear distance.
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calculation lowers the total energy, thereby worsening the
agreement with the CC reference data. Finally, we note that for
LiF, the BSE@HF total energies are slightly closer to the
reference CC3 results than those obtained within BSE@
COHSEX@HF. However, as we will see in the following, the
PES obtained within BSE@COHSEX@HF results are, in
general, better than those obtained within BSE@HF.
The PES of all diatomic molecules, except the smallest two

(H2 and LiH), show similar trends as LiF, that is, small
differences between the BSE@COHSEX@HF and BSE@
G0W0@HF total energies and a relatively large difference with
respect to the BSE@scCOHSEX total energies. Therefore, we
conclude that the self-consistency has a much larger influence
on the PES than the difference in the COHSEX and GW self-
energies.
The PES of the HCl, N2, CO, and BF molecules obtained

within BSE@G0W0@HF all exhibit small irregularities, while

those in F2 are very large, preventing a simple determination of
the F2 equilibrium distance (see below). Again, BSE@
COHSEX@HF is in excellent agreement with the CC3 results
and even slightly better than those obtained within BSE@
G0W0@HF, and, most importantly, the PES obtained within
BSE@COHSEX@HF (and BSE@scCOHSEX) are devoid of
irregularities and discontinuities.
In Table 1, we report the equilibrium distances obtained

within the various BSE approaches and we compare them to
the CC3 reference values and to the experimental values. As
mentioned above, the irregularities in the PES can prevent a
straightforward determination of the equilibrium distance.
Therefore, following ref 43, for LiF and F2, a Morse potential
was used to fit the total energies in order to estimate the
equilibrium distance. Although the total energies obtained
within BSE@scCOHSEX were not as accurate as those
obtained using perturbative QP energies, adding self-
consistency to the COHSEX approach improves the
equilibrium distances. In summary, while BSE@COHSEX@
HF yields the smallest errors for the total energies, BSE@
scCOHSEX yields the smallest errors for the equilibrium
distances.
Finally, in order to estimate the influence of the QP energies

on the BSE total energies, we report the ionization potentials
(IPs) and the HOMO−LUMO gaps at the equilibrium
distance corresponding to each level of theory for the various
BSE approaches in Tables 2 and 3, respectively, and we
compare to experimental data (when available). For the IPs,
we also report the CCSD(T)/def2TZVPP data of ref 86,
which are in good agreement with the experimental values with
the exception of H2. Comparing the differences in the IP with
the differences in the PES, there does not emerge a clear link
between the two. Although the IP obtained within COHSEX@
HF and G0W0@HF show large differences, the differences
between the corresponding BSE total energies are small.
Instead, the differences in the IP between scCOHSEX and
COHSEX@HF are small (except for N2), but the differences
in the corresponding total energies are large. Similarly, the
differences in the IP between HF and G0W0@HF are often
small, but the differences in the corresponding total energies
are large. An equivalent analysis holds for the HOMO−LUMO
gaps. Moreover, despite the fact that COHSEX@HF yields IP
and HOMO−LUMO gaps significantly worse than those
obtained within G0W0@HF when compared to the exper-
imental values, the corresponding BSE total energies are very
similar (except for the irregularities in G0W0@HF@BSE).
Therefore, at least for the small molecules discussed here, the
BSE total energies obtained within ACFDT seem to be robust
with respect to the screening used in the calculation of the
underlying QP energies. Instead, the total energies are sensitive

Figure 8. Total energy of the BF molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Figure 9. Total energy of the F2 molecule in the cc-pVQZ basis as a
function of the internuclear distance.

Table 1. Equilibrium Distances (in bohr) Obtained in the cc-pVQZ Basis Seta

H2 LiH LiF HCl N2 CO BF F2

CC3 1.402 3.019 2.963 2.403 2.075 2.136 2.390 2.663
BSE@HF 1.402 3.014 2.954 2.400 2.065 2.120 2.378 2.631
BSE@G0W0@HF 1.399 3.017 (2.973) 2.400 2.065 2.134 2.385 (2.638)
BSE@COHSEX@HF 1.399 3.014 2.961 2.400 2.066 2.125 2.379 2.635
BSE@scCOHSEX 1.401 3.016 2.963 2.404 2.070 2.130 2.387 2.650
experiment 1.401 3.015 2.948 2.409 2.074 2.132 2.386 2.668

aThe experimental values are extracted from ref 85. The results in brackets for LiF and F2 were obtained by fitting the total energies to a Morse
potential because the irregularities in the PES precluded a direct evaluation.
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to the screening that enters the BSE. Within BSE@
COHSEX@HF and BSE@G0W0@HF, this quantity is
identical because in both cases, it is calculated from the HF
orbitals and energies. However, when one includes self-
consistency, the screening changes and it has a significant
influence on the total energy. We can therefore conclude that
the screened Coulomb potential is the key quantity in the
calculation of correlation energies within the ACFDT@BSE
formalism and ultimately dictates the accuracy of the total
energy. Nevertheless, when screening is completely neglected
in the calculation of the QP energies, for example, in BSE@
HF, this also has a significant influence on the results.
Finally, we note that, although BSE@COHSEX@HF gives

the best PES and BSE@scCOHSEX the best equilibrium
distances, the COHSEX@HF and scCOHSEX IPs and
HOMO−LUMO gaps are not very good. Therefore, it
would be desirable to find an improved static self-energy,
which could give both smooth PES and good QP energies.

4. CONCLUSIONS
We have demonstrated that COHSEX is a promising approach
to obtain QP energies for the calculation of PES. Contrary to
G0W0 and partially self-consistent GW approaches, COHSEX
yields results without irregularities and discontinuities. We
have illustrated this feature by calculating the ground-state PES
of diatomic molecules. Moreover, we have shown that BSE
total energies of diatomic molecules using COHSEX QP
energies obtained perturbatively on top of a HF calculation are
in good agreement with accurate CC results. Finally, we
showed that including self-consistency in the COHSEX
approach for both QP energies and orbitals, in order to
make the results independent of the starting point, worsens the
total energies but improves the equilibrium distances. This is
mainly due to variations in the screening W that enters the
BSE.
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experiment 15.43 7.90 11.30 12.79 15.58 14.01 11.00 15.70

aThe experimental values are extracted from ref 18.

Table 3. HOMO−LUMO Gaps (in eV) at the Equilibrium Distance Obtained in the cc-pVQZ Basis Seta

H2 LiH LiF HCl N2 CO BF F2

HF 20.08 8.08 12.72 15.76 20.95 18.55 13.15 20.80
G0W0@HF 20.24 8.04 11.31 15.20 20.24 17.33 12.90 17.32
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experiment 8.24 16.94

aThe experimental values are extracted from ref 51.
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