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ABSTRACT
The Bethe–Salpeter equation (BSE) formalism is a computationally affordable method for the calculation of accurate optical excitation
energies in molecular systems. Similar to the ubiquitous adiabatic approximation of time-dependent density-functional theory, the static
approximation, which substitutes a dynamical (i.e., frequency-dependent) kernel by its static limit, is usually enforced in most implementa-
tions of the BSE formalism. Here, going beyond the static approximation, we compute the dynamical correction of the electron–hole screening
for molecular excitation energies, thanks to a renormalized first-order perturbative correction to the static BSE excitation energies. The
present dynamical correction goes beyond the plasmon-pole approximation as the dynamical screening of the Coulomb interaction is com-
puted exactly within the random-phase approximation. Our calculations are benchmarked against high-level (coupled-cluster) calculations,
allowing one to assess the clear improvement brought by the dynamical correction for both singlet and triplet optical transitions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023168., s

I. INTRODUCTION
The Bethe–Salpeter equation (BSE) formalism1,2 is to the

GW approximation3,4 of many-body perturbation theory (MBPT)5,6

what time-dependent density-functional theory (TD-DFT)7,8 is to
Kohn–Sham density-functional theory (KS-DFT),9,10 an affordable
way of computing the neutral (i.e., optical) excitations of a given
electronic system. In recent years, it has been shown to be a valuable
tool for computational chemists with a large number of systematic
benchmark studies on large families of molecular systems appearing
in the literature11–21 (see Ref. 22 for a recent review).

Qualitatively, taking the optical gap (i.e., the lowest optical exci-
tation energy) as an example, BSE builds on top of a GW calculation
by adding up excitonic effects (i.e., the electron–hole binding energy
EB) to the GW HOMO–LUMO gap,

EGW
g = εGW

LUMO − εGW
HOMO, (1)

which is itself a corrected version of the Kohn–Sham (KS) gap

EKS
g = εKS

LUMO − εKS
HOMO ≪ EGW

g ≈ Efund
g , (2)

in order to approximate the optical gap

Eopt
g = EN

1 − EN
0 = Efund

g + EB, (3)

where
Efund

g = IN − AN (4)

is the fundamental gap, with IN = EN−1
0 − EN

0 and AN = EN
0 − EN+1

0
being the ionization potential and the electron affinity of the N-
electron system, respectively. Here, EN

S is the total energy of the Sth
excited state of the N-electron system, and EN

0 corresponds to its
ground-state energy. Because the excitonic effect corresponds phys-
ically to the stabilization implied by the attraction of the excited
electron and its hole left behind, we have Eopt

g < Efund
g . Due to the

smaller amount of screening in molecules as compared to solids, a
faithful description of excitonic effects is paramount in molecular
systems.
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Most of the BSE implementations rely on the so-called static
approximation, which approximates the dynamical (i.e., frequency-
dependent) BSE kernel by its static limit. In complete analogy
with the ubiquitous adiabatic approximation in TD-DFT where
the exchange-correlation (xc) kernel is made static, one key conse-
quence of the static approximation within BSE is that double (and
higher) excitations are completely absent from the BSE spectrum.
Indeed, a frequency-dependent kernel has the ability to create addi-
tional poles in the response function, which describe states with
a multiple-excitation character and, in particular, double excita-
tions. Although these double excitations are usually experimentally
dark (which means that they usually cannot be observed in photo-
absorption spectroscopy), these states play, indirectly, a key role
in many photochemistry mechanisms23 as they strongly mix with
the bright singly excited states, leading to the formation of satellite
peaks.24,25 They are particularly important in the faithful description
of the ground state of open-shell molecules,26–29 and they are, more-
over, a real challenge for high-level computational methods.29–32

Double excitations play also a significant role in the correct location
of the excited states of polyenes that are closely related to rhodopsin,
a biological pigment found in the rods of the retina and involved
in the visual transduction.33–35 In butadiene, for example, while the
bright 11Bu state has a clear HOMO → LUMO single-excitation
character, the dark 21Ag state includes a substantial fraction of dou-
bly excited character from the HOMO2→ LUMO2 double excitation
(roughly 30%), yet with dominant contributions from the HOMO −
1→ LUMO and HOMO→ LUMO + 1 single excitations.31,36–42

Going beyond the static approximation is difficult, and very
few groups have been addressing the problem.2,28,43–54 Nonetheless,
it is worth mentioning the seminal work of Strinati (who origi-
nally derived the dynamical correction to the BSE) on core excitons
in semiconductors,2,55,56 in which the dynamical screening effects
were taken into account through the dielectric matrix and where he
observed an increase in the binding energy over its value for static
screening and a narrowing of the Auger width below its value for
a core hole. Following Strinati’s footsteps, Rohlfing and co-workers
have developed an efficient way of taking into account, thanks to
first-order perturbation theory, the dynamical effects via a plasmon-
pole approximation combined with the Tamm–Dancoff approxi-
mation (TDA).43,46,47,57 With such a scheme, they have been able
to compute the excited states of biological chromophores, showing
that taking into account the electron–hole dynamical screening is
important for an accurate description of the lowest n → π∗ excita-
tions.46,47,57 Indeed, studying PYP, retinal, and GFP chromophore
models, Ma et al. found that “the influence of dynamical screening on
the excitation energies is about 0.1 eV for the lowest π → π∗ transi-
tions, but for the lowest n→ π∗ transitions, the influence is larger, up
to 0.25 eV.”47 A similar conclusion was reached in Ref. 46. Zhang
et al. have studied the frequency-dependent second-order Bethe–
Salpeter kernel, and they have observed an appreciable improvement
over configuration interaction with singles (CIS), time-dependent
Hartree–Fock (TDHF), and adiabatic TD-DFT results.51 Rebolini
and Toulouse have performed a similar investigation in a range-
separated context, and they have reported a modest improvement
over its static counterpart.52,58 In these two latter studies, they
also followed a (non-self-consistent) perturbative approach within
the TDA with a renormalization of the first-order perturbative
correction.

It is important to note that, although all the studies men-
tioned above are clearly going beyond the static approximation of
BSE, they are not able to recover additional excitations as the per-
turbative treatment accounts for dynamical effects only on excita-
tions already present in the static limit. However, it does permit to
recover, for transitions with a dominant single-excitation character,
additional relaxation effects coming from higher excitations. These
higher excitations would be explicitly present in the BSE Hamil-
tonian by “unfolding” the dynamical BSE kernel, and one would
recover a linear eigenvalue problem with, nonetheless, a much larger
dimension.59

Based on a simple two-level model that permits to analyti-
cally solve the dynamical equations, Romaniello and co-workers48,49

evidenced that one can genuinely access additional excitations by
solving the non-linear, frequency-dependent eigenvalue problem.
For this particular system, it was shown that a BSE kernel based
on the random-phase approximation (RPA) produces, indeed, dou-
ble excitations but also unphysical excitations.48 The appearance
of these spurious excitations was attributed to the self-screening
problem.27 This was fixed in a follow-up paper by Sangalli et al.,49

thanks to the design of a number-conserving approach based on the
folding of the second-RPA Hamiltonian,60 which includes explicitly
both single and double excitations. By computing the polarizabil-
ity of two unsaturated hydrocarbon chains, C8H2 and C4H6, they
showed that their approach produces the correct number of physical
excitations.

