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ABSTRACT
By combining density-functional theory (DFT) and wave function theory via the range separation (RS) of the interelectronic Coulomb oper-
ator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. In
particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction known as config-
uration interaction using a perturbative selection made iteratively (CIPSI), a scheme that we label RS-DFT-CIPSI. One of the take-home mes-
sages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant
expansions than CIPSI, especially for small basis sets. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the
short-range part of the correlation hole around the electron–electron coalescence points, the number of determinants in the trial wave
function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Importantly, by
performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mim-
icking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Considering the 55 atomization
energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of μ = 0.5 bohr−1 provides effective error cancel-
lations as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical
systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0026324., s

I. INTRODUCTION
Solving the Schrödinger equation for the ground state of atoms

and molecules is a complex task that has kept theoretical and com-
putational chemists busy for almost a hundred years now.1 In order
to achieve this formidable endeavor, various strategies have been
carefully designed and efficiently implemented in various quantum
chemistry software packages.

A. Wave function-based methods
One of these strategies consists in relying on wave function

theory2 (WFT) and, in particular, on the full configuration

interaction (FCI) method. However, FCI delivers only the exact solu-
tion of the Schrödinger equation within a finite basis (FB) of one-
electron functions, the FB-FCI energy being an upper bound to the
exact energy in accordance with the variational principle. The FB-
FCI wave function and its corresponding energy form the eigenpair
of an approximate Hamiltonian defined as the projection of the exact
Hamiltonian onto the finite many-electron basis of all possible Slater
determinants generated within this finite one-electron basis. The FB-
FCI wave function can then be interpreted as a constrained solution
of the true Hamiltonian forced to span the restricted space provided
by the finite one-electron basis. In the complete basis set (CBS) limit,
the constraint is lifted, and the exact energy and wave function are
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recovered. Hence, the accuracy of a FB-FCI calculation can be sys-
tematically improved by increasing the size of the one-electron basis
set. Nevertheless, the exponential growth of its computational cost
with the number of electrons and with the basis set size is prohibitive
for most chemical systems.

In recent years, the introduction of new algorithms3–11 and the
revival12–27 of selected configuration interaction (SCI) methods28–30

significantly expanded the range of applicability of this family of
methods. Importantly, one can now routinely compute the ground-
and excited-state energies of small- and medium-sized molecular
systems with near-FCI accuracy.31–41 However, although the pref-
actor is reduced, the overall computational scaling remains expo-
nential unless some bias is introduced, leading to a loss of size
consistency.11,32,42,43

B. Density-based methods
Another route to solve the Schrödinger equation is density-

functional theory (DFT).44,45 Present-day DFT calculations are
almost exclusively done within the so-called Kohn–Sham (KS) for-
malism,46 which transfers the complexity of the many-body problem
to the universal and yet unknown exchange–correlation (xc) func-
tional, thanks to a judicious mapping between a non-interacting ref-
erence system and its interacting analog, which both have the same
one-electron density. KS-DFT44,46 is now the workhorse of elec-
tronic structure calculations for atoms, molecules, and solids, thanks
to its very favorable accuracy/cost ratio.47 As compared to WFT,
DFT has the indisputable advantage of converging much faster with
respect to the size of the basis set.48–51 However, unlike WFT where,
for example, many-body perturbation theory provides a precious
tool to go toward the exact wave function, there is no systematic
way to improve approximate xc functionals toward the exact func-
tional. Therefore, one faces, in practice, the unsettling choice of the
approximate xc functional.52 Moreover, because of the approximate
nature of the xc functional, although the resolution of the KS equa-
tions is variational, the resulting KS energy does not have such a
property.

C. Stochastic methods
Diffusion Monte Carlo (DMC) belongs to the family of stochas-

tic methods known as quantum Monte Carlo (QMC) and is yet
another numerical scheme to obtain the exact solution of the
Schrödinger equation with a different twist.53–55 In DMC, the solu-
tion is imposed to have the same nodes (or zeroes) as a given
(approximate) antisymmetric trial wave function.56,57 Within this
so-called fixed-node (FN) approximation, the FN-DMC energy
associated with a given trial wave function is an upper bound to
the exact energy, and the latter is recovered only when the nodes of
the trial wave function coincide with the nodes of the exact wave
function. The trial wave function, which can be single- or multi-
determinantal in nature depending on the type of correlation at play
and the target accuracy, is the key ingredient dictating, via the qual-
ity of its nodal surface, the accuracy of the resulting energy and
properties.

The polynomial scaling of its computational cost with respect
to the number of electrons and with the size of the trial wave
function makes the FN-DMC method particularly attractive. This

favorable scaling, its very low memory requirements, and its ade-
quacy with massively parallel architectures make it a serious alterna-
tive for high-accuracy simulations of large systems.55,58–61 In addi-
tion, the total energies obtained are usually far below those obtained
with the FCI method in computationally tractable basis sets because
the constraints imposed by the fixed-node approximation are less
severe than the constraints imposed by the finite-basis approxima-
tion. However, because it is not possible to directly minimize the
FN-DMC energy with respect to the linear and non-linear parame-
ters of the trial wave function, the fixed-node approximation is much
more difficult to control than the finite-basis approximation, espe-
cially to compute energy differences. The conventional approach
consists of multiplying the determinantal part of the trial wave func-
tion by a positive function, the Jastrow factor, in which the main
assignment is to take into account the bulk of the dynamical elec-
tron correlation and reduce the statistical fluctuations without alter-
ing the location of the nodes. The determinantal part of the trial
wave function is then stochastically re-optimized within variational
Monte Carlo (VMC) in the presence of the Jastrow factor (which can
also be simultaneously optimized), and the nodal surface is expected
to be improved.62–66 Using this technique, it has been shown that the
chemical accuracy could be reached within FN-DMC.67

D. Single-determinant trial wave functions
The qualitative picture of the electronic structure of weakly cor-

related systems, such as organic molecules near their equilibrium
geometry, is usually well represented with a single Slater determi-
nant. This feature is, in part, responsible for the success of DFT
and coupled cluster (CC) theory. Likewise, DMC with a single-
determinant trial wave function can be used as a single-reference
post-Hartree–Fock (HF) method for weakly correlated systems, with
an accuracy comparable to Coupled cluster with singles, doubles,
and perturbative triples [CCSD(T)],68,69 the gold standard of WFT
for ground state energies.70,71 In single-determinant DMC calcula-
tions, the only degree of freedom available to reduce the fixed-node
error is the molecular orbitals with which the Slater determinant
is built. Different molecular orbitals can be chosen: Hartree–Fock
(HF), Kohn–Sham (KS), natural orbitals (NOs) of a correlated wave
function, or orbitals optimized in the presence of a Jastrow factor.
Nodal surfaces obtained with a KS determinant are, in general, bet-
ter than those obtained with a HF determinant72 and of comparable
quality to those obtained with a Slater determinant built with NOs.73

