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ABSTRACT: The Bethe−Salpeter equation (BSE) formalism is
steadily asserting itself as a new efficient and accurate tool in the
ensemble of computational methods available to chemists in order
to predict optical excitations in molecular systems. In particular,
the combination of the so-called GW approximation, giving access
to reliable ionization energies and electron affinities, and the BSE
formalism, able to model UV/vis spectra, has shown to provide
accurate singlet excitation energies with a typical error of 0.1−0.3
eV. With a similar computational cost as time-dependent density-
functional theory (TD-DFT), BSE is able to provide an accuracy
on par with the most accurate global and range-separated hybrid
functionals without the unsettling choice of the exchange−
correlation functional, resolving further known issues (e.g.,
charge-transfer excitations). In this Perspective, we provide a
historical overview of BSE, with a particular focus on its
condensed-matter roots. We also propose a critical review of its strengths and weaknesses in different chemical situations.

In its press release announcing the awarding of the 2013
Nobel prize in Chemistry to Karplus, Levitt, andWarshel, the

Royal Swedish Academy of Sciences concluded by stating
“Today the computer is just as important a tool for chemists as
the test tube. Simulations are so realistic that they predict the
outcome of traditional experiments.”1 Martin Karplus’s Nobel
lecture moderated this statement, introducing his presentation
by a 1929 quote from Dirac emphasizing that laws of quantum
mechanics are “much too complicated to be soluble”, urging
scientists to develop “approximate practical methods”. This is
where the electronic structure community stands, attempting to
develop robust approximations to study with increasing
accuracy the properties of ever more complex systems. The
study of optical excitations (also known as neutral excitations in
condensed-matter systems), from molecules to extended solids,
has witnessed the development of a large number of such
approximate methods with numerous applications to a large
variety of fields, from the prediction of the color of precious
metals for jewelry2 to the understanding, e.g., of the basic
principles behind organic photovoltaics, photocatalysis, and
DNA damage under irradiation.3−5 The present Perspective
aims at describing the current status and upcoming challenges
for the Bethe−Salpeter equation (BSE) formalism6,7 that, while
sharing many features with time-dependent density-functional
theory (TD-DFT),8 including computational scaling with
system size, relies on a very different formalism, with specific
difficulties but also potential solutions to known TD-DFT
issues.9

Theory. The BSE formalism6,7,10−13 belongs to the family of
Green ’s function many-body perturbation theories
(MBPT)14−16 together with, for example, the algebraic-
diagrammatic construction (ADC) techniques17 or the polar-
ization propagator approaches (like SOPPA18) in quantum
chemistry. While the one-body density stands as the basic
variable in density-functional theory (DFT),19,20 the pillar of
Green’s functionMBPT is the (time-ordered) one-bodyGreen’s
function

x x x xG t t i N T t t N( , ) ( ) ( )ψ ψ′ ′ = − ⟨ | [ ̂ ̂ ′ ′ ]| ⟩†
(1)

where |N⟩ is the N-electron ground-state wave function. The
operators ψ̂(xt) and ψ̂†(x′t′) remove and add an electron
(respectively) in space-spin-time positions (xt) and (x′t′), while
T is the time-ordering operator. For t > t′, G provides the
amplitude of probability of finding, on top of the ground-state
Fermi sea (i.e., higher in energy than the highest-occupied
energy level), an electron in (xt) that was previously introduced
in (x′t′), while for t < t′ the propagation of an electron hole
(often simply called a hole) is monitored.
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This definition indicates that the one-body Green’s function is
well-suited to obtain “charged excitations”, more commonly
labeled as electronic energy levels, as obtained, e.g., in direct or
inverse photoemission experiments where an electron is ejected
or added to theN-electron system. In particular, and as opposed
to Kohn−Sham (KS) DFT, the Green’s function formalism
offers a more rigorous and systematically improvable path for
obtaining the ionization potential IN = E0

N−1− E0
N, the electronic

affinity AN = E0
N − E0

N+1, and the experimental (photoemission)
fundamental gap

E I AN N
g
fund = − (2)

of the N-electron system, where E0
N corresponds to its ground-

state energy. Because these energy levels are key input quantities
for the subsequent BSE calculation, we start by discussing these
in some detail.
Charged Excitations. A central property of the one-body

Green’s function is that its frequency-dependent (i.e.,
dynamical) spectral representation has poles at the charged
excitation energies (i.e., the ionization potentials and electron
affinities) of the system

x x
x x

G
f f

i
( , ; )