Finally, let us mention efforts to borrow ingredients from BSE
in order to go beyond the adiabatic approximation of TD-DFT.
For example, Huix-Rotllant and Casida26,28 proposed a nonadiabatic
correction to the xc kernel using the formalism of superoperators,
which includes as a special case the dressed TD-DFT method of
Maitra and co-workers,25,36,37,61 where a frequency-dependent ker-
nel is build a priori and manually for a particular excitation. Fol-
lowing a similar strategy, Romaniello et al.48 took advantages of
the dynamically screened Coulomb potential from BSE to obtain
a dynamic TD-DFT kernel. In this regard, MBPT provides key
insights about what is missing in adiabatic TD-DFT, as discussed
in detail by Casida and Huix-Rotllant in Ref. 62.

In the present study, we extend the work of Rohlfing and co-
workers43,46,47,57 by proposing a renormalized first-order perturba-
tive correction to the static BSE excitation energies. Importantly,
our correction goes beyond the plasmon-pole approximation as
the dynamical screening of the Coulomb interaction is computed
exactly. In order to assess the accuracy of the present scheme, we
report singlet and triplet excitation energies of various natures for
small- and medium-sized molecules. Our calculations are bench-
marked against high-level coupled-cluster (CC) calculations, allow-
ing one to clearly evidence the systematic improvement brought
by the dynamical correction. In particular, we found that, although
n→ π∗ and π→ π∗ transitions are systematically red-shifted by 0.3–
0.6 eV, dynamical effects have a much smaller magnitude for charge
transfer (CT) and Rydberg states. Unless otherwise stated, atomic
units are used.

II. THEORY
In this section, following Strinati’s seminal work,2 we first

discuss in some detail the theoretical foundations leading to the
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dynamical BSE. We present, in a second step, the perturbative imple-
mentation of the dynamical correction as compared to the standard
static approximation.

A. General dynamical BSE
The two-body correlation function L(1, 2; 1′, 2′)—a central

quantity in the BSE formalism—relates the variation of the one-
body Green’s function G(1, 1′) with respect to an external non-local
perturbation U(2′, 2), i.e.,

iL(1, 2; 1′, 2′) = ∂G(1, 1′)
∂U(2′, 2) , (5)

where, e.g., 1 ≡ (x1t1) is a space-spin plus time composite vari-
able. The relation between G and the one-body charge density ρ(1)
= −iG(1, 1+) provides a direct connection with the density–density
susceptibility χ(1, 2) = L(1, 2; 1+, 2+) at the core of TD-DFT. (The
notation 1+ means that the time t1 is taken at t+

1 = t1 + 0+, where 0+

is a positive infinitesimal.)
The two-body correlation function L satisfies the self-consistent

BSE2

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) + ∫ d3456 L0(1, 4; 1′, 3)

Ξ(3, 5; 4, 6)L(6, 2; 5, 2′), (6)

where

iL0(1, 4; 1′, 3) = G(1, 3)G(4, 1′), (7a)

iL(1, 2; 1′, 2′) = −G2(1, 2; 1′, 2′) + G(1, 1′)G(2, 2′) (7b)

can be expressed as a function of the one- and two-body Green’s
functions

G(1, 2) = −i⟨N∣T[ψ̂(1)ψ̂†(2)]∣N⟩, (8a)

G2(1, 2; 1′, 2′) = −⟨N∣T[ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]∣N⟩, (8b)

and

Ξ(3, 5; 4, 6) = i
δ[vH(3)δ(3, 4) + Σxc(3, 4)]

δG(6, 5) (9)

is the BSE kernel that takes into account the self-consistent variation
of the Hartree potential

vH(1) = −i∫ d2 v(1, 2)G(2, 2+) (10)

[where δ is Dirac’s delta function and v is the bare Coulomb oper-
ator] and of the xc self-energy Σxc with respect to the variation of
G. In Eqs. (8a) and (8b), the field operators ψ̂(xt) and ψ̂†(x′t′)
remove and add (respectively) an electron to the N-electron ground
state |N⟩ in space-spin-time positions (xt) and (x′t′), while T is the
time-ordering operator.

The resolution of the dynamical BSE starts with the expansion
of L0 and L [see Eqs. (7a) and (7b)] over the complete orthonor-
malized set of N-electron excited states |N, S⟩ (with |N, 0⟩ ≡|N⟩).2

In the optical limit of instantaneous electron–hole creation and
destruction, imposing t2′ = t+

2 and t1′ = t+
1 , and using the relation

between the field operators in their time-dependent (Heisenberg)
and time-independent (Schrödinger) representations, e.g.,

ψ̂(1) = eiĤt1 ψ̂(x1)e−iĤt1 (11)

(Ĥ being the exact many-body Hamiltonian), one gets

iL(1, 2; 1′, 2′) = θ(+τ12)∑
s>0

χS(x1, x1′)χ̃S(x2, x2′)e−iΩSτ12

− θ(−τ12)∑
s>0

χS(x2, x2′)χ̃S(x1, x1′)e+iΩSτ12 , (12)

where τ12 = t1 − t2, θ is the Heaviside step function, and

χS(x1, x1′) = ⟨N∣T[ψ̂(x1)ψ̂†(x1′)]∣N, S⟩, (13a)

χ̃S(x1, x1′) = ⟨N, S∣T[ψ̂(x1)ψ̂†(x1′)]∣N⟩. (13b)

ΩS’s are the neutral excitation energies of interest (with ΩS = EN
s

− EN
0 ).

Picking up the e+iΩSt2 component of both L(1, 2; 1′, 2′) and L(6,
2; 5, 2′), simplifying further by χ̃S(x2, x2′) on both sides of the BSE
[see Eq. (6)], we seek the e−iΩSt1 Fourier component associated with
the right-hand side of a modified dynamical BSE, which reads

⟨N∣T[ψ̂(x1)ψ̂†(x′1)]∣N, S⟩e−iΩSt1θ(τ12)

= ∫ d3456 L0(1, 4; 1′, 3)Ξ(3, 5; 4, 6)⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩

× θ[min(t5, t6) − t2]. (14)

For the neutral excitation energies falling in the fundamental gap
of the system (i.e., ΩS < Efund

g due to excitonic effects), L0(1, 2; 1′,
2′) cannot contribute to the e−iΩSt1 response term since its lowest
excitation energy is precisely the fundamental gap [see Eq. (4)]. Con-
sequently, special care has to be taken for high-lying excited states
(like core or Rydberg excitations) where additional terms have to be
taken into account (see Refs. 55 and 56).

Dropping the space/spin variables, the Fourier components
with respect to t1 of L0(1, 4; 1′, 3) read

[iL0](ω1) = ∫
dω
2π

G(ω − ω1

2
)G(ω +

ω1

2
)eiωτ34 eiω1t34

, (15)

with τ34 = t3 − t4 and t34 = (t3 + t4)/2. We now adopt the Lehman
representation of the one-body Green’s function in the quasiparticle
approximation, i.e.,

G(x1, x2;ω) = ∑
p

ϕp(x1)ϕ∗p (x2)
ω − εp + iη × sgn(εp − μ)

, (16)

where η is a positive infinitesimal and μ is the chemical potential.
The εp’s in Eq. (16) are quasiparticle energies (i.e., proper addi-
tion/removal energies), and the ϕp(x)’s are their associated one-body
(spin)orbitals. In the following, i and j are occupied orbitals, a and b
are unoccupied orbitals, while p, q, r, and s indicate arbitrary orbitals.
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Projecting the Fourier component L0(x1, 4; x1′ , 3;ω1 = ΩS) onto
ϕ∗a (x1)ϕi(x1′) yields

∬ dx1 dx1′ ϕ∗a (x1)ϕi(x1′)L0(x1, 4; x1′ , 3; ΩS)

= ϕ
∗
a (x3)ϕi(x4)eiΩSt34

ΩS − (εa − εi) + iη
[θ(τ34)ei(εi+

ΩS
2 )τ34

+θ(−τ34)ei(εa− ΩS
2 )τ34]. (17)

More details are provided in Appendix A. As a final step, we express
the terms ⟨N∣T[ψ̂(x1)ψ̂†(x′1)]∣N, S⟩ and ⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩
from Eq. (14) in the standard electron–hole product (or single-
excitation) space. This is done by expanding the field operators over
the complete orbital basis of creation/destruction operators. For
example, we have (see the derivation in Appendix B)

⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩

= −(e−iΩSt65

)∑
pq
ϕp(x6)ϕ∗q (x5)⟨N∣â†

q âp∣N, S⟩

× [θ(τ65)e−i(εp− ΩS
2 )τ65 + θ(−τ65)e−i(εq+

ΩS
2 )τ65], (18)

with t65 = (t5 + t6)/2 and τ65 = t6 − t5. ⟨N∣â†
q âp∣N, S⟩ are the unknown

particle–hole amplitudes.