Orbitals obtained in the presence of a Jastrow factor are generally
superior to KS orbitals.63,74–76

The description of electron correlation within DFT is very dif-
ferent from correlated methods such as FCI or CC. As mentioned
above, within KS-DFT, one solves a mean-field problem with a
modified potential incorporating the effects of electron correlation
while maintaining the exact ground state density, whereas in cor-
related methods, the real Hamiltonian is used, and the electron–
electron interaction is explicitly considered. Nevertheless, as the
orbitals are one-electron functions, the procedure of orbital opti-
mization in the presence of a Jastrow factor can be interpreted as a
self-consistent field procedure with an effective Hamiltonian,74 sim-
ilarly to DFT. So KS-DFT can be viewed as a very cheap way of
introducing the effect of correlation in the orbital coefficients dic-
tating the location of the nodes of a single Slater determinant. Yet,
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even when employing the exact xc potential in a complete basis set, a
fixed-node error necessarily remains because the single-determinant
ansatz does not have enough flexibility for describing the nodal
surface of the exact correlated wave function for a generic many-
electron system.57,77,78 If one wants to recover the exact energy, a
multi-determinant parameterization of the wave functions must be
considered.

E. Multi-determinant trial wave functions
The single-determinant trial wave function approach obviously

fails in the presence of strong correlation, like in transition metal
complexes, low-spin open-shell systems, and covalent bond break-
ing situations, which cannot be qualitatively described by a single
electronic configuration. In such cases or when very high accuracy
is required, a viable alternative is to consider the FN-DMC method
as a “post-FCI” method. A multi-determinant trial wave function
is then produced by approaching FCI with a SCI method such as
configuration interaction using a perturbative selection made itera-
tively (CIPSI).15,79,80 When the basis set is enlarged, the trial wave
function gets closer to the exact wave function, so we expect the
nodal surface to be improved.81 Note that, as discussed in Ref. 80,
there is no mathematical guarantee that increasing the size of the
one-electron basis lowers the FN-DMC energy because the vari-
ational principle does not explicitly optimize the nodal surface
or the FN-DMC energy. However, in all applications performed
so far,15,79,81–86 a systematic decrease in the FN-DMC energy has
been observed whenever the SCI trial wave function is improved
variationally upon enlargement of the basis set.

The technique relying on CIPSI multi-determinant trial wave
functions described above has the advantage of using near-FCI
quality nodes in a given basis set, which is perfectly well defined
and therefore makes the calculations systematically improvable and
reproducible in a black-box way without needing any QMC exper-
tise. Nevertheless, this procedure cannot be applied to large systems
because of the exponential growth of the number of Slater determi-
nants in the trial wave function. Extrapolation techniques have been
employed to estimate the FN-DMC energies obtained with FCI wave
functions,84–86 and other authors have used a combination of the two
approaches where highly truncated CIPSI trial wave functions are
stochastically re-optimized in VMC under the presence of a Jastrow
factor to keep the number of determinants small87 and where the
consistency between the different wave functions is kept by impos-
ing a constant energy difference between the estimated FCI energy
and the variational energy of the SCI wave function.88,89 Neverthe-
less, finding a robust protocol to obtain high accuracy calculations
that can be reproduced systematically and applicable to large sys-
tems with a multi-configurational character is still an active field of
research. The present paper falls within this context.

The central idea of the present work, and the launch pad for
the remainder of this study, is that one can combine the various
strengths of WFT, DFT, and QMC in order to create a new hybrid
method with more attractive features and higher accuracy. In partic-
ular, we show here that one can combine CIPSI and KS-DFT via the
range separation (RS) of the interelectronic Coulomb operator90,91—
a scheme that we label RS-DFT-CIPSI in the following—to obtain
accurate FN-DMC energies with compact multi-determinant trial
wave functions. An important take-home message from the present

study is that the RS-DFT scheme essentially plays the role of a simple
Jastrow factor by mimicking short-range correlation effects. Thanks
to this, RS-DFT-CIPSI multi-determinant trial wave functions yield
lower fixed-node energies with more compact multi-determinant
expansion than CIPSI, especially for small basis sets, and can be pro-
duced in a completely deterministic and systematic way, without the
burden of the stochastic optimization.

The present manuscript is organized as follows. In Sec. II, we
provide theoretical details about the CIPSI algorithm (Sec. II A)
and range-separated DFT (Sec. II B). Computational details are
reported in Sec. III. In Sec. IV, we discuss the influence of the
range-separation parameter on the fixed-node error as well as the
link between RS-DFT and Jastrow factors. Section V examines the
performance of the present scheme for the atomization energies of
the Gaussian-1 set of molecules. Finally, we draw our conclusion in
Sec. VI. Unless otherwise stated, atomic units are used.

II. THEORY
A. The CIPSI algorithm

Beyond the single-determinant representation, the best multi-
determinant wave function one can wish for—in a given basis set—is
the FCI wave function. FCI is the ultimate goal of post-HF methods,
and there exist several systematic improvements on the path from
HF to FCI: (i) increasing the maximum degree of excitation of CI
methods (CISD, CISDT, CISDTQ, . . .) or (ii) expanding the size of
a complete active space (CAS) wave function until all the orbitals
are in the active space. SCI methods take a shortcut between the
HF determinant and the FCI wave function by iteratively increas-
ing the number of determinants on which the wave function is
expanded, selecting the determinants that are expected to contribute
the most to the FCI wave function. At each iteration, the lowest
eigenpair is extracted from the CI matrix expressed in the deter-
minant subspace, and the FCI energy can be estimated by adding
up to the variational energy a second-order perturbative correction
(PT2), EPT2. The magnitude of EPT2 is a measure of the distance to
the FCI energy and a diagnostic of the quality of the wave function.
Within the CIPSI algorithm originally developed by Huron et al.
in Ref. 29 and efficiently implemented in Quantum Package as
described in Ref. 92, the PT2 correction is computed simultaneously
to the determinant selection at no extra cost. EPT2 is then the sole
parameter of the CIPSI algorithm and is chosen to be its convergence
criterion.

B. Range-separated DFT
Range-separated DFT (RS-DFT) was introduced in the seminal

work of Savin.90,91 In RS-DFT, the Coulomb operator entering the
electron–electron repulsion is split into two pieces as follows:

1
r
= wsr,μ

ee (r) + w
lr,μ
ee (r), (1)

where

w
sr,μ
ee (r) =

erfc(μ r)
r

, w
lr,μ
ee (r) =

erf(μ r)
r

(2)

J. Chem. Phys. 153, 174107 (2020); doi: 10.1063/5.0026324 153, 174107-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

are the singular short-range (sr) part and the non-singular long-
range (lr) part, respectively, μ is the range-separation parameter,
which controls how rapidly the short-range part decays, erf(x) is the
error function, and erfc(x) = 1 − erf(x) is its complementary version.