( ) ( )

sgn( )s

s s

s s
∑ω

ω ε η ε μ
′ =

* ′

− + × − (3)

where μ is the chemical potential and η is a positive infinitesimal;
εs = Es

N+1− E0
N for εs > μ, and εs = E0

N− Es
N−1 for εs < μ. Here, Es

N is
the total energy of the sth excited state of theN-electron system.
The fs’s are the so-called Lehmann amplitudes that reduce to
one-body orbitals in the case of single-determinant many-body
wave functions (see below). Unlike KS eigenvalues, the poles of
the Green’s function {εs} are proper addition/removal energies
of the N-electron system, leading to well-defined ionization
potentials and electronic affinities. In contrast to standardΔSCF
techniques, the knowledge of G provides the full ionization
spectrum, as measured by direct and inverse photoemission
spectroscopy, not only that associated with frontier orbitals.
Using the equation-of-motion formalism for the creation−

destruction operators, it can be shown formally that G verifies

rh G G( ) (1, 2) d3 (1, 3) (3, 2) (1, 2)
t

1
1

∫ δ∂
∂

− − Σ =
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
(4)

where we introduce the composite index, e.g., 1≡ (x1t1). Here, δ
is Dirac’s delta function, h the one-body Hartree Hamiltonian,
and Σ the so-called exchange−correlation (xc) self-energy
operator. Using the spectral representation of G (see eq 3),
dropping spin variables for simplicity, one gets the familiar
eigenvalue equation, i.e.,

r r r r r r rh f f f( ) ( ) d ( , ; ) ( ) ( )s s s s s∫ ε ε+ ′Σ ′ ′ =
(5)

which formally resembles the KS equation20 with the difference
that the self-energy Σ is nonlocal, energy-dependent, and
nonhermitian. The knowledge of Σ allows us to access the true
addition/removal energies, namely, the entire spectrum of
occupied and virtual electronic energy levels, at the cost of
solving a generalized one-body eigenvalue equation.
The GW Self-Energy. While the equations reported above are

formally exact, it remains to provide an expression for the xc self-
energy operator Σ. This is where Green’s function practical
theories differ. Developed by Lars Hedin in 1965 with

application to the interacting homogeneous electron gas,14 the
GW approximation15,21 follows the path of linear response by
considering the variation of G with respect to an external
perturbation (see Figure 1). The resulting equation, when

compared with the equation for the time-evolution of G (see eq
4), leads to a formal expression for the self-energy

i G W(1, 2) d34 (1, 4) (3, 1 ) (42, 3)∫Σ = Γ+
(6)

whereW is the dynamically screened Coulomb potential and Γ
is the so-called “vertex” function. The notation 1+ means that the
time t1 is taken at t1

+ = t1 + 0
+ for the sake of causality, where 0+ is

a positive infinitesimal. The neglect of the vertex, i.e., Γ(42, 3) =
δ(23)δ(24), leads to the so-calledGW approximation of the self-
energy

iG W(1, 2) (1, 2) (2, 1 )GWΣ = +
(7)

that can be regarded as the lowest-order perturbation in terms of
the screened Coulomb potential W with

W v v W(1, 2) (1, 2) d34 (1, 3) (3, 4) (4, 2)0∫ χ= +

(8a)

iG G(1, 2) (1, 2 ) (2, 1 )0χ = − + +
(8b)

where χ0 is the independent electron susceptibility and v the bare
Coulomb potential. Equation 8a can be recast as

W v v v(1, 2) (1, 2) d34 (1, 3) (3, 4) (4, 2)∫ χ= +
(9)

where χ is the interacting susceptibility. In this latter expression,
(vχv) represents the field created in (2) by the charge
rearrangement of the N-electron system generated by a (unit)

Figure 1. Hedin’s pentagon connects the Green’s function G, its
noninteracting analogue G0, the irreducible vertex function Γ, the
irreducible polarizability P, the dynamically screened Coulomb
potential W, and the self-energy Σ through a set of five integro-
differential equations known as Hedin’s equations.14 The path made of
black arrows shows theGW process which bypasses the computation of
Γ (gray arrows). As input, one must provide KS (or HF) orbitals and
their corresponding energies. Depending on the level of self-
consistency in the GW calculation, only the orbital energies or both
the orbitals and their energies are corrected. As output, GW provides
corrected quantities, i.e., quasiparticle energies and W, which can then
be used to compute the BSE optical excitations of the system of interest.
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charge added in (1). As such, this term contains the effect of
dielectric screening (or polarization in a quantum chemist
language). As in a standard ΔSCF calculation, the GW
formalism contains the response of the N-electron system to
an electron added (removed) to any virtual (occupied)
molecular orbital, but without the restriction that only frontier
orbitals can be tackled. This explains that the GW one-electron
energies are proper addition/removal energies.
In practice, the input G and χ0 required to initially build ΣGW

are chosen as the “best” Green’s function and susceptibility that
can be easily computed, namely, the KS or Hartree−Fock (HF)
ones where the {εp, f p} of eq 3 are taken to be KS (or HF)
eigenstates. Taking then (ΣGW−Vxc) as a correction to the KS xc
potential Vxc, a first-order correction to the input KS energies
{εp

