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ABSTRACT
While Diffusion Monte Carlo (DMC) is in principle an exact stochastic method for ab initio electronic structure calculations, in practice,
the fermionic sign problem necessitates the use of the fixed-node approximation and trial wavefunctions with approximate nodes (or zeros).
This approximation introduces a variational error in the energy that potentially can be tested and systematically improved. Here, we present
a computational method that produces trial wavefunctions with systematically improvable nodes for DMC calculations of periodic solids.
These trial wavefunctions are efficiently generated with the configuration interaction using a perturbative selection made iteratively (CIPSI)
method. A simple protocol in which both exact and approximate results for finite supercells are used to extrapolate to the thermodynamic
limit is introduced. This approach is illustrated in the case of the carbon diamond using Slater–Jastrow trial wavefunctions including up to one
million Slater determinants. Fixed-node DMC energies obtained with such large expansions are much improved, and the fixed-node error is
found to decrease monotonically and smoothly as a function of the number of determinants in the trial wavefunction, a property opening the
way to a better control of this error. The cohesive energy extrapolated to the thermodynamic limit is in close agreement with the estimated
experimental value. Interestingly, this is also the case at the single-determinant level, thus, indicating a very good error cancellation in carbon
diamond between the bulk and atomic total fixed-node energies when using single-determinant nodes.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0021036., s

I. INTRODUCTION

A faithful and quantitative first-principles (i.e., ab initio)
description of the electronic structure of solids is one of the great-
est challenges of materials science. For weakly correlated materials

(most simple metals, semiconductors, and insulators), modern
approximations to exact density-functional theory (DFT)1–3 and
approximate many-body perturbation theory (MBPT) approaches
(such as the GW approximation4,5 and the Bethe–Salpeter equa-
tion6–8) generally yield ground- and excited-state properties in good
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agreement with experiment.9,10 In sharp contrast, for strongly cor-
related systems (e.g., transition metal oxides) for which electrons
can no longer be treated as weakly interacting quasiparticles, the
approaches mentioned above may dramatically fail, even qualita-
tively.11,12 An alternative path to describe correlation effects in solids
is to resort to wave-function-based correlated methods, as done in a
number of recent works {e.g., second order Møller-Plesset pertur-
bation theory (MP2),13 coupled cluster single and double (CCSD)
with perturbative triple [CCSD(T)], and the equation of motion-
CCSD (EOM-CCSD)14,15}. However, as single-reference approaches,
they are of limited use for strongly correlated materials. Designing
efficient and general computational approaches with controlled and
testable approximations is, therefore, of great interest.

Quantum Monte Carlo (QMC) methods have been developed
to treat weakly through strongly correlated systems while invoking
few approximations. These include variational Monte Carlo (VMC)
and diffusion Monte Carlo (DMC) in the continuous space,16,17 and
full configuration interaction QMC (FCIQMC)18,19 and auxiliary
field QMC (AFQMC)20,21 in the determinant space. These meth-
ods utilize stochastic integration to help treat the complexity of the
many-body electronic structure problem and are applicable to both
solids and isolated molecules. Importantly, it is becoming possible
to compare these and other many-body methods with each other
on equivalent problems and to both validate their results and focus
improvements.22,23 In this study, we will focus on DMC, which is
one of the most widely used QMC approaches for calculating the
electronic structure of solids.16,24 DMC enjoys a relatively low com-
putational scaling with system size and is well adapted to massive
parallelism.25–29 For bosons, DMC can deliver the exact energy to
an arbitrarily small error. However, for fermionic problems, because
of the uncontrolled fluctuations of the wavefunction sign, a DMC
implementation that does not address the sign problem is not sta-
ble in time.30,31 To address the fermion sign problem and correctly
obtain the required fermionic symmetry, practical DMC calcula-
tions must rely on the fixed-node approximation: the fermionic
constraints are fulfilled by imposing the zeros (nodes) of the wave-
function to be those of an approximate antisymmetric (fermionic)
trial function. However, because these nodes are approximate, the
DMC energy has a residual variational error, referred to as the fixed-
node error. Devising an efficient strategy to improve the trial wave-
function nodes in a systematic way, thus better controlling the only
source of error of the method, brings us closer to achieving a gen-
uine general from-first-principles theory, which is one of the major
challenges of DMC.

One advantage of real space QMC methods is their ability to
flexibly use different forms of trial wavefunctions. Since only the
values and derivatives of the wavefunction are required, there is
no need, in principle, to choose forms that are suited for conven-
tional numerical integration. While it is now standard to utilize
sophisticated multideterminant trial wavefunctions in molecules,
most solid state applications of DMC use a single Slater determi-
nant (SD) trial wavefunction. A Jastrow factor is used to incorporate
dynamical correlations and improve the wavefunction overall, but
it does not change the nodes. Although SD-DMC calculations have
proven valuable in addressing a wide range of problems in chem-
istry and materials science, for example, obtaining near chemical
accuracy in van der Waals binding,32,33 this accuracy is far from gen-
eral. A potentially general strategy to address this problem, which

has been successfully applied to atoms and molecules, is to employ
multideterminant (MD) trial functions.34–37 However, this requires
an efficient method to generate the multideterminant expansion.

In this work, we present a scheme to perform multidetermi-
nant DMC calculations in solids using configuration interaction (CI)
based trial functions. We employ a selected CI (SCI) approach in
which only the most important Slater determinants from the full CI
(FCI) space are identified and selected. Although SCI does not sup-
press the exponential wall of conventional CI calculations, it may
be deferred sufficiently to allow practical calculations. In the case
of atomic and molecular systems, several successful applications of
SCI trial functions in DMC calculations have been reported.34,37–44

Here, we use the configuration interaction using a perturbative selec-
tion made iteratively (CIPSI) algorithm,45 as implemented in the
QUANTUM PACKAGE code46 to generate the trial functions for DMC
calculations on periodic systems. This approach is illustrated by
computing the cohesive energy of carbon diamond in the ther-
modynamic limit. We use the QMCPACK quantum Monte Carlo
package28,29 for the DMC calculations. Although diamond is not
a particularly challenging system with respect to the role of elec-
tron correlation, it is a valuable test system since its cohesive
energy is accurately known and pseudopotential accuracy is not a
major concern. This work may, thus, be considered as a first step
toward the study of more difficult solids where greater correla-
tion effects and the generation of CIPSI expansions may be more
challenging.