The main idea behind RS-DFT is to treat the short-range part
of the interaction using a density functional and the long-range part
within a WFT method such as FCI in the present case. The param-
eter μ controls the range of the separation and allows us to go con-
tinuously from the KS Hamiltonian (μ = 0) to the FCI Hamiltonian
(μ =∞).

To rigorously connect WFT and DFT, the universal Levy–Lieb
density functional93,94 is decomposed as

F [n] = F lr,μ
[n] + Ēsr,μ

Hxc[n], (3)

where n is a one-electron density, Flr,μ is a long-range univer-
sal density functional, and Ēsr,μ

Hxc is the complementary short-range
Hartree-exchange–correlation (Hxc) density functional.91,95 The
exact ground state energy can be therefore obtained as a minimiza-
tion over a multi-determinant wave function as follows:

E0 = min
Ψ
{⟨Ψ∣T̂ + Ŵ lr,μ

ee + V̂ne∣Ψ ⟩ + Ēsr,μ
Hxc[nΨ]}, (4)

with T̂ being the kinetic energy operator, Ŵ lr,μ
ee being the long-

range electron–electron interaction, nΨ being the one-electron

density associated with Ψ, and V̂ne being the electron–nucleus
potential. The minimizing multi-determinant wave function Ψμ can
be determined by the self-consistent eigenvalue equation

Ĥμ
[nΨμ]∣Ψμ

⟩ = Eμ∣Ψμ
⟩, (5)

with the long-range interacting Hamiltonian being

Ĥμ
[nΨμ] = T̂ + Ŵ lr,μ

ee + V̂ne + ˆ̄Vsr,μ
Hxc[nΨμ], (6)

where ˆ̄Vsr,μ
Hxc is the complementary short-range Hartree-exchange–

correlation potential operator. Once Ψμ has been calculated, the
electronic ground-state energy is obtained as

E0 = ⟨Ψμ
∣T̂ + Ŵ lr,μ

ee + V̂ne∣Ψμ
⟩ + Ēsr,μ

Hxc[nΨμ]. (7)

Note that for μ = 0, the long-range interaction vanishes, i.e.,
w

lr,μ=0
ee (r) = 0, and thus, RS-DFT reduces to standard KS-DFT, and

Ψμ is the KS determinant. For μ = ∞, the long-range interaction
becomes the standard Coulomb interaction, i.e., wlr,μ→∞

ee (r) = r−1,
and thus, RS-DFT reduces to standard WFT, and Ψμ is the FCI wave
function.

Hence, range separation creates a continuous path connecting
smoothly the KS determinant to the FCI wave function. Because the

FIG. 1. Algorithm showing the generation
of the RS-DFT wave function Ψμ start-
ing from Ψ(0). The outer (macro-iteration)
and inner (micro-iteration) loops are rep-
resented in red and blue, respectively.
The steps common to both loops are
represented in purple. Direct inversion
in the iterative subspace (DIIS) extrap-
olations of the one-electron density are
introduced in both the outer and inner
loops in order to speed up convergence
of the self-consistent process.
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KS nodes are of higher quality than the HF nodes (see Sec. I D),
we expect that using wave functions built along this path will
always provide reduced fixed-node errors compared to the path
connecting HF to FCI, which consists in increasing the number of
determinants.

We follow the KS-to-FCI path by performing FCI calculations
using the RS-DFT Hamiltonian with different values of μ. Our algo-
rithm, depicted in Fig. 1, starts with a single- or multi-determinant
wave function Ψ(0), which can be obtained in many different ways
depending on the system that one considers. One of the particulari-
ties of the present work is that we use the CIPSI algorithm to perform
approximate FCI calculations with the RS-DFT Hamiltonian Ĥμ.49

This provides a multi-determinant trial wave function Ψμ that one
can “feed” to DMC. In the outer (macro-iteration) loop (red), at the
kth iteration, a CIPSI selection is performed to obtain Ψμ(k) with the
RS-DFT Hamiltonian Ĥμ (k) parameterized using the current one-
electron density n(k). At each iteration, the number of determinants
in Ψμ(k) increases. One exits the outer loop when the absolute energy
difference between two successive macro-iterations ΔE(k) is below
a threshold τ1 that has been set to 10−3 Eh in the present study
and that is consistent with the CIPSI threshold (see Sec. III). An
inner (micro-iteration) loop (blue) is introduced to accelerate the
convergence of the self-consistent calculation, in which the set of
determinants in Ψμ(k , l) is kept fixed, and only the diagonalization of
Ĥμ (k,l) is performed iteratively with the updated density n(k , l). The
inner loop is exited when the absolute energy difference between
two successive micro-iterations ΔE(k , l) is below a threshold τ2 that
has been here set to 10−2

× τ1. The convergence of the algorithm
was further improved by introducing a direct inversion in the iter-
ative subspace (DIIS) step to extrapolate the one-electron density
both in the outer and inner loops.96,97 We emphasize that any range-
separated post-HF method can be implemented using this scheme
by just replacing the CIPSI step by the post-HF method of inter-
est. Note that, thanks to the self-consistent nature of the algorithm,
the final trial wave function Ψμ is independent of the starting wave
function Ψ(0).

III. COMPUTATIONAL DETAILS
All reference data (geometries, atomization energies, zero-

point energy, etc.) were taken from the NIST computational chem-
istry comparison and benchmark database (CCCBDB).98 In the ref-
erence atomization energies, the zero-point vibrational energy was
removed from the experimental atomization energies.

All calculations have been performed using Burkatzki–Filippi–
Dolg (BFD) pseudopotentials99,100 with the associated double-,
triple-, and quadruple-ζ basis sets (VXZ-BFD). The small-core BFD
pseudopotentials include scalar relativistic effects. Coupled cluster
with singles, doubles, and perturbative triples [CCSD(T)]101,102 and
KS-DFT energies have been computed with Gaussian09103 using the
unrestricted formalism for open-shell systems.

The CIPSI calculations have been performed with Quantum
Package.92,104 We consider the short-range version of the local-
density approximation (LDA)90,105 and Perdew–Burke–Ernzerhof
(PBE)106 xc functionals defined in Ref. 107 (see also Refs. 108 and
109) that we label srLDA and srPBE, respectively, in the following.