KS} is obtained by solving the so-called quasiparticle equation

V( )p p
GW

p
KS KS xc KSω ε ϕ ω ϕ= + ⟨ |Σ − | ⟩ (10)

As a nonlinear equation, the self-consistent quasiparticle eq 10
has various solutions associated with different spectral weights.
The existence of a well-defined quasiparticle energy requires a
solution with a large spectral weight, i.e., close to unity, a
condition not always fulfilled for states far from the fundamental
gap.22

Such an approach, where input KS energies are corrected to
yield better electronic energy levels, is labeled as the single-shot,
or perturbative, G0W0 technique. This simple scheme was used
in the early GW studies of extended semiconductors and
insulators,23−26 and surfaces,27−29 allowing the dramatic
reduction of the errors associated with KS eigenvalues in
conjunction with common local or gradient-corrected approx-
imations to the xc potential. In particular, the well-known “band
gap” problem,30,31 namely, the underestimation of the occupied
to unoccupied bands energy gap at the KS local-density
approximation (LDA) level, was dramatically reduced, bringing
the agreement with experiment to within a few tenths of an
electronvolt with a computational cost scaling quartically with
the system size (see below). A compilation of data for G0W0
applied to extended inorganic semiconductors can be found in
ref 32.
Although G0W0 provides accurate results (at least for weakly/

moderately correlated systems), it is strongly starting-point-
dependent because of its perturbative nature. For example, the
quasiparticle energies, and in particular the HOMO−LUMO
gap, depends on the input KS eigenvalues. Tuning the starting
point functional or applying a self-consistent GW scheme are
two different approaches commonly employed to tackle this
problem. We will comment further on this particular point
belowwhen addressing the quality of the BSE optical excitations.

Another important feature compared to other perturbative
techniques, the GW formalism can tackle finite and periodic
systems and does not present any divergence in the limit of zero
gap (metallic) systems.33 However, remaining a low-order
perturbative approach starting with a single-determinant mean-
field solution, it is not intended to explore strongly correlated
systems.34

Neutral Excitations. Like TD-DFT, BSE deals with the
calculations of optical (or neutral) excitations, as measured by
optical (e.g., absorption) spectroscopy. However, while TD-
DFT starts with the variation of the charge density ρ(1) with
respect to an external local perturbation U(2), the BSE
formalism considers a generalized four-point susceptibility, or
two-particle correlation function, that monitors the variation of
the one-body Green’s function G(1, 1′) with respect to a
nonlocal external perturbation U(2, 2′):7

U
L

G
U

(1, 2) DFT (1)
(2)

(1, 2; 1 , 2 ) BSE (1, 1 )
(2 , 2)

χ ρ= ∂
∂

→ ′ ′ = ∂ ′
∂ ′

(11)

The formal relation χ(1, 2) = −iL(1, 2; 1+, 2+) with ρ(1) =
−iG(1, 1+) offers a direct bridge between the TD-DFT and BSE
worlds. The equation of motion for G (see eq 4) can be
reformulated in the form of a Dyson equation

G G G v U G( )H0 0= + + + Σ (12)

that relates the full (interacting) Green’s function, G, to its
noninteracting version, G0, where vH and U are the Hartree and
external potentials, respectively. The derivative with respect toU
of this Dyson equation yields the self-consistent Bethe−Salpeter
equation

L L

L L

(1, 2; 1 , 2 ) (1, 2; 1 , 2 )

d3456 (1, 4; 1 , 3) (3, 5; 4, 6) (6, 2; 5, 2 )

0

0
BSE∫

′ ′ = ′ ′

+ ′ Ξ ′

(13)

where L0(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) is the noninteracting 4-
point susceptibility and

i v i
G

(3, 5; 4, 6) (3, 6) (34) (56)
(3, 4)
(6, 5)

BSE δ δΞ = + ∂Σ
∂

(14)

is the so-called BSE kernel. This equation can be compared to its
TD-DFT analogue