The paper is organized as follows: In Sec. II, the theoretical
aspects of the approach are presented. A brief summary of the CIPSI
method is given, and its extension to the case of periodic systems
is described in depth. The computational details are provided in
Sec. III. Results for diamond, both at the single- and multidetermi-
nant levels, are reported and discussed in Sec. IV. Finally, some con-
cluding remarks are given in Sec. V, including areas where further
improvements are desired. Unless otherwise stated, atomic units are
used throughout this paper.

II. THEORY
A. The CIPSI algorithm

In the present manuscript, the CIPSI algorithm developed for
finite-size atomic or molecular systems is generalized to the case
of periodic solids. CIPSI is one of the variants of the broad class
of methods known as SCI. Selecting determinants in the CI space
is a natural idea, and many SCI variants have been developed
under various acronyms and implementations over the last five
decades.34,37,39–41,45,47–80 SCI methods are ordinary CI approaches
except that determinants are not chosen based on predetermined
occupation or excitation criteria but are instead selected step by
step based on their estimated contribution to the FCI energy and/or
wavefunction. It is a particularly successful approach since it is
well recognized that, in a predefined subspace of determinants,
for example, single and double excitations with respect to the
Hartree–Fock (HF) reference, only a small fraction of them make
a non-negligible contribution to the wavefunction.59,81 Therefore,
an on-the-fly selection of determinants has been proposed in the
late 1960s by Bender and Davidson,47 as well as by Whitten and
Hackmeyer.48 The main advantage of SCI methods is that no a priori

J. Chem. Phys. 153, 184111 (2020); doi: 10.1063/5.0021036 153, 184111-2

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

assumption is made on the type of determinants needed to describe
the electronic correlation effects. Therefore, at the potentially greater
price of a blind and automated calculation, a SCI calculation is
less biased by the user’s understanding of the problem’s complex-
ity (for example, when choosing the active space (AS) orbitals for a
particular problem).

The CIPSI approach was developed in 1973 by Huron, Mal-
rieu, and Rancurel.45 In recent years, two of us have revived this
approach34 and developed a very efficient and massively parallel
version of the algorithm that has been implemented in QUANTUM

PACKAGE.46 Briefly, at each iteration n, CIPSI selects some exter-
nal determinants |Dα⟩ not present in the current zeroth-order
wavefunction,

∣Ψ(n)0 ⟩ = ∑
I

c(n)I ∣DI⟩, (1)

where |DI⟩ is an internal determinant. Starting, for example, with
the HF determinant at n = 0, the external determinants are selected
using a criterion based on the estimated gain in correlation energy
evaluated using the second-order perturbation theory that would
result from the inclusion of |Dα⟩. Denoting the second-order
correction as

e(n)α =
∣⟨Ψ(n)0 ∣Ĥ∣Dα⟩∣

2

E(n)var − ⟨Dα∣Ĥ∣Dα⟩
, (2)

where

E(n)var =
⟨Ψ(n)0 ∣Ĥ∣Ψ

(n)
0 ⟩

⟨Ψ(n)0 ∣Ψ
(n)
0 ⟩

(3)

is the variational energy of the wavefunction at the nth iteration, a
number of external determinants associated with the greatest e(n)α
are incorporated into the variational space and the Hamiltonian is
diagonalized to give ∣Ψ(n+1)

0 ⟩ and E(n+1)
var . In practice, the size of the

variational wavefunction is roughly doubled at each iteration. Next,
the second-order Epstein–Nesbet energy correction to the varia-
tional energy (denoted as E(n)PT2) is computed by summing up the
contributions of all external determinants,

E(n)PT2 = ∑
α

e(n)α , (4)

and the total CIPSI energy is given by

E(n)CIPSI = E(n)var + E(n)PT2. (5)

The algorithm is then iterated until some convergence criterion (for
example, ∣E(n)PT2∣ ≤ ϵ) is met. For simplicity, in the following, the
superscript denoting the largest iteration number attained will be
dropped from various expressions. When the number of determi-
nants in the variational space gets large, computing the second-order
correction EPT2 by adding up all contributions eα to the sum becomes
computationally unfeasible. To perform this formidable task, a sim-
ple and efficient hybrid stochastic-deterministic algorithm has been

developed.62 In short, the leading contributions to the sum in Eq. (4)
are exactly computed (deterministic part), while the very large num-
ber of small residual contributions are sampled via a Monte Carlo
algorithm (stochastic part).

B. CIPSI for periodic systems
We now present the extension of CIPSI to periodic solids. As

in any CI calculation, we must define (i) the system (number of elec-
trons, charge, and positions of the nuclei), (ii) the Hamiltonian, and
(iii) the one-electron basis set. The calculation of the one- and two-
electron integrals required for the computation of the Hamiltonian
matrix elements then needs to be discussed.

1. Supercells
In practice, an infinite solid is modeled by a finite supercell

obtained by replicating a given primitive cell ni times in each Carte-
sian direction (i.e., i = x, y, z). Accordingly, we will label a supercell
as nx × ny × nz . In the present study, we will restrict ourselves to the
simplest case of a cubic primitive cell of side L with arbitrary nx, ny,
and nz values. The supercell is then a rectangular cuboid of volume
Ω = N × L3, where N = nxnynz is the total number of primitive cells
replicated to build the supercell.

The supercell being defined, we are led back to an ordinary CI
calculation consisting of the set of electrons and nuclei present in
the supercell and subject to an external periodic electric potential.
We denote RI and ZI the position and charge of the of Ith nuclei of
the primitive cell (I = 1, . . ., Nn). The actual system is then composed
of N ×Nn nuclei at positions RI + taa + tbb + tcc and of N ×Ne elec-
trons, where Ne is the number of electrons of the primitive cell. Here,
t = taa + tbb + tcc = (ta, tb, tc) is the lattice translation vector, and the
triplet of integers (ta, tb, tc) takes all the values needed to generate
the supercell through translations of the primitive cell along its unit
vectors (a, b, c). Similarly, the supercell translation vector is defined
as T = TAA + TBB + TCC = (TA, TB, TC), where, in the case of a
cubic primitive cell, (A, B, C) = (La, Lb, Lc) are the corresponding
unit translation vectors of the supercell.