B. Dynamical BSE within the GW approximation
Adopting now the GW approximation3 for the xc self-energy,

i.e.,

ΣGW
xc (1, 2) = iG(1, 2)W(1+, 2), (19)

leads to the following simplified BSE kernel:

Ξ(3, 5; 4, 6) = v(3, 6)δ(3, 4)δ(5, 6) −W(3+, 4)δ(3, 6)δ(4, 5), (20)

where W is the dynamically screened Coulomb operator. The GW
quasiparticle energies εGW

p are usually good approximations to the
removal/addition energies εp introduced in Eq. (16).

Substituting Eqs. (17), (18), and (20) into Eq. (14), and project-
ing onto ϕ∗a (x1)ϕi(x1′), one gets after a few tedious manipulations
the dynamical BSE

(εGW
a − εGW

i −ΩS)Xia,S +∑
jb
[κ(ia ∣ jb) − W̃ij,ab(ΩS)]Xjb,S

+∑
jb
[κ(ia ∣ bj) − W̃ib,aj(ΩS)]Yjb,S = 0, (21)

with Xjb,S = ⟨N∣â†
j âb∣N, S⟩ and Yjb,S = ⟨N∣â†

b âj∣N, S⟩, and where κ = 2
or 0 for singlet and triplet excited states (respectively). This equation
is identical to the one presented by Rohlfing and co-workers.43,46,47

Neglecting the anti-resonant terms, Y jb ,S, in the dynamical BSE,
which are (usually) much smaller than their resonant counterparts,
Xjb ,S, leads to the well-known TDA. In Eq. (21),

(pq ∣ rs) = ∬ drdr′ ϕp(r)ϕq(r)v(r − r′)ϕr(r′)ϕs(r′) (22)

are the bare two-electron integrals in the (real-valued) spatial orbital
basis {ϕp(r)}, and

W̃pq,rs(ΩS) =
i

2π ∫ dω e−iω0+

Wpq,rs(ω)

×[ 1
ΩS

ps − ω + iη
+

1
ΩS

qr + ω + iη
] (23)

is an effective dynamically screened Coulomb potential,48 where
ΩS

pq = ΩS − (εGW
q − εGW

p ) and

Wpq,rs(ω) = ∬ drdr′ ϕp(r)ϕq(r)W(r, r′;ω)ϕr(r′)ϕs(r′). (24)

C. Dynamical screening
In the present study, we consider the exact spectral represen-

tation of W at the RPA level consistently with the underlying GW
calculation,

Wij,ab(ω) = (ij ∣ ab) + 2∑
m
[ij ∣m][ab ∣m]

× [ 1
ω −ΩRPA

m + iη
− 1
ω + ΩRPA

m − iη
], (25)

where m labels single excitations and

[pq ∣m] = ∑
ia
(pq ∣ ia)(XRPA

m + YRPA
m )ia (26)

are the spectral weights. In Eqs. (25) and (26), ΩRPA
m and (XRPA

m
+ YRPA

m ) are RPA neutral excitations and their corresponding tran-
sition vectors computed by solving the (static) linear response prob-
lem

(A
RPA BRPA

−BRPA−ARPA) ⋅ (
XRPA

m
YRPA

m
) = ΩRPA

m (X
RPA
m

YRPA
m
), (27)

with

ARPA
ia,jb = δijδab(εa − εi) + 2(ia ∣ jb), (28a)

BRPA
ia,jb = 2(ia ∣ bj), (28b)

where εp’s are taken as the HF orbital energies in the case of
G0W0

63,64 or as the GW quasiparticle energies in the case of self-
consistent schemes such as evGW.20,64–69 The RPA matrices ARPA

and BRPA in Eq. (27) are of size OV × OV, where O and V are the
number of occupied and virtual orbitals (i.e., Norb = O + V is the
total number of spatial orbitals), respectively, and XRPA

m and YRPA
m

are (eigen)vectors of length OV.
The analysis of the poles of the integrand in Eq. (23) yields

W̃ij,ab(ΩS) = (ij ∣ ab) + 2∑
m
[ij ∣m][ab ∣m]

×
⎡⎢⎢⎢⎣

1
ΩS

ib −ΩRPA
m + iη

+
1

ΩS
ja −ΩRPA

m + iη

⎤⎥⎥⎥⎦
. (29)

One can verify that, in the static limit where ΩRPA
m → ∞, the matrix

elements W̃ij,ab correctly reduce to their static expression

Wstat
ij,ab ≡Wij,ab(ω = 0) = (ij ∣ ab) − 4∑

m

[ij ∣m][ab ∣m]
ΩRPA

m
, (30)

J. Chem. Phys. 153, 114120 (2020); doi: 10.1063/5.0023168 153, 114120-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

evidencing that the standard static BSE problem is recovered from
the present dynamical formalism in this limit.

Due to excitonic effects, the lowest BSE excitation energy, Ω1,
stands lower than the lowest RPA excitation energy, ΩRPA

1 , so that
ΩS

ib − ΩRPA
m < 0 and W̃ij,ab(ΩS) has no resonances. This prop-

erty holds for low-lying excitations, but special care must be taken
for higher ones. Furthermore, ΩS

ib and ΩS
ja are necessarily nega-

tive quantities for in-gap low-lying BSE excitations. Thus, we have
∣ΩS

ib −ΩRPA
m ∣ > ΩRPA

m . As a consequence, we observe a reduction
in the electron–hole screening, i.e., an enhancement of electron–
hole binding energy, as compared to the standard static BSE, and
consequently smaller (red-shifted) excitation energies. This will be
numerically illustrated in Sec. IV.

D. Dynamical Tamm-Dancoff approximation
The analysis of the (off-diagonal) screened Coulomb potential

matrix elements multiplying the Y jb ,S coefficients in Eq. (21), i.e.,

W̃ib,aj(ΩS) = (ib ∣ aj) + 2∑
m
[ib ∣m][aj ∣m]

×
⎡⎢⎢⎢⎣

1
ΩS

ij −ΩRPA
m + iη

+
1

ΩS
ba −ΩRPA

m + iη

⎤⎥⎥⎥⎦
, (31)

reveals strong divergences even for low-lying excitations when, for
example, ΩS

ba − ΩRPA
m = ΩS − ΩRPA

m − (εGW
a − εGW

b ) ≈ 0. Such diver-
gences may explain that, in previous studies, dynamical effects were
only accounted for at the TDA level.2,43,46–49,51,52 To avoid confusions
here, enforcing the TDA for the dynamical correction (which corre-
sponds to neglecting the dynamical correction originating from the
anti-resonant part of the BSE Hamiltonian) will be labeled as dTDA
in the following. Going beyond the dTDA is outside the scope of the
present study but shall be addressed eventually.