(1, 2) (1, 2) d34 (1, 3) (3, 4) (4, 2)0 0
DFT∫χ χ χ χ= + Ξ

(15)

where

v
V

(3, 4) (3, 4)
(3)

(4)
DFT

xc

ρ
Ξ = + ∂

∂ (16)

is the TD-DFT kernel. Plugging now theGW self-energy (see eq
7), in a scheme that we label BSE@GW, leads to an approximate
version of the BSE kernel

i v

W

(3, 5; 4, 6) (3, 6) (34) (56)

(3 , 4) (36) (45)

BSE δ δ

δ δ

Ξ =

− + (17)

where it is customary to neglect the derivative (∂W/∂G) that
introduces again higher orders inW.35−37 At that stage, the BSE
kernel is fully dynamical, i.e., it explicitly depends on the

We hope that, by providing a
snapshot of the ability of BSE in
2020, the present Perspective will
motivate a larger community to
participate in the development of
this alternative to TD-DFT which,
we believe, may become a very
valuable computational tool for

the physical chemistry
community.
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frequency ω. Taking the static limit, i.e., W(ω = 0), for the
screened Coulomb potential, which replaces the static DFT xc
kernel, and expressing eq 13 in the standard product space
{ϕi(r)ϕa(r′)} [where (i, j) label occupied spatial orbitals and (a,
b) label unoccupied spatial orbitals], leads to an eigenvalue
problem similar to the so-called Casida equations in TD-DFT:38

R C

C R
X
Y

X
Y

m

m m

m

m− * − *
= Ω

i
k
jjjj

y
{
zzzz
i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

(18)

with electron−hole (eh) eigenstates written as

r r r r r rX Y( , ) ( ) ( ) ( ) ( )m
eh

e h
ia

ia
m

i h a e ia
m

i e a h∑ψ ϕ ϕ ϕ ϕ= [ + ]
(19)

where m indexes the electronic excitations. The {ϕi/a} are
typically the input (KS) eigenstates used to build the GW self-
energy. They are here taken to be real in the case of finite-size
systems. In the case of a closed-shell singlet ground state, the
resonant and coupling parts of the BSE Hamiltonian read

R ia jb W( ) ( )ai bj a
GW

i
GW

ij ab ij ab, ,ε ε δ δ κ= − + | − (20)

C ia bj W( )ai bj ib aj, ,κ= | − (21)

with κ = 2 or 0 if one targets singlet or triplet excited states
(respectively), and

r r r r r r r rW Wd d ( ) ( ) ( , ; 0) ( ) ( )ij ab i j a b, ∬ ϕ ϕ ω ϕ ϕ= ′ ′ = ′ ′

(22)

where we notice that the two occupied (virtual) eigenstates are
taken at the same position of space, in contrast with the (ia|jb)
bare Coulomb term defined as

r r r r r r r ria jb v( ) d d ( ) ( ) ( ) ( ) ( )i a j b∬ ϕ ϕ ϕ ϕ| = ′ − ′ ′ ′
(23)

Neglecting the coupling term C between the resonant term R
and antiresonant term −R* in eq 18, leads to the well-known
Tamm−Dancoff approximation (TDA).
As compared to TD-DFT, (i) the GW quasiparticle energies

{εi/a
GW} replace the KS eigenvalues and (ii) the nonlocal screened

Coulomb matrix elements replaces the DFT xc kernel. We
emphasize that these equations can be solved at exactly the same
cost as the standard TD-DFT equations once the quasiparticle
energies and screened Coulomb potentialW are inherited from
preceding GW calculations. This defines the standard (static)
BSE@GW scheme that we discuss in this Perspective,
highlighting its pros and cons.
Historical Overview. Originally developed in the framework of

nuclear physics,6 the BSE formalism has emerged in condensed-
matter physics around the 1960s at the tight-binding level with

the study of the optical properties of simple semiconduc-
tors.37,39,40 Three decades later, the first ab initio implementa-
tions, starting with small clusters,11,41 extended semiconductors,
and wide-gap insulators,12,42,43 paved the way to the popular-
ization in the solid-state physics community of the BSE
formalism.
Following pioneering applications to periodic polymers and

molecules,44−47 BSE gained much momentum in quantum
chemistry48 with, in particular, several benchmarks49−56 on large
molecular sets performed with the very same parameters
(geometries, basis sets, etc.) as the available higher-level
reference calculations.57 Such comparisons were grounded in
the development of codes replacing the plane-wave paradigm of
solid-state physics byGaussian basis sets, together with adequate
auxiliary bases when resolution-of-the-identity (RI) techni-
ques58 were used.
An important conclusion drawn from these calculations was

that the quality of the BSE excitation energies is strongly
correlated to the deviation of the preceding GW HOMO−
LUMO gap

EGW GW GW
g LUMO HOMOε ε= − (24)

with the experimental (photoemission) fundamental gap
defined in eq 2.
Standard G0W0 calculations starting with KS eigenstates

generated with (semi)local functionals yield much larger
HOMO−LUMO gaps than the input KS gap

Eg
KS

LUMO
KS

HOMO
KSε ε= − (25)

but still too small as compared to the experimental value, i.e.