We emphasize that, in contrast to effective one-body theories
such as HF or DFT, many-body electronic structure calculations
explicitly taking into account the electron–electron interaction, such
as the ones performed here, cannot be restricted to the primitive
cell if accurate properties are to be obtained.16 In one-body theories,
the thermodynamic limit can be reached by indefinitely improving
the k-point sampling of the first Brillouin zone of the primitive cell.
In the presence of electron–electron interaction, the translation of
individual electrons is no longer a symmetry of the Hamiltonian (k
is no longer a good quantum number) and the use of supercells is
mandatory (see, e.g., Refs. 16 and 82 for a discussion of this aspect).

2. Hamiltonian
The supercell electronic Hamiltonian

ĤN = T̂ + V̂ne + V̂ee + V̂nn (6)

has a standard form, except that the electron–electron, electron–
nucleus, and nucleus–nucleus Coulombic potentials, V̂ee, V̂ne, and
V̂nn, respectively, are now periodized to model the interaction of the
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electrons and nuclei belonging to the supercell with the infinite set
of replicas associated with their periodic images, i.e.,

ĤN = −
1
2∑i

∇
2
i −∑

T
∑

i
∑

J

ZJ

∣ri − RJ + T∣

+
1
2∑T

∑
′

ij

1
∣ri − rj + T∣

+
1
2∑T

∑
′

IJ

ZIZJ

∣RI − RJ + T∣
, (7)

where ri is the position of the ith electron, ∑T ≡ ∑
∞
TA=−∞∑

∞
TB=−∞

∑
∞
TC=−∞

, and the prime symbol indicates that the self-interaction
term i = j or I = J has to be excluded when T = 0 = (0, 0, 0).

As is well known, periodic Coulomb potentials are mathemat-
ically ill-defined due to the long-range character of the Coulomb
interaction. The periodic infinite sums in Eq. (7) not only converge
very slowly, but they are also conditionally convergent, meaning that
the result depends on the order of summation. A specific and careful
mathematical treatment has to be introduced in order to provide a
meaningful answer. The standard solution, and the one we employ
here for the three Coulomb potentials in Eq. (7), is to resort to the
Ewald summation technique.

Applying the Ewald summation technique, for example, to the
nucleus–nucleus term V̂nn in Eq. (7) enables one to compute this
term as a sum of two contributions: a short-range contribution in the
real space and a short-range in the reciprocal space. Both contribu-
tions are expressed as rapidly converging infinite sums, thus, leading
to a very fast and efficient calculation of the potential. Explicitly, it is
given by

V̂nn =
1
2∑T

∑
′

IJ

ZIZJ

∣RI − RJ + T∣
erfc[

∣RI − RJ + T∣
√

2σ
]

+
2π
Ω ∑G≠0

e−
σ2G2

2

G2 ∣∑
I

ZIeiG⋅RI ∣

2

−
∑I Z2

I
√

2πσ

−
πσ2

Ω
(∑

I
ZIRI)

2

, (8)

where erfc(x) is the complementary error function, G refers to the
set of quantized reciprocal vectors of the supercell defined by the
condition eiG ⋅T = 1, and σ is a small positive parameter chosen to
facilitate convergence. Additional details can be found, for example,
in Refs. 83 and 84.

3. Basis functions
In this work, the one-electron basis functions are chosen to be

crystalline Gaussian-based atomic orbitals,

χμk(r) = ∑
T

eik⋅Tχ̃μ(r + T), (9)

i.e., the periodized (or translationally symmetry-adapted) version
of the (localized) Gaussian atomic orbitals χ̃μ(r) from the super-
cell. In Eq. (9), the crystal momentum vector k is chosen within
the first Brillouin zone of the primitive cell, and it is sampled from
a Monkhorst–Pack grid,85 an evenly spaced rectangular grid in the
reciprocal space (see Sec. II C). The atomic index μ is referred to as
the band index after periodization.

The molecular orbitals of the system are then defined as

ϕpk(r) =
Nbas

∑
μ=1

Cμp(k) χμk(r), (10)

where Nbas is the number of basis functions, and the molecular
orbital coefficients Cμp(k) are now momentum-dependent due to
the translational-symmetry adaptation of the basis functions. Once
again, we emphasize that, because of the explicit treatment of the
electron–electron interaction, k is no longer a good quantum num-
ber and the orbitals defined above do not have the correct transla-
tional symmetry of the problem. However, choosing such a repre-
sentation is particularly convenient in practice since it allows us to
take full advantage of the techniques and codes developed for the
effective one-particle theories, such as HF and DFT.

4. One- and two-electron integrals
The Hamiltonian and the one-electron basis set having been

defined, the next step in a CI calculation is to evaluate the Hamil-
tonian matrix elements between Slater determinants. This requires
the evaluation of one- and two-electron integrals. It is easy to see
from the expressions of the Hamiltonian [see Eqs. (7) and (8)] and
basis functions [see Eq. (9)] that this can be accomplished by the cal-
culation of the integrals over Fourier transforms of the product of
Gaussian functions for which fast and reliable algorithms have been
developed.14,86,87

The only new aspect with respect to standard CI implemen-
tations is the use of complex-valued orbitals, integrals, and Hamil-
tonian matrix elements. Let us denote the two-electron integrals as

⟨pkpqkq∣rkrsks⟩ = ∬
Ω2

dr1dr2ϕ∗pkp(r1)ϕ∗qkq(r2)

×
1

r12
ϕrkr(r1)ϕsks(r2). (11)

Since the one-particle basis functions are invariant with respect to
the primitive lattice translation vectors t, the two-electron integrals
must conserve crystal momentum, i.e., kp + kq = kr + ks + g, where g
is a reciprocal lattice vector of the primitive cell.

When real-valued orbitals are used, a given two-electron inte-
gral is symmetric with respect to permutations of the orbital indices
p and r, or q and s, as well as with the permutation of the electron
labels 1 and 2, thus, resulting in a 8-fold symmetry of the set of two-
electron integrals. Consequently, the N4

bas four-index integrals can
be mapped to a set of approximately N4

bas/8 unique integral values.88

However, when one considers complex-valued orbitals, the integral
⟨pkpqkq∣rkrsks⟩ is no longer invariant with the permutations of p
and r, or q and s, so the number of unique integral values scales as
N4

bas/2 (exchanging the electron indices 1 and 2 still leaves the value
of the integral unchanged). When storing these complex-valued
integrals, it is useful to recognize that exchanging p with r, or q with
s changes the integral value in a non-trivial way. However, exchang-
ing both of these pairs simultaneously yields the complex conju-
gate of the original value, i.e., ⟨pkpqkq∣rkrsks⟩

∗
= ⟨rkrsks∣pkpqkq⟩.