In this work, we target chemical accuracy, so the convergence crite-
rion for stopping the CIPSI calculations has been set to EPT2 < 10−3

Eh or Ndet > 107. All the wave functions are eigenfunctions of the Ŝ2

spin operator, as described in Ref. 110.
QMC calculations have been performed with QMC = Chem,59

in the determinant localization approximation (DLA),111 where only
the determinantal component of the trial wave function is present in
the expression of the wave function on which the pseudopotential is
localized. Hence, in the DLA, the fixed-node energy is independent
of the Jastrow factor, as in all-electron calculations. Simple Jastrow
factors were used to reduce the fluctuations of the local energy (see
Sec. IV B for their explicit expression). The FN-DMC simulations
are performed with all-electron moves using the stochastic reconfig-
uration algorithm developed by Assaraf et al.112 with a time step of
5 × 10−4 a.u., independent populations of 100 walkers, and a pro-
jecting time of 1 a.u. With such parameters, both the time-step error
and the bias due to the finite projecting time are smaller than the
error bars.

All the data related to the present study (geometries, basis sets,
total energies, etc.) can be found in the supplementary material.

IV. INFLUENCE OF THE RANGE-SEPARATION
PARAMETER ON THE FIXED-NODE ERROR

The first question we would like to address is the quality of
the nodes of the wave function Ψμ obtained for intermediate val-
ues of the range separation parameter (i.e., 0 < μ < +∞). For this
purpose, we consider a weakly correlated molecular system, namely,
the water molecule at its experimental geometry.81 We then gener-
ate trial wave functions Ψμ for multiple values of μ and compute the
associated FN-DMC energy keeping fixed all the parameters impact-
ing the nodal surface, such as the CI coefficients and the molecular
orbitals.

A. Fixed-node energy of RS-DFT-CIPSI trial wave
functions

From Table I and Fig. 2, where we report the fixed-node energy
of H2O as a function of μ for various short-range density function-
als and basis sets, one can clearly observe that relying on FCI trial
wave functions (μ =∞) give FN-DMC energies lower than the ener-
gies obtained with a single KS determinant (μ = 0): a lowering of
3.2 ± 0.6 mEh at the double-ζ level and 7.2 ± 0.3 mEh at the triple-ζ
level are obtained with the srPBE functional. Coming now to the
nodes of the trial wave function Ψμ with intermediate values of
μ, Fig. 2 shows that a smooth behavior is obtained: starting from
μ = 0 (i.e., the KS determinant), the FN-DMC error is reduced con-
tinuously until it reaches a minimum for an optimal value of μ
(which is obviously basis set and functional dependent), and then,
the FN-DMC error raises until it reaches the μ = ∞ limit (i.e., the
FCI wave function). For instance, with respect to the fixed-node
energy associated with the RS-DFT-CIPSI(srPBE/VDZ-BFD) trial
wave function at μ =∞, one can obtain a lowering of the FN-DMC
energy of 2.6 ± 0.7 mEh with an optimal value of μ = 1.75 bohrs−1.
This lowering in FN-DMC energy is to be compared with the
3.2 ± 0.7 mEh gain in FN-DMC energy between the KS wave func-
tion (μ = 0) and the FCI wave function (μ =∞). When the basis set
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TABLE I. FN-DMC energy EFN-DMC (in Eh) and number of determinants Ndet in H2O
for various trial wave functions Ψμ obtained with the srPBE density functional.

VDZ-BFD VTZ-BFD

μ Ndet EFN-DMC Ndet EFN-DMC

0.00 11 −17.253 59(6) 23 −17.256 74(7)
0.20 23 −17.253 73(7) 23 −17.256 73(8)
0.30 53 −17.253 4(2) 219 −17.253 7(5)
0.50 1 442 −17.253 9(2) 16 99 −17.257 7(2)
0.75 3 213 −17.255 1(2) 13 362 −17.258 4(3)
1.00 6 743 −17.256 6(2) 25 673 −17.261 0(2)
1.75 54 540 −17.259 5(3) 207 475 −17.263 5(2)
2.50 51 691 −17.259 4(3) 858 123 −17.264 3(3)
3.80 103 059 −17.258 7(3) 1 621 513 −17.263 7(3)
5.70 102 599 −17.257 7(3) 1 629 655 −17.263 2(3)
8.50 101 803 −17.257 3(3) 1 643 301 −17.263 3(4)
∞ 200 521 −17.256 8(6) 1 631 982 −17.263 9(3)

is improved, the gain in FN-DMC energy with respect to the FCI
trial wave function is reduced, and the optimal value of μ is slightly
shifted toward large μ as expected. Last but not least, the nodes of
the wave functions Ψμ obtained with the srLDA functional give very
similar FN-DMC energies with respect to those obtained with srPBE,
even if the RS-DFT energies obtained with these two functionals dif-
fer by several tens of mEh. Accordingly, all the RS-DFT calculations
are performed with the srPBE functional in the remaining of this
paper.

Another important aspect here is the compactness of the trial
wave functions Ψμ: at μ = 1.75 bohrs−1, Ψμ has only 54 540 determi-
nants at the RS-DFT-CIPSI(srPBE/VDZ-BFD) level, while the FCI
wave function contains 200 521 determinants (see Table I). Even at
the RS-DFT-CIPSI(srPBE/VTZ-BFD) level, we observe a reduction
by a factor two in the number of determinants between the optimal
μ value and μ = ∞. The take-home message of this first numerical
study is that RS-DFT-CIPSI trial wave functions can yield a lower

FIG. 2. FN-DMC energy of H2O as a function of μ for various trial wave func-
tions Ψμ generated at different levels of theory. The raw data can be found in the
supplementary material.

fixed-node energy with more compact multi-determinant expansion
as compared to FCI. This is a key result of the present study.

B. RS-DFT vs Jastrow factor
The data presented in Sec. IV A evidence that in a finite basis,

RS-DFT can provide trial wave functions with better nodes than
FCI wave functions. As mentioned in Sec. I D, such behavior can
be directly compared to the common practice of re-optimizing the
multi-determinant part of a trial wave function Ψ (the so-called
Slater part) in the presence of the exponentiated Jastrow factor
eJ .62–66 Hence, in the present paragraph, we would like to elaborate
further on the link between RS-DFT and wave function optimiza-
tion in the presence of a Jastrow factor. For the sake of simplicity,
the molecular orbitals and the Jastrow factor are kept fixed; only the
CI coefficients are varied.

Let us then assume a fixed Jastrow factor J(r1, . . . , rN) (where
ri is the position of the ith electron and N the total number of elec-
trons) and a corresponding Slater–Jastrow wave function Φ = eJΨ,
where

Ψ =∑
I

cIDI (8)

is a general linear combination of (fixed) Slater determinants DI .
The only variational parameters in Φ are therefore the coefficients
cI belonging to the Slater part Ψ. Let us define ΨJ as the linear com-
bination of Slater determinants minimizing the variational energy
associated with Φ, i.e.,

ΨJ
= arg min

Ψ

⟨Ψ∣eJĤeJ
∣Ψ⟩

⟨Ψ∣e2J ∣Ψ⟩
. (9)

Such a wave function satisfies the generalized Hermitian eigenvalue
equation

eJĤ(eJΨJ
) = E e2JΨJ (10)

and also the non-Hermitian transcorrelated eigenvalue prob-
lem113–119

e−JĤ(eJΨJ
) = EΨJ , (11)

which is much easier to handle despite its non-Hermiticity. Of
course, the FN-DMC energy of Φ depends only on the nodes of ΨJ

as the positivity of the Jastrow factor makes sure that it does not
alter the nodal surface. In a finite basis set and with an accurate Jas-
trow factor, it is known that the nodes of ΨJ may be better than the
nodes of the FCI wave function. Hence, we would like to compare ΨJ

and Ψμ.
To do so, we have made the following numerical experiment.