E E EG W
g
KS

g g
fund0 0≪ < (26)

Such a residual discrepancy has been attributed by several
authors to “overscreening”, namely, the effect associated with
building the susceptibility χ based on a grossly underestimated
(KS) band gap. This leads to a spurious enhancement of the
screening or polarization and, consequently, to an under-
estimated G0W0 gap as compared to the (exact) fundamental
gap. More prosaically, the G0W0 approach is constructed as a
first-order perturbation theory, so by correcting a very “bad”
zeroth-order KS system one cannot expect to obtain an accurate
corrected gap. Such an underestimation of the fundamental gap
leads to a similar underestimation of the optical gap Eg

opt, i.e., the
lowest optical excitation energy:

E E E E EN N
Bg

opt
1 0 g

fund= − = + (27)

Figure 2. Definition of the optical gap Eg
opt and fundamental gap Eg

fund. EB is the electron−hole or excitonic binding energy, while IN and AN are the
ionization potential and the electron affinity of the N-electron system. Eg

KS and Eg
GW are the KS and GW HOMO−LUMO gaps. See main text for the

definition of the other quantities.
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where EB accounts for the excitonic effect, that is, the
stabilization induced by the attraction of the excited electron
and its hole left behind (see Figure 2).
Such a residual gap problem can be significantly improved by

adopting xc functionals with a tuned amount of exact
exchange59,60 that yield a much improved KS gap as a starting
point for the GW correction.56,61−63 Alternatively, self-
consistent approaches such as eigenvalue self-consistent
(evGW)24 or quasiparticle self-consistent (qsGW)64 schemes,
where corrected eigenvalues, and possibly orbitals, are reinjected
in the construction of G and W, have been shown to lead to a
significant improvement of the quasiparticle energies in the case
of molecular systems, with the advantage of significantly
removing the dependence on the starting point function-
al.62,65−69 As a result, BSE singlet excitation energies starting
from such improved quasiparticle energies were found to be in
much better agreement with reference calculations. For sake of
illustration, an average error of 0.2 eV was found for the well-
known Thiel set57 gathering ca. 200 representative singlet
excitations from a large variety of representative mole-
cules.50,51,55,56 This is equivalent to the best TD-DFT results
obtained by scanning a large variety of hybrid functionals with
various amounts of exact exchange.
Charge-Transfer Excited States. A very remarkable success of

the BSE formalism lies in the description of charge-transfer

(CT) excitations, a notoriously difficult problem for TD-DFT
adopting standard (semi)local functionals.70 Similar difficulties
emerge in solid-state physics for semiconductors where
extendedWannier excitons, characterized by weakly overlapping
electrons and holes (Figure 3), cause a dramatic deficit of
spectral weight at low energy.71 These difficulties can be
ascribed to the lack of long-range electron−hole interaction with
local xc functionals. It can be cured through an exact exchange
contribution, a solution that explains the success of (optimally
tuned) range-separated hybrids for the description of CT
excitations.59,60 The analysis of the screened Coulomb potential
matrix elements in the BSE kernel (see eq 17) reveals that such
long-range (nonlocal) electron−hole interactions are properly
described, including in environments (solvents, molecular solid,
etc.) where the screening reduces the long-range electron−hole
interactions. The success of the BSE formalism to treat CT
excitations has been demonstrated in several studies,66,72−79

opening the way to the modeling of key applications such as
doping,80 photovoltaics, or photocatalysis in organic systems.
Combining BSE with PCM and QM/MMModels. The ability to

account for the effect on the excitation energies of an
electrostatic and dielectric environment (an electrode, a solvent,
a molecular interface, etc.) is an important step toward the
description of realistic systems. Pioneering BSE studies
demonstrated, for example, the large renormalization of charged
and neutral excitations in molecular systems and nanotubes
close to a metallic electrode or in bundles.74,81,82 Recent
attempts to merge the GW and BSE formalisms with model