This allows one to save an additional factor of two in the storage
requirements; one then only needs to store N4

bas/4 complex-valued
two-electron integrals.
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5. Hamiltonian matrix elements
In order to implement FCI or any of its lower-cost alterna-

tives, one must be able to evaluate matrix elements of the Hamil-
tonian in the space of Slater determinants. If the determinants are
all built from the same set of orthonormal spin-orbitals (which
is the case here), then one can evaluate matrix elements via the
usual Slater–Condon rules (see, e.g., Refs. 88 and 89 for an efficient
implementation in a determinant-driven context).

C. Boundary conditions and twist averaging
In order to reduce finite-size effects and to accelerate the con-

vergence to the thermodynamic limit (i.e., N → ∞), it is advanta-
geous to exploit the freedom in the type of periodic boundary condi-
tions of the supercell. By judiciously choosing the electron momenta
k of the basis functions [see Eq. (9)], the boundary conditions can
be easily implemented. Translating one electron of the supercell by
a superlattice vector (say, A = La) generates a phase factor, eiLk ⋅a,
for each of the orbitals of the CI determinants. Accordingly, a global
phase factor common to all determinants is obtained whenever all
these individual phase factors are made equal, that is,

eiLk1 ⋅a = eiLk2 ⋅a = ⋯ = eiθ, (12)

where θ is some arbitrary angle (or twist) between −π and π.
These conditions are fulfilled when momenta are chosen uniformly
spaced in the first Brillouin zone of the lattice (that is, by using a
Monkhorst–Pack grid85) and shifted by a common vector K,

kia = K +
ia

ta

b × c
a ⋅ (b × c)

, (13a)

kib = K +
ib

tb

c × a
b ⋅ (c × a)

, (13b)

kic = K +
ic

tc

a × b
c ⋅ (a × b)

, (13c)

with il = 0, . . ., tl (l = a, b, c) being the twist index. In this case, we
have |D⟩ → eiθ|D⟩ with θ = K ⋅ a. Boundary conditions can be varied
with θ from −π to +π, θ = 0, and θ = ±π corresponding to periodic
and anti-periodic boundary conditions, respectively.

For a given system size, a property O can be computed by aver-
aging out its values for different K values (or twists θ). In the limit of
an infinite set of sampling values, we have

⟨O⟩ =
1

2π ∫
π

−π
dθ⟨Ψθ∣Ô∣Ψθ⟩, (14)

where Ψθ is the exact wavefunction of the system for the corre-
sponding boundary condition. In practice, the integral is computed
as a finite sum over shifted Monkhorst–Pack grids, as expressed by
Eqs. (13a)–(13c). The main effect of twist-averaging is to suppress
the major part of the one-body shell effects in the filling of single-
particle states. Note that each value of θ requires an independent
calculation, the total computational cost is then proportional to the
number of twists.

III. COMPUTATIONAL DETAILS
The DMC method is employed to compute ground-state ener-

gies within the fixed-node approximation. The application of DMC
to solids being now well documented, we refer the interested
reader to the existing literature for the theoretical background (see,
for example, Refs. 16, 28, and 82). Calculations were performed
using QMCPACK.28,29 The integrals over periodized Gaussian-type
orbitals (GTOs) are carried out using the PySCF program,90 which
has been interfaced with QUANTUM PACKAGE.46 Plane wave trial wave-
functions were generated with the QUANTUM ESPRESSO pack-
age.91

To model carbon diamond, we used a primitive cell with two
carbon atoms separated by 1.545 Å (∼3.568 Å for the lattice con-
stant). In order to compute the cohesive energy in the thermody-
namic limit and to correct energies for finite-size effects, we con-
sider supercells made of 16 (2 × 2 × 2), 54 (3 × 3 × 3), and 128
(4 × 4 × 4) atoms with converged twist-averaged (TA) boundary
conditions with a total of 216, 64, and 27 twists, respectively.92

All calculations are carried out using the Burkatzki–Filippi–Dolg
(BFD)93,94 effective core potentials and the associated 2s2p1d
or 3s3p2d1f contracted Gaussian-type orbital (GTO) basis sets
(BFD-vDZ or BFD-vTZ, respectively). For the plane wave trial wave-
function, consistently with Ref. 95, a 200Ry cutoff was applied to
the kinetic energy. Both SD-DMC and MD-DMC calculations used
a time step of 0.001 a.u. and Casula’s T-moves for pseudopotential
evaluation.96

The trial wavefunctions for DMC consist of either a single-
determinant or multideterminant expansion determined using
CIPSI multiplied by a Jastrow factor with one-, two-, and three-body
terms. The parameters for the one- and two-body terms were repre-
sented by B-splines and the three-body term by a polynomial. These
parameters were optimized in VMC through a variant of the linear
method of Umrigar et al.97 Note that the coefficients of the CIPSI
expansion were not optimized in VMC, and therefore, in this study,
the nodal surface is wholly determined by the CIPSI expansion.

IV. RESULTS
A. Single-determinant fixed-node DMC

To establish a reference for the multideterminant studies, we
first investigate the dependence of single-determinant DMC ener-
gies on the initial orbitals and their basis sets. In Fig. 1, we show the
dependence of the fixed-node DMC energy for single-determinant
trial wavefunctions built with local-density approximation (LDA),98

Perdew–Burke–Ernzerhof (PBE),99 Becke, 3-parameter, Lee–Yang–
Parr (B3LYP),100–103 and HF orbitals calculated with the BFD-vDZ
and BFD-vTZ basis sets. These calculations were performed for
the simplest case of a single primitive cell consisting of two car-
bon atoms (1 × 1 × 1 supercell), with the SD-DMC energy being
computed at the Γ point. As an additional reference, the SD-DMC
energy obtained using LDA orbitals expanded in a large plane-wave
(PW) basis set with a high energy cutoff of 175 hartree and the
same pseudopotential is also reported. Using a larger energy cut-
off of 250 hartree leads to a difference in DMC energies below 1
mhartree, and therefore, our initial choice of 175 hartree is close
to the complete basis set limit. Note that the fixed node SD-DMC
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FIG. 1. SD-DMC total energy of the 1 × 1 × 1 diamond primitive cell computed
at the Γ point using SD trial wavefunctions built with various orbitals (LDA, PBE,
B3LYP, and HF) and the BFD-vDZ (blue) or BDF-vTZ (red) GTO basis sets. The
solid line corresponds to the SD-DMC energy obtained using a large PW basis
set and LDA orbitals, and the dashed lines indicate the associated statistical error.
The raw data can be found in the supplementary material.