First, we extract the 200 determinants with the largest weights in the
FCI wave function out of a large CIPSI calculation obtained with
the VDZ-BFD basis. Within this set of determinants, we solve the
self-consistent equations of RS-DFT [see Eq. (5)] for different val-
ues of μ using the srPBE functional. This gives the CI expansions of
Ψμ. Then, within the same set of determinants, we optimize the CI
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coefficients in the presence of a simple one- and two-body Jastrow
factor eJ with J = JeN + Jee and

JeN = −
M

∑
A=1

N

∑
i=1
(

αA riA

1 + αA riA
)

2
, (12a)

Jee =
N

∑
i<j

a rij

1 + b rij
. (12b)

The one-body Jastrow factor JeN contains the electron–nucleus
terms (where M is the number of nuclei) with a single parameter αA
per nucleus. The two-body Jastrow factor Jee gathers the electron–
electron terms where the sum over i < j loops over all unique electron
pairs. In Eqs. (12a) and (12b), riA is the distance between the ith elec-
tron and the Ath nucleus, while rij is the inter-electronic distance
between electrons i and j. The parameters a = 1/2 and b = 0.89 were
fixed, and the parameters γO = 1.15 and γH = 0.35 were obtained by
energy minimization of a single determinant. The optimal CI expan-
sion ΨJ is obtained by sampling the matrix elements of the Hamilto-
nian (H) and overlap (S) matrices in the basis of Jastrow-correlated
determinants eJDi,

Hij = ⟨
eJDi

ΨJ

Ĥ (eJDj)

ΨJ ⟩, (13a)

Sij = ⟨
eJDi

ΨJ

eJDj

ΨJ ⟩, (13b)

and solving Eq. (10).120

We can easily compare Ψμ and ΨJ as they are developed on the
same set of Slater determinants. In Fig. 3, we plot the overlap ⟨ΨJ

∣Ψμ
⟩

obtained for water as a function of μ (left graph) as well as the FN-
DMC energy of the wave function Ψμ as a function of μ together with
that of ΨJ (right graph).

As evidenced by Fig. 3, there is a clear maximum overlap
between the two trial wave functions at μ = 1 bohr−1, which

coincides with the minimum of the FN-DMC energy of Ψμ. In addi-
ton, it is interesting to note that the FN-DMC energy of ΨJ is com-
patible with that of Ψμ for 0.5 < μ < 1 bohr−1, as shown by the
overlap between the red and blue bands. This confirms that intro-
ducing short-range correlation with DFT has an impact on the CI
coefficients similar to a Jastrow factor. This is another key result of
the present study.

In order to refine the comparison between Ψμ and ΨJ , we report
several quantities related to the one- and two-body densities of ΨJ

and Ψμ with different values of μ. First, we report in the legend of
the right panel of Fig. 4 the integrated on-top pair density,

⟨P⟩ = ∫ drn2(r, r), (14)

obtained for both Ψμ and ΨJ , where n2(r1, r2) is the two-body den-
sity [normalized to N(N − 1)]. Then, in order to have a pictorial
representation of both the one-body density n(r) and the on-top pair
density n2(r, r), we report in Fig. 4 the plots of n(r) and n2(r, r) along
one of the O–H axis of the water molecule.

From these data, one can clearly notice several trends. First,
the integrated on-top pair density ⟨P⟩ decreases when μ increases,
which is expected as the two-electron interaction increases in Hμ[n].
Second, Fig. 4 shows that the relative variations of the on-top pair
density with respect to μ are much more important than that of
the one-body density, the latter being essentially unchanged between
μ = 0 and μ =∞, while the former can vary by about 10% in some
regions. In the high-density region of the O–H bond, the value of the
on-top pair density obtained from ΨJ is superimposed with Ψμ=0.5,
and at a large distance, the on-top pair density of ΨJ is the closest to
that of Ψμ=∞. The integrated on-top pair density obtained with ΨJ

is ⟨P⟩ = 1.404, which nestles between the values obtained at μ = 0.5
and μ = 1 bohr−1, consistently with the FN-DMC energies and the
overlap curve depicted in Fig. 3.

These data suggest that the wave functions Ψ0.5≤μ≤1 and ΨJ

are close and therefore that the operators that produced these
wave functions (i.e., Hμ[n] and e−JHeJ) contain similar physics.

FIG. 3. Left: Overlap between Ψμ and ΨJ as a function of μ for H2O. Right: FN-DMC energy of Ψμ (red curve) as a function of μ, together with the FN-DMC energy of
ΨJ (blue line) for H2O. The width of the lines represents the statistical error bars. For these two trial wave functions, the CI expansion consists of the 200 most important
determinants of the FCI expansion obtained with the VDZ-BFD basis (see Sec. IV B for more details). The raw data can be found in the supplementary material.
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FIG. 4. One-electron density n(r) (left) and on-top pair density n2(r, r) (right) along the O–H axis of H2O as a function of μ for Ψμ and ΨJ (dashed curve). The integrated
on-top pair density ⟨P⟩ is given in the legend. For all trial wave functions, the CI expansion consists of the 200 most important determinants of the FCI expansion obtained
with the VDZ-BFD basis (see Sec. IV B for more details). The raw data can be found in the supplementary material.

Considering the form of Ĥμ
[n] [see Eq. (6)], one can notice that the

differences with respect to the usual bare Hamiltonian come from
the non-divergent two-body interaction Ŵ lr,μ

ee and the effective one-
body potential ˆ̄Vsr,μ

Hxc[n], which is the functional derivative of the Hxc
functional. The roles of these two terms are therefore very different:
with respect to the exact ground-state wave function Ψ, the non-
divergent two-body interaction increases the probability of find-
ing electrons at short distances in Ψμ, while the effective one-body
potential ˆ̄Vsr,μ

Hxc[nΨμ], providing that it is exact, maintains the exact
one-body density. This is clearly what has been observed in Fig. 4.
Regarding now the trans-correlated Hamiltonian e−JHeJ , as pointed
out by Ten-no,116 the effective two-body interaction induced by the
presence of a Jastrow factor can be non-divergent when a proper
two-body Jastrow factor Jee is chosen, i.e., the Jastrow factor must
fulfill the so-called electron-electron cusp conditions.121,122 There
is therefore a clear parallel between Ŵ lr,μ

ee in RS-DFT and Jee in
FN-DMC. Moreover, the one-body Jastrow term JeN ensures that
the one-body density remains unchanged when the CI coefficients
are re-optimized in the presence of Jee. There is then a second clear
parallel between ˆ̄Vsr,μ

Hxc[n] in RS-DFT and JeN in FN-DMC. Thus,
one can understand the similarity between the eigenfunctions of Hμ

and the optimization of the Slater–Jastrow wave function: they both
deal with an effective non-divergent interaction but still produce a
reasonable one-body density.