polarizable environments at the PCM or QM/MM levels83−89

paved the way not only to interesting applications but also to a
better understanding of the merits of these approaches relying
on the use of the screened Coulomb potential designed to
capture polarization effects at all spatial ranges. As a matter of
fact, dressing the bare Coulomb potential with the reaction field
matrix [v(r, r′) → v(r, r′) + vreac(r, r′; ω)] in the relation
between the screened Coulomb potential W and the
independent-electron susceptibility (see eq 8a) allows us to
perform GW and BSE calculations in a polarizable environment
at the same computational cost as the corresponding gas-phase
calculation. The reaction field operator vreac(r, r′; ω) describes
the potential generated in r′ by the charge rearrangements in the
polarizable environment induced by a source charge located in r,
where r and r′ lie in the quantum mechanical subsystem of
interest. The reaction field is dynamical because the dielectric
properties of the environment, such as the macroscopic
dielectric constant ϵM(ω), are in principle frequency dependent.
Once the reaction field matrix is known, with typically

N Norb MM
2[ ] operations (where Norb is the number of orbitals

and NMM the number of polarizable atoms in the environment),
the full spectrum of GW quasiparticle energies and BSE neutral
excitations can be renormalized by the effect of the environment.
A remarkable property87 of the scheme described above,

which combines the BSE formalism with a polarizable
environment, is that the renormalization of the electron−
electron and electron−hole interactions by the reaction field

A very remarkable success of the
BSE formalism lies in the de-

scription of charge-transfer (CT)
excitations, a notoriously difficult
problem for TD-DFT adopting
standard (semi)local functionals.

Figure 3. Symbolic representation of (a) extended Wannier exciton
with large electron−hole average distance, and (b) Frenkel (local) and
charge-transfer (CT) excitations at a donor−acceptor interface.
Wannier and CT excitations require long-range electron−hole
interaction accounting for the host dielectric constant. In the case of
Wannier excitons, the binding energy EB can be well approximated by
the standard hydrogenoid model where μ is the effective mass and ϵ is
the dielectric constant.
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captures both linear-response and state-specific contributions90

to the solvatochromic shift of the optical lines, allowing
treatment on the same footing for local (Frenkel) and CT
excitations. This is an important advantage as compared to, e.g.,
TD-DFTwhere linear-response and state-specific effects have to
be explored with different formalisms.
To date, environmental effects on fast electronic excitations

are included only by considering the low-frequency optical
response of the polarizable medium (e.g., considering the ϵ∞ ≈
1.78 macroscopic dielectric constant of water in the optical
range), neglecting the frequency dependence of the dielectric
constant in the optical range. Generalization to fully frequency-
dependent polarizable properties of the environment would
allow exploring systems where the relative dynamics of the
solute and the solvent are not decoupled, i.e., situations where
neither the adiabatic nor the antiadiabatic limits are expected to
be valid (for a recent discussion, see ref 91).
We now leave the description of successes to discuss

difficulties and future directions of developments and improve-
ments.
The Computational Challenge. As emphasized above, the BSE

eigenvalue equation in the single-excitation space (see eq 18) is
formally equivalent to that of TD-DFT or TD-HF.92 Searching
iteratively for the lowest eigenstates exhibits the same Norb

4[ ]
matrix−vector multiplication computational cost within BSE
and TD-DFT. Concerning the construction of the BSE
Hamiltonian, it is no more expensive than building its TD-
DFT analogue with hybrid functionals, reducing again to

Norb
4[ ] operations with standard RI techniques. Explicit

calculation of the full BSE Hamiltonian in transition space can
be further avoided using density matrix perturbation theory,72,93

not reducing though the Norb
4[ ] scaling, but sacrificing further

the knowledge of the eigenvectors. Exploiting further the locality
of the atomic orbital basis, the BSE absorption spectrum can be
obtained with Norb

3[ ] operations using such iterative
techniques.94 With the same restriction on the eigenvectors, a
time-propagation approach, similar to that implemented for TD-
DFT,95 combined with stochastic techniques to reduce the cost
of building the BSE Hamiltonian matrix elements, allows
quadratic scaling with systems size.96

In practice, the main bottleneck for standard BSE calculations
as compared to TD-DFT resides in the preceding GW
calculation that scales as Norb

4[ ] with system size using plane-
wave basis sets or RI techniques, but with a rather large
prefactor. The field of low-scaling GW calculations is however
witnessing significant advances. While the sparsity of, for
example, the overlap matrix in the atomic orbital basis allows
reducing the scaling in the large size limit,97,98 efficient real-
space grids and time techniques are blooming,99,100 borrowing
in particular the well-known Laplace transform approach used in
quantum chemistry.101 Together with a stochastic sampling of
virtual states, this family of techniques allow setting up linear
scaling GW calculations.102 The separability of occupied and
virtual states summations lying at the heart of these approaches
are now spreading fast in quantum chemistry within the
interpolative separable density fitting (ISDF) approach applied
to the calculation, with cubic scaling, of the susceptibility needed
in random-phase approximation (RPA) and GW calcula-
tions.103−105 These ongoing developments pave the way to
applying the GW@BSE formalism to systems containing several
hundred atoms on standard laboratory clusters.