energies using nodal surfaces of the Kohn–Sham determinants
obtained from different DFT approximations differ by less than
the variation in the pure DFT energies, 6.8(6) mhartree vs 13.05
mhartree, respectively. The SD-DMC energies obtained with LDA
orbitals expanded in the BFD-vTZ and PW basis sets coincide within
1.0(6) mhartree, thus, indicating the suitability of the BFD-vTZ basis
set. On the other hand, an appreciably higher SD-DMC energy
is obtained when using the BFD-vDZ basis set. Consequently, in
the following, all calculations are performed with the BFD-vTZ
basis set.

In Table I, we report twist-averaged SD-DMC total energies
(per primitive cell) as a function of the supercell size N, as well as the
corresponding cohesive energies. We also report the SD-DMC ener-
gies computed by Shin et al. in Ref. 95, which were obtained using a

TABLE I. Twist-averaged SD-DMC total energies (in hartree/cell) and cohesive ener-
gies (in hartree) of diamond for supercells of increasing size N = n3 (n = 2, 3, and
4). The (extrapolated) thermodynamic values and the cohesive energies (with and
without ZPE correction) are also reported.

SD-DMC SD-DMC
Cell size (n × n × n) (B3LYP/GTO)a (PBE/PW)b

2 × 2 × 2 −11.4217(1) −11.4199(1)
3 × 3 × 3 −11.4078(7) −11.4049(1)
4 × 4 × 4 −11.4020(5) −11.3995(1)
Extrapolated (N →∞)c −11.3971(7) −11.3949(1)
Cohesive energy (w/o ZPE) 0.2772(4) 0.2755(1)
Cohesive energy (w/ZPE) 0.2712(4) 0.2695(1)

aResults from the present work obtained with B3LYP orbitals and the BFD-vTZ GTO
basis set.
bResults from Ref. 95 obtained with PBE orbitals and a PW basis set.
cExtrapolated values obtained using a simple quadratic fit of the energies for the three
sizes as a function of 1/N.

PW basis set and a single Slater determinant wavefunction of PBE
orbitals and using the same twist values.104 Results are compared
to our SD-DMC data using B3LYP orbitals and the BFD-vTZ basis
set. The SD-DMC total energies from the two calculations are very
close, with a difference never greater than 3 mhartree. Electronic
cohesive energies calculated by subtracting from the crystal energy
the SD-DMC energy of the isolated atoms calculated using the same
approaches [−5.4226(2) hartree/atom for PBE/PW and−5.421 38(2)
hartree/atom for B3LYP/GTO] lead to a difference of only 3.0 ± 0.4
mhartree once extrapolated to the thermodynamic limit. Adding
the zero-point vibrational energy (ZPE) correction estimated to
be 6.0 mhartree/atom105 brings the SD-DMC(B3LYP/GTO) cohe-
sive energy to 1.3 ± 0.4 mhartree of the estimated experimen-
tal value106 of 0.2699 hartree (see Table I). The result indicates
that there is very good error cancellation between the bulk and
atomic total energies at the single-determinant level in carbon
diamond.

B. Multideterminant trial wavefunctions
In Fig. 2, we show the convergence of the CIPSI variational

energy Evar and its second-order corrected value Evar + EPT2 as a
function of the number of determinants in the reference space (see
Sec. II A) for the 1 × 1 × 1 diamond primitive cell at the Γ point
and using the BFD-vTZ basis set. Independent calculations using
both HF and B3LYP orbitals are shown. Despite the large size of
the Hilbert space (about ∼1011 determinants), energy convergence
is achieved with a reasonable accuracy using less than ∼107 deter-
minants. In addition, the FCI limit is independent of the orbital
set employed in the SCI calculation, as it should be. In the varia-
tional calculations, convergence to millihartree accuracy is achieved
at about 3 × 106 determinants using whether HF or B3LYP orbitals.

FIG. 2. Convergence of the CIPSI energies with the size of the variational space
for the 1 × 1 × 1 diamond primitive cell computed at the Γ point. Both the CIPSI
variational energy Evar and its second-order corrected value Evar + EPT2 (dashed)
computed with the BFD-vTZ basis set using HF orbitals (black) and B3LYP orbitals
(red) are reported. The raw data can be found in the supplementary material.
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When the perturbative corrections to the energy are included, mil-
lihartree accuracy is reached with only ∼2 × 103 and ∼4 × 103

determinants for HF and B3LYP orbitals, respectively.
Although CIPSI rapidly converges to the FCI limit for the 1 × 1

× 1 supercell (Γ point calculations), the exponential character of the
FCI approach is still present, and for larger supercells, the number
of determinants required to reach the FCI limit to the required accu-
racy rapidly becomes computationally intractable. To alleviate this
issue and to enable treating larger supercells, we limit the SCI calcu-
lations to a subset of orbitals belonging to a pre-defined active space,
thus, performing, in practice, a CIPSI calculation for a set of Ne
electrons distributed among No orbitals, denoted as CIPSI (Ne, No),
instead of a FCI one. Of course, there are many ways of choosing
such an active space (AS). A natural choice is to build the AS using
the natural orbitals obtained in a preliminary CIPSI calculation. This
is what has been systematically done for molecular systems in a
number of works published by some of the authors.39–41,43,62,67,68,78–80

Here, in view of the large number of orbitals needed for solids, an
alternative choice could be to employ instead the natural orbitals
of a preliminary MP2 calculation. Another possibility is to use
Kohn–Sham orbitals instead of Hartree–Fock ones. Here, we have
chosen to postpone the investigation of such important aspects
to a future detailed study, and we have considered the simplest
approach where only virtual orbitals with one-electron energies
below a given energy threshold are included in the active space.
Although this choice is rather crude (and certainly not optimal),
it is important to emphasize that the choice of the active space for
constructing the multideterminant trial wavefunction is expected
to be less critical in DMC than when just limiting the calculation
to pure CI. High-energy orbitals are, indeed, expected to have a
small impact on the wavefunction and, thus, on the location of the
nodes.