E. Perturbative dynamical correction
From a more practical point of view, Eq. (21) can be recast as

a non-linear eigenvalue problem, and to compute the BSE excita-
tion energies of a closed-shell system, one must solve the following
dynamical (i.e., frequency-dependent) response problem:2

( A(ΩS) B(ΩS)
−B(−ΩS)−A(−ΩS)

) ⋅ (XS
YS
) = ΩS(

XS
YS
), (32)

where the dynamical matrices A and B have the same OV × OV size
than their RPA counterparts, and we assume real quantities from
hereon. The same comment applies to the eigenvectors XS and YS
of length OV. Note that, due to its non-linear nature, Eq. (32) may
provide more than one solution for each value of S.6,48,49

According to Eq. (21), the BSE matrix elements in Eq. (32) read

Aia,jb(ΩS) = δijδab(εGW
a − εGW

i ) + κ(ia ∣ jb) − W̃ij,ab(ΩS), (33a)

Bia,jb(ΩS) = κ(ia ∣ bj) − W̃ib,aj(ΩS). (33b)

Now, let us decompose, using basic Rayleigh–Schrödinger per-
turbation theory, the non-linear eigenproblem (32) as a zeroth-order
static (hence linear) reference and a first-order dynamic (hence

non-linear) perturbation such that

( A(ΩS) B(ΩS)
−B(−ΩS)−A(−ΩS)

) = (A
(0) B(0)

−B(0)−A(0))

+( A(1)(ΩS) B(1)(ΩS)
−B(1)(−ΩS)−A(1)(−ΩS)

), (34)

with

A(0)ia,jb = δijδab(εGW
a − εGW

i ) + κ(ia ∣ jb) −Wstat
ij,ab, (35a)

B(0)ia,jb = κ(ia ∣ bj) −Wstat
ib,aj, (35b)

and

A(1)ia,jb(ΩS) = −W̃ij,ab(ΩS) + Wstat
ij,ab, (36a)

B(1)ia,jb(ΩS) = −W̃ib,aj(ΩS) + Wstat
ib,aj. (36b)

According to perturbation theory, the Sth BSE excitation
energy and its corresponding eigenvector can then be expanded as

ΩS = Ω(0)S + Ω(1)S + . . . ,(XS
YS
) = (X

(0)
S

Y(0)S
) + (X

(1)
S

Y(1)S
) + . . . . (37a)

Solving the zeroth-order static problem

(A
(0) B(0)

−B(0)−A(0)) ⋅ (
X(0)S
Y(0)S
) = Ω(0)S (

X(0)S
Y(0)S
) (38)

yields the zeroth-order (static) Ω(0)S excitation energies and their
corresponding eigenvectors X(0)S and Y(0)S . Thanks to first-order
perturbation theory, the first-order correction to the Sth excitation
energy is

Ω(1)S = (X
(0)
S

Y(0)S
)
⊺
⋅ ( A(1)(Ω(0)S ) B(1)(Ω(0)S )
−B(1)(−Ω(0)S )−A

(1)(−Ω(0)S )
) ⋅ (X

(0)
S

Y(0)S
). (39)

From a practical point of view, if one enforces the dTDA, we obtain
the very simple expression

Ω(1)S = (X(0)S )
⊺ ⋅A(1)(Ω(0)S ) ⋅X

(0)
S . (40)

This correction can be renormalized by computing, at basically no
extra cost, the renormalization factor that reads, in the dTDA,

ZS =
⎡⎢⎢⎢⎢⎣

1 − (X(0)S )
⊺ ⋅ ∂A

(1)(ΩS)
∂ΩS

∣
ΩS=Ω(0)

S

⋅X(0)S

⎤⎥⎥⎥⎥⎦

−1

. (41)

This finally yields

Ωdyn
S = Ωstat

S + ΔΩdyn
S = Ω(0)S + ZSΩ(1)S , (42)

with Ωstat
S ≡ Ω(0)S and ΔΩdyn

S = ZSΩ(1)S . This is our final expression.
As mentioned in Sec. I, the present perturbative scheme does not
allow one to access double excitations as only excitations calculated
within the static approach can be dynamically corrected. We hope to
report a genuine dynamical treatment of the BSE in a forthcoming
work.
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In terms of computational cost, if one decides to com-
pute the dynamical correction of the M lowest excitation ener-
gies, one must perform, first, a conventional (static) BSE cal-
culation and extract the M lowest eigenvalues and their cor-
responding eigenvectors [see Eq. (38)]. These are then used to
compute the first-order correction from Eq. (40), which also
requires to construct and evaluate the dynamical part of the BSE
Hamiltonian, for each excitation one wants to dynamically cor-
rect. The static BSE Hamiltonian is computed once during the
static BSE calculation and does not dependent on the targeted
excitation.

Searching iteratively for the lowest eigenstates, via Davidson’s
algorithm, for instance, can be performed in O(N4

orb) computational
cost. Constructing the static and dynamic BSE Hamiltonians is much
more expensive as it requires the complete diagonalization of the
(OV × OV) RPA linear response matrix [see Eq. (27)], which cor-
responds to a O(O3V3) = O(N6

orb) computational cost. Although it
might be reduced to O(N4

orb) operations with standard resolution-
of-the-identity techniques,70,71 this step is the computational bottle-
neck in the current implementation.

III. COMPUTATIONAL DETAILS

All systems under investigation have a closed-shell singlet
ground state. We then adopt a restricted formalism throughout
this work. The GW calculations performed to obtain the screened
Coulomb operator and the quasiparticle energies are done using a
(restricted) HF starting point. Perturbative GW (or G0W0)63,64,72

quasiparticle energies are employed as starting points to com-
pute the BSE neutral excitations. These quasiparticle energies are
obtained by linearizing the frequency-dependent quasiparticle equa-
tion, and the entire set of orbitals is corrected. Further details about
our implementation of G0W0 can be found in Refs. 73 and 74.
Note that, for the present (small) molecular systems, G0W0@HF
and evGW@HF yield similar quasiparticle energies and fundamental
gap. Moreover, G0W0 allows us to avoid rather laborious iterations
as well as the significant additional computational effort of evGW.
In the present study, the zeroth-order Hamiltonian [see Eq. (34)]
is always the “full” BSE static Hamiltonian, i.e., without TDA. The
dynamical correction, however, is computed in the dTDA through-
out. As one-electron basis sets, we employ the Dunning families

TABLE I. Singlet and triplet excitation energies (in eV) of N2 computed at the BSE@G0W0@HF level for various basis sets.

cc-pVDZ (EGW
g = 20.71 eV) cc-pVTZ (EGW

g = 20.21 eV) cc-pVQZ (EGW
g = 20.05 eV)

State Nature Ωstat
S Ωdyn

S ΔΩdyn
S Ωstat

S Ωdyn
S ΔΩdyn

S Ωstat
S Ωdyn

S ΔΩdyn
S

1Πg(n→ π∗) Val. 9.90 9.58 −0.32 9.92 9.53 −0.40 10.01 9.59 −0.42
1Σ−u (π → π∗) Val. 9.70 9.37 −0.33 9.61 9.19 −0.42 9.69 9.25 −0.44
1Δu(π→ π∗) Val. 10.37 10.05 −0.31 10.27 9.88 −0.39 10.34 9.93 −0.41
1Σ+

g Ryd. 15.67 15.50 −0.17 15.04 14.84 −0.21 14.72 14.43 −0.21
1Πu Ryd. 15.00 14.79 −0.21 14.75 14.48 −0.27 14.80 14.59 −0.29
1Σ+

u Ryd. 22.88a 22.73 −0.15 19.03 18.95 −0.08 16.78 16.71 −0.06
1Πu Ryd. 23.62a 23.51 −0.11 19.15 19.04 −0.11 16.93 16.85 −0.09
3Σ+

u(π → π∗) Val. 7.39 6.91 −0.48 7.46 6.87 −0.59 7.59 6.97 −0.62
3Πg(n→ π∗) Val. 8.07 7.65 −0.42 8.14 7.62 −0.52 8.24 7.70 -0.54
3Δu(π→ π∗) Val. 8.56 8.15 −0.41 8.52 8.00 −0.52 8.62 8.07 −0.55
3Σ−u (π → π∗) Val. 9.70 9.37 −0.33 9.61 9.19 −0.42 9.69 9.25 −0.44

aug-cc-pVDZ (EGW
g = 19.49 eV) aug-cc-pVTZ (EGW

g = 19.20 eV) aug-cc-pVQZ (EGW
g = 19.00 eV)

