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ABSTRACT: Similar to other electron correlation methods, many-
body perturbation theory methods based on Green's functions, such as
the so-called GW approximation, suffer from the usual slow
convergence of energetic properties with respect to the size of the
one-electron basis set. This displeasing feature is due to the lack of
explicit electron−electron terms modeling the infamous Kato
electron−electron cusp and the correlation Coulomb hole around it.
Here, we propose a computationally efficient density-based basis-set
correction based on short-range correlation density functionals which
significantly speeds up the convergence of energetics toward the
complete basis set limit. The performance of this density-based
correction is illustrated by computing the ionization potentials of the
20 smallest atoms and molecules of the GW100 test set at the
perturbative GW (or G0W0) level using increasingly large basis sets. We also compute the ionization potentials of the five canonical
nucleobases (adenine, cytosine, thymine, guanine, and uracil) and show that, here again, a significant improvement is obtained.

I. INTRODUCTION
The purpose of many-body perturbation theory (MBPT) based
on Green's functions is to solve the formidable many-body
problem by adding the electron−electron Coulomb interaction
perturbatively starting from an independent-particle model.1 In
this approach, the screening of the Coulomb interaction is an
essential quantity.2−4

The so-called GW approximation is the workhorse of MBPT
and has a long and successful history in the calculation of the
electronic structure of solids.2−4 GW is getting increasingly
popular in molecular systems5−20 thanks to efficient implemen-
tation relying on plane waves21−23 or local basis func-
tions.5,9,24−32 The GW approximation stems from the acclaimed
Hedin’s equations33

G G G G(12) (12) (13) (34) (42)d(34)0 0∫= + Σ
(1a)

G
G G

(123) (12) (13)
(12)
(45)

(46) (75) (673)d(4567)∫
δ δ

δ
δ

Γ =

+ Σ Γ

(1b)

P i G G(12) (13) (41) (342)d(34)∫= − Γ
(1c)

W P W(12) (12) (13) (34) (42)d(34)∫ν ν= +
(1d)

i G W(12) (13) (14) (324)d(34)∫Σ = Γ
(1e)

which connects the Green's function G, its noninteracting
version G0, the irreducible vertex function Γ, the irreducible
polarizability P, the dynamically screened Coulomb interaction
W, and the self-energy Σ, where ν is the bare Coulomb
interaction, δ(12) is the Dirac delta function,34 and 1 is a
composite coordinate gathering space, spin, and time variables
(r1, σ1, t1). Within the GW approximation, one bypasses the
calculation of the vertex corrections by setting

(123) (12) (13)
GW

δ δΓ ≈ (2)

Depending on the degree of self-consistency one is willing to
perform, there exists several types of GW calculations.35 The
simplest and most popular variant ofGW is perturbativeGW (or
G0W0).

36,37 Although obviously starting-point dependent,38−40

it has been widely used in the literature to study solids, atoms,
and molecules.7,16,17,38 For finite systems such as atoms and
molecules, partially5,6,37,41 or fully self-consistent29−32 GW
methods have shown great promise.5,6,14,24,42−44

Similar to other electron correlation methods, MBPT
methods suffer from the usual slow convergence of energetic
properties with respect to the size of the one-electron basis set.
This can be tracked down to the lack of explicit electron−
electron terms modeling the infamous electron−electron
coalescence point (also known as the Kato cusp45) and, more
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specifically, the Coulomb correlation hole around it. Pioneered
by Hylleraas46 in the 1930s and popularized in the 1990s by
Kutzelnigg and co-workers47−49 (and subsequently
others50−54), the so-called F12 methods overcome this slow
convergence by employing geminal basis functions that closely
resemble the correlation holes in electronic wave functions. F12
methods are now routinely employed in computational
chemistry and provide robust tools for electronic structure
calculations where small basis sets may be used to obtain near
complete basis set (CBS) limit accuracy.55

The basis-set correction presented here follows a different
route and relies on the range-separated density-functional
theory (RS-DFT) formalism to capture, thanks to a short-
range correlation functional, the missing part of the short-range
correlation effects.56 As shown in recent studies on both ground-
and excited-state properties,57,58 similar to F12 methods, it
significantly speeds up the convergence of energetics toward the
CBS limit while avoiding the usage of the large auxiliary basis
sets that are used in F12 methods to avoid the numerous three-
and four-electron integrals.50−54,59−61

Explicitly correlated F12 correction schemes have been
derived for second-order Green's function methods
(GF2)35,62−72 by Ten-no and co-workers73,74 and Valeev and
co-workers.75,76 However, to the best of our knowledge, a F12-
based correction for GW has not been designed yet.
In the presentmanuscript, we illustrate the performance of the

density-based basis-set correction developed in refs 56−58 on
ionization potentials obtained within G0W0. Note that the
present basis-set correction can be straightforwardly applied to
other properties (e.g., electron affinities and fundamental gaps),
as well as other flavors of (self-consistent) GW or Green's
function-based methods, such as GF2 (and its higher-order
variants).
The paper is organized as follows. In section II, we provide

details about the theory behind the present basis-set correction
and its adaptation to GWmethods. Results for a large collection
of molecular systems are reported and discussed in section IV.
Finally, we draw our conclusions in section V. Unless otherwise
stated, atomic units are used throughout.