Figure 3 illustrates the use CIPSI(Ne, No). The error in DMC
total energy (in hartree/atom) computed at the Γ point as a function
of the number of orbitals belonging to the active space is presented.
The error is calculated with respect to the converged DMC value
obtained with 58 orbitals. For the 1 × 1 × 1 primitive cell, results
are reported for both B3LYP and HF orbitals and for a number of

FIG. 3. Error in the DMC total energy (in hartree/atom) computed at the Γ point as
a function of the number of orbitals in the active space for CIPSI(Ne, No) trial wave-
functions built with HF orbitals (1 × 1 × 1 cell, Ne = 8) or B3LYP orbitals (1 × 1 × 1,
Ne = 8 and 2 × 1 × 1 cells, Ne = 16). These calculations are performed with the
BFD-vTZ basis set. The raw data can be found in the supplementary material.

orbitals in CIPSI(8,No) up to the maximum of 58. For the 2 × 1 × 1
supercell, only the B3LYP results are presented, and the maximum
number of orbitals in CIPSI(16,No) corresponds to only half of the
total number of orbitals (116). For the 1 × 1 × 1 supercell, a well-
converged SD-DMC energy is achieved when using only 30 of the
58 B3LYP orbitals, but all orbitals must be retained to obtain a well-
converged result when using HF orbitals. For the larger 2 × 1 × 1
cell for which the CIPSI(16,No) is built with B3LYP orbitals, con-
vergence to within 1.0 ± 0.3 mhartree/atom is reached between 30
and 40 orbitals out of a total of 116. Due to the better conver-
gence of the calculations with truncated orbital spaces when using
B3LYP than HF orbitals, B3LYP orbitals are used in all subsequent
calculations.

C. Multideterminant fixed-node DMC
Figure 4 illustrates one of the central points of this work,

namely, the possibility of improving nodal surfaces in a systematic
way using SCI multideterminant trial wavefunctions. Fixed-node
DMC total energies using various SD and MD trial wavefunctions
are represented in Fig. 4 for the 1 × 1 × 1 diamond primitive cell.
On the left side of the graph, DMC energies obtained with SD trial
wavefunctions built with LDA, PBE, B3LYP, and HF orbitals, respec-
tively, are reported. (These are the same as the BFD-vTZ results
reported in Fig. 1.) At the scale of Fig. 4, the various SD-DMC
energies are very similar and are much higher in energy than the
MD-DMC energies, which are up to 0.05 hartree lower. This indi-
cates a significant improvement in the quality of the nodal surface.
On the right side of the graph, the convergence of the MD-DMC
energy as a function of the size of the CIPSI expansion is presented
using both the full active space (lower black curve) and active space
(upper blue curve). The corresponding numerical data (including

FIG. 4. Comparison of DMC total energies (in hartree) computed at the Γ point
with various SD and MD trial wavefunctions for the 1 × 1 × 1 diamond primitive
cell. The SD-DMC energies (red dots) are computed with trial wavefunctions built
with LDA, PBE, B3LYP, and HF orbitals. The MD-DMC energies are given as a
function of the size of the CIPSI expansion for the FCI space, which contains
58 orbitals (black curve) and CIPSI(8,30) (blue curve). The multideterminant trial
wavefunctions are built with B3LYP orbitals obtained with the BFD-vTZ basis set.
Numbers in parentheses on the abscissa correspond to the values of the truncation
threshold ϵ (see the text). Error bars are either smaller or of the order of the size
of the markers. The raw data are gathered in Table II and in the supplementary
material.
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TABLE II. DMC total energies (in hartree/cell) computed at the Γ point for the 1 × 1 × 1 diamond primitive cell containing eight electrons, as a function of the truncation threshold
ϵ on the coefficients of the CIPSI wavefunction computed within the full active space (58 orbitals) and the active space (30 orbitals) with the BFD-vTZ basis set. For both spaces,
the final CIPSI wavefunction is obtained by stopping the selection process when the number of determinants exceeds about 1 × 106. The number of determinants in the trial
wavefunction and intrinsic variance in the energy are also reported for each value of ϵ as well as the variance of the energy inferred from the DMC data.

Truncation Full active space Active space

threshold ϵ No. of determinants DMC energy Variance No. of determinants DMC energy Variance

10–2 178 −10.5638(3) 0.2428(4) 200 −10.5633(2) 0.239 9(5)
10–3 4 124 −10.5707(3) 0.2010(1) 3 204 −10.5694(3) 0.195 0(2)
10–4 80 864 −10.5791(4) 0.1730(2) 57 990 −10.5754(7) 0.172 0(2)
10–5 738 998 −10.5812(3) 0.1382(7) 578 025 −10.5776(4) 0.163 84(5)
10–6 1 043 197 −10.5817(4) 0.1372(8) 1 282 995 −10.5788(8) 0.163 38(9)
ϵ = 0 1 137 782 −10.5817(7) 0.1363(8) 1 510 556 −10.5796(9) 0.162 60(2)

the number of determinants and the intrinsic variance for DMC cal-
culations) are reported in Table II. Here, ϵ is a threshold associated
with the number of determinants retained in the expansion, and
ϵ = 0 corresponds to the full CIPSI wavefunction (which is much
smaller than the FCI space due to a limit on the total number of
determinants retained, see Ref. 107). In view of the computational
cost of using a very large number of determinants in the trial wave-
function in DMC calculations, it is important to limit the determi-
nants used to the smallest number possible. As seen in Table II, the
fixed-node energies are essentially converged within statistical errors
at ϵ = 10−5 and, thus, considering the full CIPSI wavefunction (ϵ = 0)
in DMC is not necessary here. Note that the number of determinants
needed to reach a given threshold ϵ is smaller for the FCI space than
the CIPSI(8,30) space. This results from the greater flexibility avail-
able with the FCI space. The convergence curves of the MD-DMC
energy both for the FCI and CIPSI(8,30) spaces are similar, and at
near-convergence, the two DMC energies differ by only about 2 ± 1
mhartree. The DMC intrinsic variance in the energy shows a system-
atic improvement with the number of determinants in the expansion
when using the FCI space.