State Nature Ωstat
S Ωdyn

S ΔΩdyn
S Ωstat

S Ωdyn
S ΔΩdyn

S Ωstat
S Ωdyn

S ΔΩdyn
S

1Πg(n→ π∗) Val. 10.18 9.77 −0.41 10.42 9.99 −0.42 10.52 10.09 −0.43
1Σ−u (π → π∗) Val. 9.95 9.51 −0.44 10.11 9.66 −0.45 10.20 9.75 −0.45
1Δu(π→ π∗) Val. 10.57 10.16 −0.41 10.75 10.33 −0.42 10.85 10.42 −0.42
1Σ+

g Ryd. 13.72 13.68 −0.04 13.60 13.57 −0.03 13.54 13.52 −0.02
1Πu Ryd. 14.07 14.02 −0.05 13.98 13.94 −0.04 13.96 13.93 −0.03
1Σ+

u Ryd. 13.80 13.72 −0.08 13.98 13.91 −0.07 14.08 14.03 −0.06
1Πu Ryd. 14.22 14.19 −0.04 14.24 14.21 −0.03 14.26 14.23 −0.03
3Σ+

u(π → π∗) Val. 7.75 7.12 −0.63 8.02 7.38 −0.64 8.12 7.48 −0.64
3Πg(n→ π∗) Val. 8.42 7.88 −0.54 8.66 8.10 −0.56 8.75 8.20 −0.56
3Δu(π→ π∗) Val. 8.86 8.32 −0.54 9.04 8.48 −0.56 9.14 8.57 −0.56
3Σ−u (π → π∗) Val. 9.95 9.51 −0.44 10.11 9.66 −0.45 10.20 9.75 −0.45

aExcitation energy larger than the fundamental gap.
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cc-pVXZ and aug-cc-pVXZ (X = D, T, and Q) defined with cartesian
Gaussian functions. Finally, the infinitesimal η is set to 100 meV for
all calculations. It is important to mention that the small molecular
systems considered here are particularly challenging for the BSE for-
malism,15,73 which is known to work best for larger systems where
the amount of screening is more important.17,18

For comparison purposes, we employ the theoretical best esti-
mates (TBEs) and geometries of Refs. 30–32 from which CIS(D),75,76

ADC(2),77,78 CC2,79 CCSD,80 and CC381 excitation energies are
also extracted. Various statistical quantities are reported in the
following: the mean signed error (MSE), mean absolute error

(MAE), root-mean-square error (RMSE), and maximum positive
[Max(+)] and maximum negative [Max(−)] errors. All the static and
dynamic BSE calculations have been performed with the software
QuAcK,82 freely available on github, where the present perturbative
correction has been implemented.

IV. RESULTS AND DISCUSSION
First, we investigate the basis set dependence of the dynam-

ical correction. The singlet and triplet excitation energies of the
nitrogen molecule N2 computed at the BSE@G0W0@HF level for
the cc-pVXZ and aug-cc-pVXZ families of basis sets are reported

TABLE II. Singlet excitation energies (in eV) for various molecules obtained with the aug-cc-pVTZ basis set computed at various levels of theory. CT stands for charge transfer.

BSE@G0W0@HF Wave function-based methods

Mol. State Nature EGW
g Ωstat

S Ωdyn
S ΔΩdyn

S ZS CIS(D) ADC(2) CC2 CCSD TBE

HCl 1Π CT 13.43 8.30 8.19 −0.11 1.009 6.07 7.97 7.96 7.91 7.84

H2O 1B1(n→ 3s) Ryd. 13.58 8.09 8.00 −0.09 1.007 7.62 7.18 7.23 7.60 7.17
1A2(n→ 3p) Ryd. 9.79 9.72 −0.07 1.005 9.41 8.84 8.89 9.36 8.92
1A1(n→ 3s) Ryd. 10.42 10.35 −0.07 1.006 9.99 9.52 9.58 9.96 9.52

N2
1Πg(n→ π∗) Val. 19.20 10.42 9.99 −0.42 1.031 9.66 9.48 9.44 9.41 9.34
1Σ−u (π → π∗) Val. 10.11 9.66 −0.45 1.029 10.31 10.26 10.32 10.00 9.88
1Δu(π→ π∗) Val. 10.75 10.33 −0.42 1.030 10.85 10.79 10.86 10.44 10.29

1Σ+
g Ryd. 13.60 13.57 −0.03 1.003 13.67 12.99 12.83 13.15 12.98

1Πu Ryd. 13.98 13.94 −0.04 1.004 13.64 13.32 13.15 13.43 13.03
1Σ+

u Ryd. 13.98 13.91 −0.07 1.008 13.75 13.07 12.89 13.26 13.09
1Πu Ryd. 14.24 14.21 −0.03 1.002 14.52 14.00 13.96 13.67 13.46

CO 1Π(n→ π∗) Val. 16.46 9.54 9.19 −0.34 1.029 8.78 8.69 8.64 8.59 8.49
1Σ−(π→ π∗) Val. 10.25 9.90 −0.35 1.023 10.13 10.03 10.30 9.99 9.92
1Δ(π→ π∗) Val. 10.71 10.39 −0.32 1.023 10.41 10.30 10.60 10.12 10.06

1Σ+ Ryd. 11.88 11.85 −0.03 1.005 11.48 11.32 11.11 11.22 10.95
1Σ+ Ryd. 12.39 12.37 −0.02 1.003 11.71 11.83 11.63 11.75 11.52
1Π Ryd. 12.37 12.32 −0.05 1.004 12.06 12.03 11.83 11.96 11.72

C2H2
1Σ−u (π → π∗) Val. 12.28 7.37 7.05 −0.32 1.026 7.28 7.24 7.26 7.15 7.10
1Δu(π→ π∗) Val. 7.74 7.46 −0.29 1.025 7.62 7.56 7.59 7.48 7.44

C2H4
1B3u(π→ 3s) Ryd. 11.49 7.64 7.62 −0.03 1.004 7.35 7.34 7.29 7.42 7.39
1B1u(π→ π∗) Val. 8.18 8.03 −0.15 1.022 7.95 7.91 7.92 8.02 7.93
1B1g(π→ 3p) Ryd. 8.29 8.26 −0.03 1.003 8.01 7.99 7.95 8.08 8.08

CH2O 1A2(n→ π∗) Val. 12.00 5.03 4.68 −0.35 1.027 4.04 3.92 4.07 4.01 3.98
1B2(n→ 3s) Ryd. 7.87 7.85 −0.02 1.001 6.64 6.50 6.56 7.23 7.23
1B2(n→ 3p) Ryd. 8.76 8.72 −0.04 1.003 7.56 7.53 7.57 8.12 8.13
1A1(n→ 3p) Ryd. 8.85 8.84 −0.01 1.000 8.16 7.47 7.52 8.21 8.23
1A2(n→ 3p) Ryd. 8.87 8.85 −0.02 1.002 8.04 7.99 8.04 8.65 8.67
1B1(σ → π∗) Val. 10.18 9.77 −0.42 1.032 9.38 9.17 9.32 9.28 9.22
1A1(π→ π∗) Val. 10.05 9.81 −0.24 1.026 9.08 9.46 9.54 9.67 9.43