II. THEORY
II.A. MBPT with DFT Basis-Set Correction. Following ref

56, we start by defining, for an N-electron system with nuclei-
electron potential vne(r), the approximate ground-state energy
for one-electron densities n which are “representable” in a finite
basis set

E F n v nr r rmin ( ) ( )d
n

0 ne{ }∫= [ ] +
∈ (3)

where is the set of N-representable densities which can be
extracted from a wave function Ψ expandable in the Hilbert
space generated by . In this expression,

F n T Wmin
n

ee[ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩
Ψ⇝ (4)

is the exact Levy−Lieb universal density functional,77−79 where
the notationΨ⇝ n in eq 4 states thatΨ yields the one-electron
density n. T̂ and Ŵee are the kinetic and electron−electron
interaction operators. The exact Levy−Lieb universal density
functional is then decomposed as

F n F n E n[ ] = [ ] + ̅ [ ] (5)

where F n[ ] is the Levy−Lieb density functional with wave
functions Ψ expandable in the Hilbert space generated by

F n T Wmin
n

ee[ ] = ⟨Ψ | ̂ + ̂ |Ψ ⟩
Ψ ⇝ (6)

and E n̅ [ ] is the complementary basis-correction density
functional.56 In the present work, instead of using wave function
methods for calculating F n[ ], we use Green’s-function
methods. We assume that there exists a functional GΩ [ ] of
N-representable one-electron Green's functions G r r( , , )ω′
representable in the basis set and yielding the density n which
gives F n[ ] at a stationary point

F n Gstat
G n

[ ] = Ω [ ]
⇝ (7)

The reason why we use a stationary condition rather than a
minimization condition is that only a stationary property is
generally known for functionals of the Green's function. For
example, we can choose for GΩ [ ] a Klein-like energy functional
(see, e.g., refs 1, 65, and 80−82)

G G G G GTr ln( ) Tr ( ) 1f
1

HxcΩ [ ] = [ − ] − [ − ] + Φ [ ]−

(8)

where G( )f
1− is the projection into of the inverse free-particle

Green's function

G r r r r( ) ( , , )
2

( )r
f

1
2

ω ω δ′ = +
∇

− ′− i
k
jjjjj

y
{
zzzzz (9)

and we have introduced the trace

AB
i

e A Br r r r r rTr
d
2

( , , ) ( , , )d di 0∫ ∬ω
π

ω ω[ ] = ′ ′ ′ω

−∞

+∞ +

(10)

In eq 8, GHxcΦ [ ] is a Hartree-exchange-correlation (Hxc)
functional of the Green's function such that its functional
derivatives yields the Hxc self-energy in the basis

G
G

G
r r

r r
( , , )

( , , )Hxc
Hxc

δ
δ ω

ω
Φ [ ]

′
= Σ [ ] ′

(11)

Inserting eqs 5 and 7 into eq 3, we finally arrive at

E G v n E nr r rstat ( ) ( )d
G

G G0 ne{ }∫= Ω [ ] + + ̅ [ ]

(12)

where the stationary point is searched overN-representable one-
electron Green's functions G r r( , , )ω′ representable in the
basis set .
The stationary condition from eq 12 is

(
)

G
G v n E n

n

r r r

r r

( ) ( )d

( )d 0

G G

G

ne∫
∫

δ
δ

λ

Ω [ ] + + ̅ [ ]

− =
(13)

where λ is the chemical potential (enforcing the electron
number). It leads the following Dyson equation

G G G n( ) ( ) G
1

0
1

Hxc= − Σ [ ] − Σ̅ [ ]− −
(14)

where G( )0
1− is the basis projection of the inverse non-

interacting Green's function with potential vne(r), i.e.,
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G vr r r r r( ) ( , , )
2

( ) ( )r
0

1
2

neω ω λ δ′ = +
∇

− + − ′− i
k
jjjjj

y
{
zzzzz

(15)

and Σ̅ is a frequency-independent local self-energy coming
from the functional derivative of the complementary basis-
correction density functional

n v nr r r r r( , ) ( ) ( )δΣ̅ [ ] ′ = ̅ [ ] − ′ (16)

with v n E n nr r( ) / ( )δ δ̅ [ ] = ̅ [ ] . This is found from eq 13 by
using the chain rule