As seen from Fig. 4, the DMC energy decreases monotonically
and smoothly when increasing the number of determinants in the
trial wavefunction. As discussed in Ref. 41, there is no guarantee that
increasing the number of Slater determinants in the trial wavefunc-
tion lowers the DMC energy because the selection procedure does
not explicitly optimize the nodal surface and DMC energy. However,
in all applications performed so far—atoms,34,42,107 molecules,38–41,61

and now solids—a systematic decrease of the fixed-node DMC
energy is observed whenever the SCI trial wavefunction is improved
variationally, upon increasing the number of determinants, the size
of the basis set, or the size of the active space.

The DMC total energy (in hartree/cell) of diamond as a func-
tion of 1/N, where N is the size of the system, i.e., the total num-
ber of primitive cells replicated to create the supercell (N = 8, 18,
27, and 64 for 2 × 2 × 2, 3 × 3 × 2, 3 × 3 × 3, and 4 × 4 × 4,
respectively), computed with various methods and approximations
is reported in Fig. 5. The two upper curves (solid lines) report
SD-DMC (red) and MD-DMC (black) energies computed at the Γ
point. The two lower curves (dashed lines) are SD-DMC (red) and
MD-DMC (black) energies obtained by twist-averaging, as described

in Sec. II C. To minimize the statistical fluctuations, we re-optimized
the Jastrow factor at each twist. The number of determinants in the
multideterminant trial wavefunction varies from about 600 000 to
1 200 000.

SD-DMC calculations (at the Γ point and twist-averaged) have
been performed for the 2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4 supercells.
MD-DMC calculations are much more computationally demanding
than their SD-DMC analogs. Consequently, MD-DMC calculations
have been limited to the 2 × 2 × 2 and 3 × 3 × 3 supercells, with
the energy of the 4 × 4 × 4 supercell being estimated as explained
below. In all cases, we only computed the symmetry inequivalent
twists in the Brillouin zone, using symmetries to reduce the number
of expensive DMC calculations. There are 16, 8, and 4 inequivalent

FIG. 5. SD- and MD-DMC total energies (in hartree/cell) as a function of the inverse
of the system size N. Energies are calculated either at the Γ point (Γ, solid lines) or
by twist-averaging (TA, dashed lines). Error bars are either smaller or of the order
of the size of the markers. Each set of energies [SD (red lines) or MD (black lines)]
are fitted simultaneously using Eq. (16a) or Eq. (16b). The raw data can be found
in the supplementary material.

J. Chem. Phys. 153, 184111 (2020); doi: 10.1063/5.0021036 153, 184111-8

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0021036#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

twists out of 216, 64, and 27 total for the 2 × 2 × 2, 3 × 3 × 3, and
4 × 4 × 4 supercells, respectively.

To further reduce the computational effort, an approximate
version of the twist-averaged MD-DMC energies was employed for
the 3 × 3 × 3 and 4 × 4 × 4 superlattices. In this procedure, we
estimate the energy at a given twist (other than Γ) via

EDMC(wi) ≈ EDMC(w0) + EB3LYP
HF (wi) − EB3LYP

HF (w0), (15)

where wi denotes the ith twist (w0 being the Γ point) and EB3LYP
HF is the

energy computed with the HF energy functional and B3LYP orbitals.
This approximation relies on the B3LYP band structure being suf-
ficiently accurate but can be further improved by considering how
these data are extrapolated to the thermodynamic limit, as we will
detail below.

Figure 6 reports the SD- and MD-DMC energies computed
both exactly and using Eq. (15) for the 16 independent twists of
the 2 × 2 × 2 supercell. To facilitate the visualization of the actual
differences between data, the 16 DMC energies are artificially con-
nected with straight lines. The two upper (red) curves and the two
lower (black) curves correspond to SD-DMC and MD-DMC calcu-
lations, respectively. As one can see, there is an excellent agreement
between the exact (solid lines) and approximate (dashed lines) treat-
ment of twist averaging in the case of SD-DMC, introducing an error
of only 1.7(2) mHa in the twist averaged energy. For MD-DMC, the
agreement is not as good but remains satisfactory for the present
purpose, introducing an error of 8(4) mHa to the twist averaged
energy.

We can estimate the twist-averaged DMC energy of the
4 × 4 × 4 supercells by combining the extrapolated value of the
DMC energy at the Γ point and a twist-averaged contribution from
Eq. (15). The extrapolated value reported in Fig. 5 has been obtained
as the value resulting from a quadratic fit of the three values corre-
sponding to the Γ point energies of the 2 × 2 × 2, 3 × 3 × 2, and
3 × 3 × 3 supercells. Note that, as is common in solid state calcu-
lations, a more precise fit function based on the theoretical basis
could be employed (see, for example, Refs. 82 and 108). However,

FIG. 6. Twist-averaged SD-DMC (red) and MD-DMC (black) total energies (in
hartree/cell) for the 2 × 2 × 2 supercell as a function of twist index (16 independent
twists out of the 216 reciprocal grid). Solid and dashed lines correspond to exact
and approximate calculations [using Eq. (15)], respectively. The DMC energies at
various twist indices are connected by straight lines only to guide the eyes. The
raw data can be found in the supplementary material.

here, in view of the remaining errors that are certainly much larger
than the difference in error between various extrapolation fit func-
tions, we have used the simplest possible fit function that reproduces
the approximate parabolic shape of the curves. Fitting our data only
within the domain of size where a quasi-linear regime is reached
would clearly be preferable but the high computational cost of the
MD-DMC data restricts the range of accessible sizes.

Finally, in the spirit of extracting the maximum of information
from our limited set of data, we propose to exploit the fact that both Γ
point and twist-averaged energies must converge to the same value
in the thermodynamic limit (i.e., N → ∞). This exact property is
used as a constraint when fitting simultaneously both sets of energies
with quadratic expressions, i.e.,

EΓ
fit(N) = EN→∞

DMC +
cΓ1
N

+
cΓ2
N2 , (16a)

ETA
fit (N) = EN→∞

DMC +
cTA

1

N
+

cTA
2

N2 . (16b)

The five parameters in Eqs. (16a) and (16b), i.e., EN→∞
DMC and the four

ci’s, are obtained by minimizing the χ2-type function,

χ2
= ∑

i
[

EΓ
DMC(Ni) − EΓ

fit(Ni)

δEΓ
DMC(Ni)

]

2

+∑
i
[

ETA
DMC(Ni) − ETA

fit (Ni)

δETA
DMC(Ni)

]

2

, (17)

where δEDMC’s are the corresponding statistical errors, and the sum
runs over N i = 8, 18, 27, and 64 for the Γ point energies (centered
grid) and N i = 8, 27, and 64 for the twist-averaged (TA) energies.
The quantity EN→∞

DMC represents the best estimate of the DMC energy
in the thermodynamic limit.