The Triplet Instability Challenge. The analysis of the singlet−
triplet splitting is central to numerous applications such as
singlet fission or thermally activated delayed fluorescence
(TADF). From a more theoretical point of view, triplet
instabilities that often plague the applicability of TD-DFT are
intimately linked to the stability analysis of restricted closed-
shell solutions at the HF106 and KS107 levels. While TD-DFT
with range-separated hybrids can benefit from tuning the range-
separation parameter(s) as a mean to act on the triplet
instability,108 BSE calculations do not offer this pragmatic way
out because the screened Coulomb potential that builds the
kernel does not contain any parameter to tune.
Benchmark calculations109,110 clearly concluded that triplets

are notably too low in energy within BSE and that the use of the
TDA was able to partly reduce this error. However, as it stands,
the BSE accuracy for triplets remains rather unsatisfactory for
reliable applications. An alternative cure was offered by
hybridizing TD-DFT and BSE, that is, by adding to the BSE
kernel the correlation part of the underlying DFT functional
used to build the susceptibility and resulting screened Coulomb
potential W.111

The Challenge of the Ground-State Energy. In contrast to TD-
DFT which relies on KS-DFT as its ground-state analogue, the
ground-state BSE energy is not a well-defined quantity, and no
clear consensus has been found regarding its formal definition.
Consequently, the BSE ground-state formalism remains in its
infancy with very few available studies for atomic and molecular
systems.88,112−115

A promising route, which closely follows RPA-type formal-
isms,116 is to calculate the ground-state BSE energy within the
adiabatic-connection fluctuation−dissipation theorem
(ACFDT) framework.117 As a result of comparisons with both
similar and state-of-art computational approaches, it was
recently shown that the ACFDT@BSE@GW approach yields
extremely accurate PES around equilibrium and can even
compete with high-order coupled cluster methods in terms of
absolute ground-state energies and equilibrium distances.115

However, their accuracy near the dissociation limit remains an
open question.112,113,118−120 Indeed, in the largest available
benchmark study113 encompassing the total energies of the
atoms H−Ne, the atomization energies of the 26 small
molecules forming the HEAT test set, and the bond lengths
and harmonic vibrational frequencies of 3d transition-metal
monoxides, the BSE correlation energy, as evaluated within the
ACFDT framework,117 was mostly discarded from the set of
tested techniques because of instabilities (negative frequency
modes in the BSE polarization propagator) and replaced by an
approximate (RPAsX) approach where the screened-Coulomb
potential matrix elements was removed from the resonant
electron−hole contribution.113,121 Moreover, it was also
observed in ref 115 that, in some cases, unphysical irregularities
on the ground-state PES appear because of the appearance of
discontinuities as a function of the bond length for some of the
GW quasiparticle energies. Such an unphysical behavior stems
from defining the quasiparticle energy as the solution of the

Ongoing developments pave the
way to applying the GW@BSE

formalism to systems containing
several hundred atoms on
standard laboratory clusters.
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quasiparticle equation with the largest spectral weight in cases
where several solutions can be found (see eq 10). We refer the
interested reader to refs 22 and 122−125 for detailed
discussions.
The Challenge of Analytic Nuclear Gradients. The features of

ground- and excited-state potential energy surfaces (PES) are
critical for the faithful description and a deeper understanding of
photochemical and photophysical processes.126 For example,
chemoluminescence and fluorescence are associated with
geometric relaxation of excited states, and structural changes
upon electronic excitation.127 Reliable predictions of these
mechanisms, which have attracted much experimental and
theoretical interest lately, require exploring the ground- and
excited-state PES. From a theoretical point of view, the accurate
prediction of excited electronic states remains a challenge,128

especially for large systems where state-of-the-art computational
techniques (such as multiconfigurational methods129) cannot be
afforded. For the last two decades, TD-DFT has been the go-to
method to compute absorption and emission spectra in large
molecular systems.
In TD-DFT, the PES for the excited states can be easily and

efficiently obtained as a function of the molecular geometry by
simply adding the ground-state DFT energy to the excitation
energy of the selected state. One of the strongest assets of TD-
DFT is the availability of first- and second-order analytic nuclear
gradients (i.e., the first- and second-order derivatives of the
excited-state energy with respect to atomic displacements),
which enables the exploration of excited-state PES.130