MAE 0.64 0.50 0.43 0.24 0.25 0.15 0.00
MSE 0.64 0.48 0.14 0.02 0.03 0.14 0.00
RMSE 0.70 0.58 0.55 0.33 0.33 0.20 0.00
Max(+) 1.08 0.91 1.06 0.54 0.57 0.44 0.00
Max(−) 0.20 −0.22 −1.77 −0.76 −0.71 −0.02 0.00
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in Table I, where we also report the GW gap, EGW
g , to show that cor-

rected transitions are usually well below this gap. The N2 molecule
is a very convenient example for this kind of study as it contains
n→ π∗ and π→ π∗ valence excitations as well as Rydberg transitions.
As we shall further illustrate below, the magnitude of the dynam-
ical correction is characteristic of the type of transitions. One key
result of the present investigation is that the dynamical correction
is quite basis set insensitive with a maximum variation of 0.03 eV
between aug-cc-pVDZ and aug-cc-pVQZ. It is only for the smallest
basis set (cc-pVDZ) that one can observe significant differences. We
note further that due to its unbound LUMO, the GW gap of N2, and
to a lesser extent its BSE excitation energies, is very sensitive to the
presence of diffuse orbitals. However, the dynamical correction is
again very stable, being insensitive to the presence of diffuse orbitals
(at least for the lowest optical excitations). We can then safely con-
clude that the dynamical correction converges rapidly with respect
to the size of the one-electron basis set, a triple-ζ or an augmented
double-ζ basis being enough to obtain near complete basis set limit
values. This is quite a nice feature as it means that one does not need

to compute the dynamical correction in a very large basis to get a
meaningful estimate of its magnitude.

Tables II and III report, respectively, singlet and triplet
excitation energies for various molecules computed at the
BSE@G0W0@HF level and with the aug-cc-pVTZ basis set. For
comparative purposes, excitation energies obtained with the same
basis set and several second-order wave function methods [CIS(D),
ADC(2), CC2, and CCSD] are also reported. The highly accurate
TBEs of Refs. 30–32 (computed in the same basis) will serve us as
reference, and statistical quantities [MAE, MSE, RMSE, Max(+), and
Max(−)] are defined with respect to these references. For each excita-
tion, we report the static and dynamic excitation energies, Ωstat

S and
Ωdyn

S , as well as the value of the renormalization factor ZS defined
in Eq. (41). As one can see in Tables II and III, the value of ZS
is always quite close to unity, which shows that the perturbative
expansion behaves nicely and that a first-order correction is prob-
ably quite a good estimate of the non-perturbative result. More-
over, we have observed that an iterative, self-consistent resolution
[where the dynamically corrected excitation energies are re-injected

TABLE III. Triplet excitation energies (in eV) for various molecules obtained with the aug-cc-pVTZ basis set computed at various levels of theory.

BSE@G0W0@HF Wave function-based methods

Mol. State Nature EGW
g Ωstat

S Ωdyn
S ΔΩdyn

S ZS CIS(D) ADC(2) CC2 CCSD TBE

H2O 3B1(n→ 3s) Ryd. 13.58 7.62 7.48 −0.14 1.009 7.25 6.86 6.91 7.20 6.92
3A2(n→ 3p) Ryd. 9.61 9.50 −0.11 1.007 9.24 8.72 8.77 9.20 8.91
3A1(n→ 3s) Ryd. 9.80 9.66 −0.14 1.008 9.54 9.15 9.20 9.49 9.30

N2
3Σ+

u(π → π∗) Val. 19.20 8.02 7.38 −0.64 1.032 8.20 8.15 8.19 7.66 7.70
3Πg(n→ π∗) Val. 8.66 8.10 −0.56 1.031 8.33 8.20 8.19 8.09 8.01
3Δu(π→ π∗) Val. 9.04 8.48 −0.56 1.031 9.30 9.25 9.30 8.91 8.87

3Σ−u (π → π∗) Val. 10.11 9.66 −0.45 1.029 10.29 10.23 10.29 9.83 9.66

CO 3Π(n→ π∗) Val. 16.46 6.80 6.25 −0.55 1.031 6.51 6.45 6.42 6.36 6.28
3Σ+(π→ π∗) Val. 8.56 8.06 −0.50 1.025 8.63 8.54 8.72 8.34 8.45
3Δ(π→ π∗) Val. 9.39 8.96 −0.43 1.024 9.44 9.33 9.56 9.23 9.27

3Σ−u (π → π∗) Val. 10.25 9.90 −0.35 1.023 10.10 10.01 10.27 9.81 9.80
3Σ+

u Ryd. 11.17 11.07 −0.10 1.008 10.98 10.83 10.60 10.71 10.47

C2H2
3Σ+

u(π → π∗) Val. 12.28 5.83 5.32 −0.51 1.031 5.79 5.75 5.76 5.45 5.53
3Δu(π→ π∗) Val. 6.64 6.23 −0.41 1.028 6.62 6.57 6.60 6.41 6.40

3Σ−u (π → π∗) Val. 7.37 7.05 −0.32 1.026 7.31 7.27 7.29 7.12 7.08

C2H4
3B1u(π→ π∗) Val. 11.49 4.95 4.49 −0.46 1.032 4.62 4.59 4.59 4.46 4.54
3B3u(π→ 3s) Ryd. 7.46 7.42 −0.04 1.004 7.26 7.23 7.19 7.29 7.23
3B1g(π→ 3p) Ryd. 8.23 8.19 −0.04 1.004 7.97 7.95 7.91 8.03 7.98

CH2O 3A2(n→ π∗) Val. 12.00 4.28 3.87 −0.40 1.027 3.58 3.46 3.59 3.56 3.58
3A1(π→ π∗) Val. 6.31 5.75 −0.56 1.033 6.27 6.20 6.30 5.97 6.06
3B2(n→ 3s) Ryd. 7.60 7.56 −0.05 1.002 6.66 6.39 6.44 7.08 7.06

MAE 0.41 0.27 0.27 0.21 0.24 0.10 0.00
MSE 0.41 0.06 0.23 0.10 0.14 0.05 0.00
RMSE 0.45 0.33 0.31 0.27 0.30 0.13 0.00
Max(+) 0.70 0.60 0.63 0.57 0.63 0.29 0.00
Max(−) 0.11 −0.39 −0.40 −0.67 −0.62 −0.11 0.00
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in Eq. (39)] yields basically the same results as its (cheaper) renor-
malized version. Note that, unlike in GW where the renormalization
factor lies in between 0 and 1, the dynamical BSE renormalization
factor ZS defined in Eq. (41) can be smaller or greater than unity. A
clear general trend is the consistent red shift of the static BSE excita-
tion energies induced by the dynamical correction, as anticipated in
Sec. II C.

The results gathered in Tables II and III are depicted in Fig. 1,
where we report the error (with respect to the TBEs) for the sin-
glet and triplet excitation energies computed within the static and
dynamic BSE formalism. From this figure, it is quite clear that
the dynamically corrected excitation energies are systematically
improved upon their static analogs, especially for singlet states. (In
the case of triplets, one would notice a few cases where the excita-
tion energies are underestimated.) In particular, the MAE is reduced
from 0.64 eV to 0.50 eV for singlets and from 0.41 eV to 0.27 eV
for triplets. The MSE and RMSE are also systematically improved
when one takes into account dynamical effects. The second impor-
tant observation extracted from Fig. 1 is that the (singlet and triplet)
Rydberg states are rather unaltered by the dynamical effects with a
correction of few hundredths of eV in most cases. The same com-
ment applies to the CT excited state of HCl. The magnitude of the
dynamical correction for n → π∗ and π → π∗ transitions is much

more important: 0.3 eV–0.5 eV for singlets and 0.3 eV–0.7 eV for
triplets.