Following this extrapolation procedure, the SD-DMC total
energy in the thermodynamic limit is found to be EN→∞

SD-DMC
= −11.3986(2) hartree. Combined with the atomic SD-DMC total
energy of −5.4214(2) hartree, it yields a cohesive energy (includ-
ing the ZPE contribution) of 0.2719(3) hartree, an estimate close
to the value of 0.2712(4) hartree obtained by a simple quadratic fit
of the DMC energies computed at the Γ point (see Table I). In the
multideterminant case, we find EN→∞

MD-DMC = −11.4246(4) hartree,
and using the atomic MD-DMC energy computed at −5.4335(1)
hartree, we obtain a ZPE-corrected cohesive energy of 0.2729(1)
hartree. This value compares quite well with the estimated exper-
imental cohesive energy of 0.2699 hartree extracted from Ref.
106. While this value is also similar to that obtained with single-
determinant wavefunctions, there has been a significant lowering in
the supercell and atomic energies due to use of multideterminant
trial wavefunctions. In particular, the energy of the atom obtained
from the MD-DMC calculations is essentially exact (for the chosen
pseudopotential).

It should be emphasized that comparing calculated and exper-
imental cohesive energies is subject to the error made in estimating
the ZPE contribution. The value of 6.0 mhartree/atom employed
in this work was obtained by Schimka et al. using a zero-point
anharmonic expansion based on DFT energy calculations.105 For
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internal consistency and better accuracy, evaluating the ZPE cor-
rection using the very same DMC methodology would be desir-
able. Some caution is then needed with respect to the particularly
good agreement between our final cohesive energies and the exper-
imental value found in this work. Some fortuitous cancellation of
systematic errors between ZPE, remaining fixed-node, and extrapo-
lation errors could be at work. A number of earlier ab initio calcu-
lations of the diamond cohesive energy have been reported in the
literature. Values obtained using DMC with a single-determinant
Slater–Jastrow trial wavefunction [0.2699(2) hartree from Hood
et al.109 and 0.2702(4) hartree from Shin et al.95] agree closely with
the estimated experimental value of 0.2699 hartree. The CCSD cal-
culations of McClain et al.14 and Booth et al.19 give significantly
smaller values of the cohesive energy, namely, 0.2527 hartree and
0.2621 hartree, respectively. Finally, at the CCSD(T) level, 0.2712
hartree was reported by Booth et al.19 In our calculations, because
the cohesive energy of the solid is slightly too large and the pseu-
doatom is solved essentially exactly, the remaining difference with
the experimental data must lie with a combination of the uncertain-
ties in the extrapolation, time step error in the DMC calculations, or
pseudopotential construction and evaluation. The ZPE error is also
sizable compared to the residual difference from experiment in all of
the literature predictions.

For the 2 × 2 × 2 supercell containing 16 carbon atoms, it is also
instructive to compare our results to those of Ríos et al.110 using the
nodes of an optimized backflow (BF) trial wavefunction. The pseu-
dopotentials used are different, making a direct comparison of the
energies not possible, although they are both around −11.4 hartree
per primitive cell (see Table X of Ref. 110 and data in our supple-
mentary material). The BF wavefunction improves the DMC energy
by approximately 0.007 hartree per primitive cell over the single-
determinant result. A truncated expansion of 65 determinants in our
Γ point CIPSI DMC yields a reduction of 0.011 hartree per primi-
tive cell. A larger expansion of, for example, about 106 determinants
achieves a 0.0253(5) hartree improvement over the SD result per
primitive cell.

V. CONCLUSIONS
We have demonstrated the feasibility of fixed-node DMC cal-

culations for periodic solids using large multideterminant trial wave-
functions built from SCI expansions. Using as an example carbon
diamond, this procedure is shown to be able to improve systemat-
ically the nodal surface of the trial wavefunction. In particular, we
have found that the fixed-node DMC energy decreases monotoni-
cally and smoothly as a function of the number of determinants in
the trial wavefunction.

Performing DMC calculations using large CI expansions
together with large supercells is not feasible without further approx-
imations due to overall cost. Here, this issue was addressed by
introducing an approximate, yet well-defined, protocol combin-
ing both exact and approximate results for finite supercells and
a controlled fitting procedure to reach the thermodynamic limit.
Although approximate, our estimate of the diamond cohesive energy
is, to the best of our knowledge, the first example of a fully ab initio
MD-DMC calculation of a periodic solid. In our protocol, only the
Jastrow parameters are optimized in the VMC step, with the linear

coefficients of the CIPSI expansions being kept fixed. The main
motivation for not optimizing the coefficients is to exploit the prop-
erty of SCI methods to provide in a simple, well-defined (linear
optimization), and systematic way of generating sequences of wave-
functions of increasing quality, leading to a systematic reduction of
the fixed-node error (see Figs. 3 and 4). Defining such sequences
is important, for example, when extrapolating fixed-node energies
at different supercell sizes or computing an energy difference such
as the cohesive energy. However, the computational cost of using
(very) large CI expansions in DMC calculations is high, and strate-
gies for generating more compact expansions are certainly desir-
able. Based on multideterminant DMC studies for isolated molecules
(see, for example, Refs. 44, 111, and 112), a practical solution con-
sists of optimizing the CI coefficients in the presence of the Jastrow
factor and keeping only the most important determinants. How-
ever, such optimizations are challenging because the parameters
in the Jastrow factors enter non-linearly and the objective func-
tion that one must minimize is evaluated stochastically. From a
more general perspective, it would also be desirable to investigate
the comparative performance with other types of trial wavefunc-
tions including those with backflow as introduced by Ríos et al.110

(a first numerical comparison is presented in this work) or of
geminal forms.113

Finally, we note that, to exploit the full potential of the present
approach, more challenging materials must be investigated. In addi-
tion, it would be instructive to compute physical properties other
than the cohesive energy that would potentially display a different
dependence on the nodal error. We hope to be able to address these
points in future studies.

SUPPLEMENTARY MATERIAL

See the supplementary material for the raw data associated with
each figure of the manuscript.
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