A significant limitation of the BSE formalism, as compared to
TD-DFT, lies in the lack of analytic nuclear gradients for both
the ground and excited states, preventing efficient studies of
many key excited-state processes. While calculations of the GW
quasiparticle energy ionic gradients is becoming increasingly
popular,131−135 only one pioneering study of the excited-state
BSE gradients has been published to date.136 In this seminal
work devoted to small molecules (CO and NH3), only the BSE
excitation energy gradients were calculated, with the approx-
imation that the gradient of the screened Coulomb potential can
be neglected, computing further the KS-LDA forces as its
ground-state contribution.
Beyond the Static Approximation. Going beyond the static

approximation is a difficult challenge which has been, nonethe-
less, embraced by several groups.7,137−145 As mentioned earlier
in this Perspective, most BSE calculations are performed within
the so-called static approximation, which substitutes the
dynamically screened (i.e., frequency-dependent) Coulomb
potential W(ω) by its static limit W(ω = 0) (see eq 22). It is
important tomention that diagonalizing the BSEHamiltonian in
the static approximation corresponds to solving a linear
eigenvalue problem in the space of single excitations, while it
is, in its dynamical form, a nonlinear eigenvalue problem (in the
same space) which is much harder to solve from a numerical
point of view. In complete analogy with the ubiquitous adiabatic
approximation in TD-DFT, one key consequence of the static
approximation is that double (and higher) excitations are
completely absent from the BSE optical spectrum, which
obviously hampers the applicability of BSE as double excitations
may play, indirectly, a key role in photochemistry mechanisms.
Higher excitations would be explicitly present in the BSE
Hamiltonian by “unfolding” the dynamical BSE kernel, and one
would recover a linear eigenvalue problem with, nonetheless, a
much larger dimension. Corrections to take into account the
dynamical nature of the screening may or may not recover these

multiple excitations. However, dynamical corrections permit, in
any case, to recover, for transitions with a dominant single-
excitation character, additional relaxation effects coming from
higher excitations.
From a more practical point of view, dynamical effects have

been found to affect the positions and widths of core-exciton
resonances in semiconductors,36,37 rare gas solids, and transition
metals.146 Using first-order perturbation theory, Rohlfing and
co-workers have developed an efficient way of taking into
account the dynamical effects via a plasmon-pole approximation
combined with the TDA.137−139,147 With such a scheme, they
have been able to compute the excited states of biological
chromophores, showing that taking into account the electron−
hole dynamical screening is important for an accurate
description of the lowest n→ π* excitations.138,139,147 Studying
PYP, retinal, andGFP chromophoremodels, Ma et al. found that
“the influence of dynamical screening on the excitation energies
is about 0.1 eV for the lowest π → π* transitions, but for the
lowest n → π* transitions the influence is larger, up to 0.25
eV.”139 Zhang et al. have studied the frequency-dependent
second-order BSE kernel, and they have observed an appreciable
improvement over configuration interaction with singles (CIS),
time-dependent Hartree−Fock (TDHF), and adiabatic TD-
DFT results.143 Rebolini and Toulouse have performed a similar
investigation in a range-separated context, and they have
reported a modest improvement over its static counterpart.144

In these two latter studies, they also followed a (nonself-
consistent) perturbative approach within the TDA with a
renormalization of the first-order perturbative correction.
Conclusion. Although far from being exhaustive, we hope that

this Perspective provides a concise and fair assessment of the
strengths and weaknesses of the BSE formalism of many-body
perturbation theory. To do so, we have briefly reviewed the
theoretical aspects behind BSE and its intimate link with the
underlying GW calculation that one must perform to compute
quasiparticle energies and the dynamically screened Coulomb
potential, two of the key input ingredients associated with the
BSE formalism. We have then provided a succinct historical
overview with a particular focus on its condensed-matter roots
and the lessons that the community has learned from several
systematic benchmark studies on large molecular systems.
Several success stories are then discussed (charge-transfer
excited states and combination with reaction field methods),
before debating some of the challenges faced by the BSE
formalism (computational cost, triplet instabilities, ambiguity in
the definition of the ground-state energy, lack of analytic nuclear
gradients, and limitations due to the static approximation). We
hope that, by providing a snapshot of the ability of BSE in 2020,
the present Perspective will motivate a larger community to
participate in the development of this alternative to TD-DFT
which, we believe, may become a very valuable computational
tool for the physical chemistry community.
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