C. Intermediate conclusions
As conclusions of the first part of this study, we can highlight

the following observations:

● With respect to the nodes of a KS determinant or a FCI wave
function, one can obtain a multi-determinant trial wave
function Ψμ with a smaller fixed-node error by properly
choosing an optimal value of μ.

● The optimal μ value is system- and basis-set-dependent, and
it grows with the basis set size.

● Numerical experiments (overlap ⟨Ψμ
∣ΨJ
⟩, one-body density,

on-top pair density, and FN-DMC energy) indicate that the
RS-DFT scheme essentially plays the role of a simple Jastrow
factor by mimicking short-range correlation effects. This lat-
ter statement can be qualitatively understood by noticing
that both RS-DFT and the trans-correlated approach deal
with an effective non-divergent electron–electron interac-
tion, while keeping the density constant.

V. ENERGY DIFFERENCES IN FN-DMC: ATOMIZATION
ENERGIES

Atomization energies are challenging for post-HF methods
because their calculation requires a subtle balance in the descrip-
tion of atoms and molecules. The mainstream one-electron basis sets
employed in molecular electronic structure calculations are atom-
centered, so they are, by construction, better adapted to atoms than
molecules. Thus, atomization energies usually tend to be underes-
timated by variational methods. In the context of FN-DMC calcu-
lations, the nodal surface is imposed by the determinantal part of
the trial wave function, which is expanded in the very same atom-
centered basis set. Thus, we expect the fixed-node error to be also
intimately connected to the basis set incompleteness error. Increas-
ing the size of the basis set improves the description of the density
and the electron correlation but also reduces the imbalance in the
description of atoms and molecules, leading to more accurate atom-
ization energies. The size-consistency and the spin-invariance of the
present scheme, two key properties to obtain accurate atomization
energies, are discussed in Appendixes A and B, respectively.

The atomization energies of the 55 molecules of the Gaussian-1
theory123,124 were chosen as a benchmark set to test the performance
of the RS-DFT-CIPSI trial wave functions in the context of energy
differences. Calculations were made in the double-, triple-, and
quadruple-ζ basis sets with different values of μ and using NOs from
a preliminary CIPSI calculation as a starting point (see Fig. 1).125 For
comparison, we have computed the energies of all the atoms and
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molecules at the KS-DFT level with various semi-local and hybrid
density functionals (PBE,106 BLYP,126,127 PBE0,128 and B3LYP129),
and at the CCSD(T) level.70,71,101,102 Table II gives the correspond-
ing mean absolute errors (MAEs), mean signed errors (MSEs), and
root mean square errors (RMSEs) with respect to the NIST ref-
erence values, as explained in Sec. III. For FCI (RS-DFT-CIPSI,
μ = ∞), we have provided the extrapolated values (i.e., when EPT2
→ 0), and although one cannot provide theoretically sound error
bars, they correspond here to the difference between the extrapo-
lated energies computed with a two-point and a three-point linear
extrapolation.36–39

In this benchmark, the great majority of the systems are weakly
correlated and are then well described by a single determinant.
Therefore, the atomization energies calculated at the KS-DFT level
are relatively accurate, even when the basis set is small. The introduc-
tion of exact exchange (B3LYP and PBE0) makes the results more
sensitive to the basis set and reduces the accuracy. Note that due to
the approximate nature of the xc functionals, the statistical quanti-
ties associated with KS-DFT atomization energies do not converge
toward zero and remain altered even in the CBS limit. Thanks to
the single-reference character of these systems, the CCSD(T) energy
is an excellent estimate of the FCI energy, as shown by the very
good agreement of the MAE, MSE, and RMSE of CCSD(T) and
FCI energies for each basis set. The imbalance in the description
of molecules compared to atoms is exhibited by a very negative
value of the MSE for CCSD(T)/VDZ-BFD (−23.96 kcal/mol) and

FCI/VDZ-BFD (−23.49 ± 0.04 kcal/mol), which is reduced by a fac-
tor of two when going to the triple-ζ basis and again by a factor of
two when going to the quadruple-ζ basis.

This significant imbalance at the VDZ-BFD level affects the
nodal surfaces because although the FN-DMC energies obtained
with near-FCI trial wave functions are much lower than the
FN-DMC energies at μ = 0, the MAE obtained with FCI (7.38 ± 1.08
kcal/mol) is larger than the MAE at μ = 0 (4.61 ± 0.34 kcal/mol).
Using the FCI trial wave function, the MSE is equal to the negative
MAE, which confirms that the atomization energies are systemat-
ically underestimated. This corroborates that some of the basis set
incompleteness error is transferred in the fixed-node error.

Within the double-ζ basis set, the calculations could be per-
formed for the whole range of values of μ, and the optimal value
of μ for the trial wave function was estimated for each system by
searching for the minimum of the spline interpolation curve of the
FN-DMC energy as a function of μ. This corresponds to the line
labeled “Opt.” in Table II. The optimal μ value for each system is
reported in the supplementary material. Using the optimal value of
μ clearly improves the MAEs, MSEs, and RMSEs as compared to the
FCI wave function. This result is in line with the common knowl-
edge that re-optimizing the determinantal component of the trial
wave function in the presence of electron correlation reduces the
errors due to the basis set incompleteness. These calculations were
done only for the smallest basis set because of the expensive compu-
tational cost of the QMC calculations when the trial wave function

TABLE II. Mean absolute errors (MAEs), mean signed errors (MSEs), and root mean square errors (RMSEs) with respect to the NIST reference values obtained with various
methods and basis sets. All quantities are given in kcal/mol. The raw data can be found in the supplementary material.