Dynamical BSE does not quite reach the accuracy of second-
order methods [CIS(D), ADC(2), CC2, and CCSD] for the singlet
and triplet optical excitations of these small molecules. However, it is
definitely an improvement in terms of performances as compared to
static BSE, especially for triplet states, where dynamical BSE reaches
an accuracy close to CIS(D), ADC(2), and CC2.

Table IV reports singlet and triplet excitation energies for larger
molecules (acrolein H2C==CH−−CH==O, butadiene H2C==CH−−CH
==CH2, diacetylene HC≡≡C−−C≡≡CH, glyoxal O==CH−−CH==O, and
streptocyanine-C1 H2N−−CH==NH2

+) at the static and dynamic BSE
levels with the aug-cc-pVDZ basis set. We also report the CC3 exci-
tation energies computed in Refs. 30–32 with the same basis set.
These will be our reference as they are known to be extremely accu-
rate (0.03–0.04 eV from the TBEs).30–32,83 Errors associated with
these excitation energies (with respect to CC3) are represented in
Fig. 2. As expected, the static BSE excitation energies are much more
accurate for these larger molecules with a MAE of 0.32 eV, a MSE of
0.30 eV, and a RMSE of 0.38 eV. Here again, the dynamical correc-
tion improves the accuracy of BSE by lowering the MAE, MSE, and
RMSE to 0.23, 0.00 eV, and 0.29 eV, respectively. Rydberg states are
again very slightly affected by dynamical effects, while the dynamical

FIG. 1. Error (in eV) with respect to the TBEs of Refs. 30–32 for singlet (top) and triplet (bottom) excitation energies of various molecules obtained with the aug-cc-pVTZ
basis set computed within the static (red) and dynamic (blue) BSE formalism. CT and R stand for charge transfer and Rydberg respectively. See Tables II and III for raw
data.
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TABLE IV. Singlet and triplet excitation energies (in eV) for various molecules obtained with the aug-cc-pVDZ basis set computed at various levels of theory.

BSE@G0W0@HF

Molecule State Nature EGW
g Ωstat

S Ωdyn
S ΔΩdyn

S ZS CC3

Acrolein 1A′′(n→ π∗) Val. 11.67 4.62 4.28 −0.35 1.030 3.77
1A′(n→ π∗) Val. 6.86 6.70 −0.16 1.023 6.67
1A′(n→ 3s) Ryd. 7.57 7.53 −0.04 1.004 6.99

3A′′(n→ π∗) Val. 3.97 3.54 −0.43 1.031 3.47
3A′(π→ π∗) Val. 4.03 3.61 −0.42 1.032 3.95

Butadiene 1Bu(π→ π∗) Val. 9.88 6.25 6.13 −0.12 1.019 6.25
1Ag(π→ π∗) Val. 6.88 6.86 −0.03 1.003 6.68
3Bu(π→ π∗) Val. 3.68 3.25 −0.43 1.032 3.36
3Ag(π→ π∗) Val. 5.51 5.01 −0.50 1.040 5.21
3Bg(π→ 3s) Ryd. 6.29 6.25 −0.04 1.005 6.20

Diacetylene 1Σ−u (π → π∗) Val. 11.01 5.62 5.35 −0.28 1.025 5.44
1Δu(π→ π∗) Val. 5.87 5.63 −0.25 1.024 5.69
3Σ+

u(π → π∗) Val. 4.30 3.82 −0.49 1.031 4.06
3Δu(π→ π∗) Val. 5.04 4.68 −0.36 1.027 4.86

Glyoxal 1Au(n→ π∗) Val. 10.90 3.46 3.14 −0.33 1.028 2.90
1Bg(n→ π∗) Val. 4.96 4.55 −0.41 1.034 4.30
1Bu(n→ 3p) Ryd. 7.90 7.86 −0.04 1.004 7.55
3Au(n→ π∗) Val. 2.77 2.38 −0.39 1.028 2.49
3Bg(n→ π∗) Val. 4.23 3.75 −0.48 1.034 3.91
3Bu(π→ π∗) Val. 5.01 4.47 −0.55 1.034 5.20

Streptocyanine 1B2(π→ π∗) Val. 13.79 7.66 7.51 −0.15 1.019 7.14

MAE 0.32 0.23 0.00
MSE 0.30 0.00 0.00
RMSE 0.38 0.29 0.00
Max(+) 0.85 0.54 0.00
Max(−) −0.19 −0.73 0.00

FIG. 2. Error (in eV) with respect to CC3 for singlet and triplet excitation energies of various molecules obtained with the aug-cc-pVDZ basis set computed within the static
(red) and dynamic (blue) BSE formalism. R stands for Rydberg. See Table IV for raw data.
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corrections associated with the n → π∗ and π → π∗ transitions are
much larger and of the same magnitude (0.3 eV–0.6 eV) for both
types of transitions. This latter observation is somehow different
from the outcomes reached by Rohlfing and co-workers in previ-
ous works46,47 (see Sec. I) where they observed i) smaller corrections
and ii) that n → π∗ transitions are more affected by the dynamical
screening than π → π∗ transitions. The larger size of the molecules
considered in Refs. 46 and 47 may play a role on the magnitude of the
corrections, even though we do not observe here a significant reduc-
tion going from small systems (N2, CO, . . .) to larger ones (acrolein,
butadiene, . . .). We emphasize further that previous calculations46,47

were performed within the plasmon-pole approximation for mod-
eling the dynamical behavior of the screened Coulomb potential,
while we go beyond this approximation in the present study [see
Eq. (23)]. Finally, while errors were defined with respect to the
experimental data in Refs. 46 and 47, we consider here as reference
high-level CC calculations performed with the very same geometries
and basis sets than our BSE calculations. As pointed out in previous
works,83–85 a direct comparison between theoretical transition ener-
gies and experimental data is a delicate task as many factors (such as
zero-point vibrational energies and geometrical relaxation) must be
taken into account for fair comparisons. Further investigations are
required to better evaluate the impact of these considerations on the
influence of dynamical screening.

To provide further insight into the magnitude of the dynamical
correction to valence, Rydberg, and CT excitations, let us consider a
simple two-level system with i = j = h and a = b = l, where (h, l) stand
for HOMO and LUMO. The dynamical correction associated with
the HOMO–LUMO transition reads

Wstat
hh,ll−W̃hh,ll(Ω1) = −4[hh ∣hl][ll ∣hl]( 1

ΩRPA
hl
− 1

Ω1
hl −ΩRPA

hl
), (43)

where the only RPA excitation energy, ΩRPA
hl = εl − εh + 2(hl ∣ lh),

is again the HOMO–LUMO transition, i.e., m = hl [see Eq. (26)].
For CT excitations with vanishing HOMO–LUMO overlap [i.e., (h|l)
≈ 0] and small excitonic binding energy, [hh|hl] ≈ 0 and [ll|hl] ≈ 0
so that one can expect the dynamical correction to be weak. Like-
wise, Rydberg transitions that are characterized by a delocalized
LUMO state, that is, a small HOMO–LUMO overlap, are expected to
undergo weak dynamical corrections. The discussion for π→ π∗ and
n→ π∗ transitions is certainly more complex, and molecule-specific
symmetry arguments must be invoked to understand the magnitude
of the [hh|hl] and [ll|hl] terms.