VDZ-BFD VTZ-BFD VQZ-BFD

Method μ MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

PBE 0 5.02 −3.70 6.04 4.57 1.00 5.32 5.31 0.79 6.27
BLYP 0 9.53 −9.21 7.91 5.58 −4.44 5.80 5.86 −4.47 6.43
PBE0 0 11.20 −10.98 8.68 6.40 −5.78 5.49 6.28 −5.65 5.08
B3LYP 0 11.27 −10.98 9.59 7.27 −5.77 6.63 6.75 −5.53 6.09

CCSD(T) ∞ 24.10 −23.96 13.03 9.11 −9.10 5.55 4.52 −4.38 3.60

RS-DFT-CIPSI 0 4.53 −1.66 5.91 6.31 0.91 7.93 6.35 3.88 7.20
1/4 5.55 −4.66 5.52 4.58 1.06 5.72 5.48 1.52 6.93
1/2 13.42 −13.27 7.36 6.77 −6.71 4.56 6.35 −5.89 5.18
1 17.07 −16.92 9.83 9.06 −9.06 5.88
2 19.20 −19.05 10.91
5 22.93 −22.79 13.24
∞ 23.63(4) −23.49(4) 12.81(4) 8.43(39) −8.43(39) 4.87(7) 4.51(78) −4.18(78) 4.19(20)

DMC@ 0 4.61(34) −3.62(34) 5.30(09) 3.52(19) −1.03(19) 4.39(04) 3.16(26) −0.12(26) 4.12(03)
RS-DFT-CIPSI 1/4 4.04(37) −3.13(37) 4.88(10) 3.39(77) −0.59(77) 4.44(34) 2.90(25) 0.25(25) 3.745(5)

1/2 3.74(35) −3.53(35) 4.03(23) 2.46(18) −1.72(18) 3.02(06) 2.06(35) −0.44(35) 2.74(13)
1 5.42(29) −5.14(29) 4.55(03) 4.38(94) −4.24(94) 5.11(31)
2 5.98(83) −5.91(83) 4.79(71)
5 6.18(84) −6.13(84) 4.87(55)
∞ 7.38(1.08) −7.38(1.08) 5.67(68)

Opt. 5.85(1.75) −5.63(1.75) 4.79(1.11)
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FIG. 5. Errors in the FN-DMC atomization energies (in kcal/mol) for various trial wave functions Ψμ and basis sets. Each dot corresponds to an atomization energy. The
boxes contain the data between first and third quartiles, and the line in the box represents the median. The outliers are shown with a cross. The raw data can be found in the
supplementary material.

contains more than a few million determinants.83 At the RS-DFT-
CIPSI/VTZ-BFD level, one can see that the MAEs are larger for
μ = 1 bohr−1 (9.06 kcal/mol) than for FCI (8.43 ± 0.39 kcal/mol).
The same comment applies to μ = 0.5 bohr−1 with the quadruple-ζ
basis.

Searching for the optimal value of μ may be too costly and time
consuming, so we have computed the MAEs, MSEs and RMSEs for
fixed values of μ. As illustrated in Fig. 5 and Table II, the best choice
for a fixed value of μ is 0.5 bohr−1 for all three basis sets. It is the value
for which the MAE [3.74(35), 2.46(18), and 2.06(35) kcal/mol] and
RMSE [4.03(23), 3.02(06), and 2.74(13) kcal/mol] are minimal. Note
that these values are even lower than those obtained with the optimal
value of μ. Although the FN-DMC energies are higher, the numbers
show that they are more consistent from one system to another, giv-
ing improved cancellations of errors. This is yet another key result
of the present study, and it can be explained by the lack of size-
consistency when one considers different μ values for the molecule
and the isolated atoms. This observation was also mentioned in the
context of optimally tune range-separated hybrids.130–132

The number of determinants in the trial wave functions is
shown in Fig. 6. As expected, the number of determinants is smaller
when μ is small and larger when μ is large. It is important to note that
the median of the number of determinants when μ = 0.5 bohr−1 is
below 100 000 determinants with the VQZ-BFD basis, making these
calculations feasible with such a large basis set. At the double-ζ level,
compared to the FCI trial wave functions, the median of the number
of determinants is reduced by more than two orders of magnitude.
Moreover, going to μ = 0.25 bohr−1 gives a median close to 100
determinants at the VDZ-BFD level and close to 1000 determinants
at the quadruple-ζ level for only a slight increase in the MAE. Hence,
RS-DFT-CIPSI trial wave functions with small values of μ could be
very useful for large systems to go beyond the single-determinant
approximation at a very low computational cost while ensuring size-
consistency. For the largest systems, as shown in Fig. 6, there are
many systems for which we could not reach the threshold EPT2 <

1 mEh as the number of determinants exceeded 10 × 106 before this
threshold was reached. For these cases, there is then a small size-
consistency error originating from the imbalanced truncation of the

FIG. 6. Number of determinants for various trial wave functions Ψμ and basis sets. Each dot corresponds to an atomization energy. The boxes contain the data between first
and third quartiles, and the line in the box represents the median. The outliers are shown with a cross. The raw data can be found in the supplementary material.
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wave functions, which is not present in the extrapolated FCI energies
(see Appendix A).

VI. CONCLUSION
In the present work, we have shown that introducing short-

range correlation via a range-separated Hamiltonian in a FCI expan-
sion yields improved nodal surfaces, especially with small basis sets.
The effect of short-range DFT on the determinant expansion is sim-
ilar to the effect of re-optimizing the CI coefficients in the presence
of a Jastrow factor but without the burden of performing a stochastic
optimization.

In addition to the intermediate conclusions drawn in Sec. IV C,
we have shown that varying the range-separation parameter μ and
approaching RS-DFT-FCI with CIPSI provide a way to adapt the
number of determinants in the trial wave function, leading to size-
consistent FN-DMC energies. We propose two methods. The first
one is for the computation of accurate total energies by a one-
parameter optimization of the FN-DMC energy via the variation
of the parameter μ. The second method is for the computation
of energy differences, where the target is not the lowest possible
FN-DMC energies but the best possible cancellation of errors. Using
a fixed value of μ increases the (size-)consistency of the trial wave
functions, and we have found that μ = 0.5 bohr−1 is the value with
which the cancellation of errors is the most effective. Moreover, such
a small value of μ gives extremely compact wave functions, making
this recipe a good candidate for the accurate description of the whole
potential energy surfaces (PESs) of large systems. If the number of
determinants is still too large, the value of μ can be further reduced
to 0.25 bohr−1 to get extremely compact wave functions at the price
of less efficient cancellations of errors.

We hope to report, in the near future, a detailed investigation of
strongly correlated systems with the present RS-DFT-CIPSI scheme.

SUPPLEMENTARY MATERIAL
See the supplementary material for the org-mode computa-

tional notebook with all the input data (geometries, basis sets,
pseudo-potentials) and output data (computed energies, densities,
number of determinants) related to the article. A csv file generated
by the notebook and an HTML export of the notebook are also
provided.
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APPENDIX A: SIZE CONSISTENCY

An extremely important feature required to get accurate atom-
ization energies is size-consistency (or strict separability) since the
numbers of correlated electron pairs in the molecule and its isolated
atoms are different.

KS-DFT energies are size-consistent, and because xc function-
als are directly constructed in complete basis, their convergence with
respect to the size of the basis set is relatively fast.48–51 Hence, DFT
methods are very well adapted to the calculation of atomization
energies, especially with small basis sets.49–51 However, in the CBS,
KS-DFT atomization energies do not match the exact values due to
the approximate nature of the xc functionals.

Likewise, FCI is also size-consistent, but the convergence of the
FCI energies toward the CBS limit is much slower because of the
description of short-range electron correlation using atom-centered
functions.133–135 Eventually though, the exact atomization energies
will be reached.

In the context of SCI calculations, when the variational energy
is extrapolated to the FCI energy,18 there is no size-consistency error.
However, when the truncated SCI wave function is used as a refer-
ence for post-HF methods such as SCI + PT2 or for QMC calcula-
tions, there is a residual size-consistency error originating from the
truncation of the wave function.

QMC energies can be made size-consistent by extrapolating the
FN-DMC energy to estimate the energy obtained with the FCI as a
trial wave function.84,85 Alternatively, the size-consistency error can
be reduced by choosing the number of selected determinants such
that the sum of the PT2 corrections on the fragments is equal to the
PT2 correction of the molecule, enforcing that the variational poten-
tial energy surface (PES) is parallel to the perturbatively corrected
PES, which is a relatively accurate estimate of the FCI PES.79

Another source of size-consistency error in QMC calcula-
tions originates from the Jastrow factor. Usually, the Jastrow factor
contains one-electron, two-electron, and one-nucleus-two-electron
terms. The problematic part is the two-electron term, whose simplest
form can be expressed as in Eq. (12b). The parameter a is determined
by the electron–electron cusp condition,121,122 and b is obtained by
energy or variance minimization.62,136 One can easily see that this
parameterization of the two-body interaction is not size-consistent:
the dissociation of a diatomic molecule AB with a parameter bAB
will lead to two different two-body Jastrow factors, each with its own
optimal value bA and bB. To remove the size-consistency error on a
PES using this ansatz for Jee, one needs to impose that the parameters
of Jee are fixed, i.e., bA = bB = bAB.

When pseudopotentials are used in a QMC calculation, it is of
common practice to localize the non-local part of the pseudopoten-
tial on the complete trial wave function Φ. If the wave function is
not size-consistent, so will be the locality approximation. Within
the DLA,111 the Jastrow factor is removed from the wave function
on which the pseudopotential is localized. The great advantage of
this approximation is that the FN-DMC energy only depends on
the parameters of the determinantal component. Using a non-size-
consistent Jastrow factor or a non-optimal Jastrow factor will not
introduce an additional error in FN-DMC calculations although it
will reduce the statistical errors by reducing the variance of the
local energy. Moreover, the integrals involved in the pseudopo-
tential are computed analytically, and the computational cost of
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TABLE III. FN-DMC energy (in Eh) using the VDZ-BFD basis set and the srPBE
functional of the fluorine atom and the dissociated F2 molecule for various μ values.
The size-consistency error is also reported.

μ F Dissociated F2 Size-consistency error

0.00 −24.1887(3) −48.3777(3) −0.0003(4)
0.25 −24.1887(3) −48.3772(4) +0.0002(5)
0.50 −24.1888(1) −48.3769(4) +0.0007(4)
1.00 −24.1897(1) −48.3802(4) −0.0008(4)
2.00 −24.1941(3) −48.3884(4) −0.0002(5)
5.00 −24.1947(4) −48.3885(7) +0.0009(8)
∞ −24.1935(2) −48.3869(4) +0.0001(5)

the pseudopotential is dramatically reduced (for more details, see
Ref. 137).

In this section, we make a numerical verification that the
produced wave functions are size-consistent for a given range-
separation parameter. We have computed the FN-DMC energy of
the dissociated fluorine dimer, where the two atoms are separated
by 50 Å. We expect that the energy of this system is equal to twice
the energy of the fluorine atom. The data in Table III show that this is
indeed the case, so we can conclude that the proposed scheme pro-
vides size-consistent FN-DMC energies for all values of μ (within
twice the statistical error bars).

APPENDIX B: SPIN INVARIANCE
Closed-shell molecules often dissociate into open-shell frag-

ments. To get reliable atomization energies, it is important to have a
theory that is of comparable quality for open- and closed-shell sys-
tems. A good check is to make sure that all the components of a spin
multiplet are degenerate, as expected from exact solutions.

FCI wave functions have this property and yield degenerate
energies with respect to the spin quantum number ms. However,
multiplying the determinantal part of the trial wave function by a
Jastrow factor introduces spin contamination if the Jastrow parame-
ters for the same-spin electron pairs are different from those for the
opposite-spin pairs.138 Again, when pseudopotentials are employed,
this tiny error is transferred to the FN-DMC energy unless the DLA
is enforced.

The context is rather different within KS-DFT. Indeed, main-
stream density functionals have distinct functional forms to take into
account correlation effects of same-spin and opposite-spin electron
pairs. Therefore, KS determinants corresponding to different values
of ms lead to different total energies. Consequently, in the context
of RS-DFT, the determinant expansion is impacted by this spurious
effect, as opposed to FCI.

In this appendix, we investigate the impact of the spin contam-
ination on the FN-DMC energy originating from the short-range
density functional. We have computed the energies of the carbon
atom in its triplet state with the VDZ-BFD basis set and the srPBE
functional. The calculations are performed for ms = 1 (three spin-up
and one spin-down electrons) and for ms = 0 (two spin-up and two
spin-down electrons).

TABLE IV. FN-DMC energy (in Eh) for various μ values of the triplet carbon atom
with different values of ms computed with the VDZ-BFD basis set and the srPBE
functional. The spin-invariance error is also reported.

μ ms = 1 ms = 0 Spin-invariance error

0.00 −5.4168(1) −5.4149(1) +0.0019(2)
0.25 −5.4172(1) −5.4165(1) +0.0007(1)
0.50 −5.4223(1) −5.4214(1) +0.0009(2)
1.00 −5.4297(1) −5.4292(1) +0.0005(2)
2.00 −5.4321(1) −5.4314(1) +0.0007(2)
5.00 −5.4317(1) −5.4314(1) +0.0003(2)
∞ −5.4316(1) −5.4313(1) +0.0003(2)

The results are reported in Table IV. Although the energy
obtained with ms = 0 is higher than the one obtained with ms = 1,
the bias is relatively small, i.e., more than one order of magnitude
smaller than the energy gained by reducing the fixed-node error
going from the single determinant to the FCI trial wave function.
The largest spin-invariance error, close to 2 mEh, is obtained for
μ = 0, but this bias decreases quickly below 1 mEh when μ increases.
As expected, with μ = ∞, we observe a perfect spin-invariance of
the energy (within the error bars), and the bias is not noticeable for
μ = 5 bohrs−1.

Hence, at the FN-DMC level, the error due to the spin invari-
ance with RS-DFT-CIPSI trial wave functions is below the chemical
accuracy threshold and is not expected to be problematic for the
comparison of atomization energies.
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