As a final comment, let us discuss the two singlet states of buta-
diene reported in Table IV.31,36–42 As discussed in Sec. I, these corre-
spond to a bright state of 1Bu symmetry with a clear single-excitation
character and a dark 1Ag state including a substantial fraction of
double excitation character (roughly 30%). Although they are both
of π→ π∗ nature, they are very slightly altered by dynamical screen-
ing with corrections of − 0.12 eV and − 0.03 eV for the 1Bu and 1Ag

states, respectively. The small correction on the 1Ag state might be
explained by its rather diffuse nature (similar to a Rydberg state).86

V. CONCLUSION
The BSE formalism is quickly gaining momentum in the

electronic structure community, thanks to its attractive compu-
tational scaling with system size and its overall accuracy for

modeling single excitations of various natures in large molecu-
lar systems. It now stands as a genuine cost-effective excited-state
method and is regarded as a valuable alternative to the popular
TD-DFT method. However, the vast majority of the BSE calcu-
lations are performed within the static approximation in which,
in complete analogy with the ubiquitous adiabatic approximation
in TD-DFT, the dynamical BSE kernel is replaced by its static
limit. One key consequence of this static approximation is the
absence of higher excitations from the BSE optical spectrum. Fol-
lowing Strinati’s footsteps who originally derived the dynamical
BSE equations,2,55,56 several groups have explored the BSE for-
malism beyond the static approximation by retaining (or reviv-
ing) the dynamical nature of the screened Coulomb potential44,48,49

or via a perturbative approach coupled with the plasmon-pole
approximation.43,46,47,57

In the present study, we have computed exactly the dynam-
ical screening of the Coulomb interaction within the random-
phase approximation, going effectively beyond both the usual static
approximation and the plasmon-pole approximation. Dynamical
corrections have been calculated using a renormalized first-order
perturbative correction to the static BSE excitation energies fol-
lowing the work of Rohlfing and co-workers.43,46,47,57 Note that,
although the present study goes beyond the static approximation
of BSE, we do not recover additional excitations as the perturbative
treatment accounts for dynamical effects only on excitations already
present in the static limit. However, we hope to report results on a
genuine dynamical approach in the near future in order to access
double excitations within the BSE formalism. In order to assess the
accuracy of the present scheme, we have reported a significant num-
ber of calculations for various molecular systems. Our calculations
have been benchmarked against high-level CC calculations, allow-
ing one to clearly evidence the systematic improvements brought by
the dynamical correction for both singlet and triplet excited states.
We have found that, although n → π∗ and π → π∗ transitions
are systematically red-shifted by 0.3 eV–0.6 eV, thanks to dynam-
ical effects, their magnitude is much smaller for CT and Rydberg
states.
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APPENDIX A: FOURIER TRANSFORM OF L 0(1, 4; 1′, 3)
In this appendix, we derive Eqs. (15)–(17). Combining the

Fourier transform (with respect to t1) of L0(1, 4; 1′, 3),
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[L0](x1, 4; x1′ , 3 ∣ ω1) = −i∫ dt1eiω1t1 G(1, 3)G(4, 1′) (A1)

(where t1′ = t+
1 ), with the inverse Fourier transform of the Green’s

function, e.g.,

G(1, 3) = ∫
dω
2π

G(x1, x3;ω)e−iωτ13 (A2)

(where τ13 = t1 − t3), we obtain

[L0](x1, 4; x1′ , 3 ∣ ω1)

= ∫
dω
2iπ

G(x1, x3;ω) G(x4, x1′ ;ω − ω1)eiωt3 e−i(ω−ω1)t4 . (A3)

Applying the change of variable ω→ ω + ω1/2, one gets

[L0](x1, 4; x1′ , 3 ∣ ω1)

= eiω1t34

∫
dω
2iπ

G(x1, x3;ω +
ω1

2
)G(x4, x1′ ;ω −

ω1

2
) eiωτ34 ,

(A4)

with τ34 = t3 − t4 and t34 = (t3 + t4)/2. Finally, using the Lehman
representation of the Green’s functions [see Eq. (16)], and picking
up the poles associated with the occupied (virtual) states in the upper
(lower) half-plane for τ34 > 0 (τ34 < 0), one obtains, using the residue
theorem,

∫
dω
2iπ

G(x1, x3;ω +
ω1

2
)G(x4, x1′ ;ω −

ω1

2
)eiωτ

= ∑
bj

ϕb(x1)ϕ∗b (x3)ϕj(x4)ϕ∗j (x1′)
ω1 − (εb − εj) + iη

×[θ(τ)ei(εj+
ω1
2 )τ + θ(−τ)ei(εb− ω1

2 )τ]

− ∑
bj

ϕj(x1)ϕ∗j (x3)ϕb(x4)ϕ∗b (x1′)
ω1 + (εb − εj) − iη

×[θ(τ)ei(εj− ω1
2 )τ + θ(−τ)ei(εb+ ω1

2 )τ] +∑
ab

pp +∑
ij

hh, (A5)

with τ = τ34, and where pp and hh label the particle–particle and
hole–hole channels (respectively) that are neglected here.2 Project-
ing onto ϕ∗a (x1)ϕi(x1′) selects the first line of the right-hand-side of
Eq. (A5), yielding Eq. (17) with ω1 → Ωs.

APPENDIX B: ⟨N∣T[ψ̂(6)ψ̂†(5)]∣N,S⟩ IN THE
ELECTRON–HOLE PRODUCT BASIS

We now derive in more detail Eq. (18). Starting with

⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩ = θ(+τ65)⟨N∣ψ̂(6)ψ̂†(5)∣N, S⟩

− θ(−τ65)⟨N∣ψ̂†(5)ψ̂(6)∣N, S⟩, (B1)

we employ the relationship between operators in their Heisenberg
and Schrödinger representations [see Eq. (11)] to obtain

⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩

= +θ(+τ65)⟨N∣ψ̂(x6)e−iĤτ65 ψ̂†(x5)∣N, S⟩eiEN
0 t6 e−iEN

S t5

− θ(−τ65)⟨N∣ψ̂†(x5)e+iĤτ65 ψ̂(x6)∣N, S⟩eiEN
0 t5 e−iEN

S t6 . (B2)

Expanding now the field operators with creation/destruction opera-
tors in the orbital basis, i.e.,

ψ̂(x6) = ∑
p
ϕp(x6)âp, ψ̂†(x5) = ∑

q
ϕ∗q (x5)â†

q , (B3)

one gets

⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩

= ∑
pq
ϕp(x6)ϕ∗q (x5)[θ(+τ65)⟨N∣âpe−iĤτ65 â†

q ∣N, S⟩eiEN
0 t6 e−iEN

S t5

−θ(−τ65)⟨N∣â†
qe+iĤτ65 âp∣N, S⟩eiEN

0 t5 e−iEN
S t6]. (B4)

Assuming now that {εp}’s are proper addition/removal energies,
such as the GW quasiparticle energies, one can use the following
relationships:

e+iĤτ65 â†
p ∣N⟩ = e+i(EN

0 +εp)τ65 ∣N⟩, (B5a)

e−iĤτ65 âq∣N⟩ = e−i(EN
0 −εq)τ65 ∣N⟩, (B5b)

which plugged into Eq. (B4) yield

⟨N∣T[ψ̂(6)ψ̂†(5)]∣N, S⟩

= ∑
pq
ϕp(x6)ϕ∗q (x5)[θ(+τ65)⟨N∣âpâ†

q ∣N, S⟩e−iεpτ65 e−iΩSt5

−θ(−τ65)⟨N∣â†
q âp∣N, S⟩e−iεqτ65 e−iΩSt6], (B6)

leading to Eq. (18) with ΩS = EN
S − EN

0 , t6 = τ65/2 + t65, and
t5 = −τ65/2 + t65.
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