E n
G

E n
n

n
Gr r r

r
r r

r
( , , ) ( )

( )
( , , )

d∫δ
δ ω

δ
δ

δ
δ ω

̅ [ ]
′

= ̅ [ ]
″

″
′

″
(17)

and

n
i

e Gr r r( )
d
2

( , , )i 0∫ ω
π

ω= ω

−∞

+∞ +

(18)

The solution of the Dyson eq 14 gives the Green's function
G r r( , , )ω′ which is not exact (even using the exact

complementary basis-correction density functional nΣ̅ [ ]) but
should converge more rapidly with the basis set thanks to the
presence of the basis-set correction Σ̅ . Of course, in the CBS
limit, the basis-set correction vanishes and the Green's function
becomes exact, i.e.

G Glim 0, lim
CBS CBS

Σ̅ = =
→ → (19)

The Dyson eq 14 can also be written with an arbitrary
reference

G G G n( ) ( ) ( ) G
1

ref
1

Hxc ref= − Σ [ ] − Σ − Σ̅ [ ]− −

(20)

where G G( ) ( )ref
1

0
1

ref= − Σ− − . For example, if the reference is

Hartree−Fock (HF), r r r r( , ) ( , )ref HxΣ ′ = Σ ′ is the HF non-
local self-energy, and if the reference is Kohn−Sham (KS),

vr r r r r( , ) ( ) ( )ref Hxc δΣ ′ = − ′ is the local Hxc potential.
Note that the present basis-set correction is applicable to any

approximation of the self-energy (irrespectively of the diagrams
included) without altering the CBS limit of such methods.
Consequently, it can be applied, for example, to GF2 methods
(also known as second Born approximation65 in the condensed-
matter community) or higher orders.35,62−72 Note, however,
that the basis-set correction is optimal for the exact self-energy
within a given basis set, since it corrects only for the basis-set
error and not for the chosen approximate form of the self-energy
within the basis set.
II.B.GW Approximation. In this subsection, we provide the

minimal set of equations required to describe G0W0. More
details can be found, for example, in refs 9, 25, and 27. For the
sake of simplicity, we only give the equations for closed-shell
systems with a KS single-particle reference (with a local
potential). The one-electron energies ϵp and their corresponding
(real-valued) orbitals ϕp(r) (which defines the basis set ) are
then the KS orbitals and their orbital energies.
Within theGW approximation, the correlation part of the self-

energy reads

pi m
i

pa m
i

( ) ( )

2

2

p p p

i

N

m i m

a

N

m a m

c, c

2

2

occ

virt

∑ ∑

∑ ∑

ω ϕ ω ϕ

ω η

ω η

Σ = ⟨ |Σ | ⟩

=
[ | ]

− ϵ + Ω −

+
[ | ]

− ϵ − Ω + (21)

where i runs over theNocc occupied orbitals, a runs over theNvirt
virtual orbitals, m labels excited states (see below), and η is a
positive infinitesimal. The screened two-electron integrals

X Ypq m pq ia( )( )
i

N

a

N

m m ia

occ virt

∑ ∑[ | ] = | +
(22)

are obtained via the contraction of the bare two-electron
integrals83

pq rs
r r r r

r r
r r( )

( ) ( ) ( ) ( )
d d

p q r s∬
ϕ ϕ ϕ ϕ

| =
′ ′

| − ′|
′

(23)

and the transition densities (Xm + Ym)ia originating from a
(direct) random-phase approximation (RPA) calculation84,85

A B
B A

X

Y

X

Y
m

m
m

m

m− −
= Ωi

k
jjj

y
{
zzz
i

k
jjjjj

y

{
zzzzz

i

k
jjjjj

y

{
zzzzz

(24)

with

A ia bj B ia jb( ) 2( ), 2( )ia jb ij ab a i ia jb, ,δ δ= ϵ − ϵ + | = | (25)

and δpq is the Kronecker delta.
34 Equation 24 also provides the

RPA neutral excitation energies Ωm which correspond to the
poles of the screened Coulomb interaction W(ω).
The G0W0 quasiparticle energies ϵp

G0W0 are provided by the
solution of the (nonlinear) quasiparticle equation25,36,86

V Re ( )p p p pxc, x, c,ω ω= ϵ − + Σ + [Σ ] (26)

with the largest renormalization weight (or factor)

Z 1
Re ( )

p
pc,

1

p

ω

ω
= −

∂ [Σ ]
∂

ω=ϵ

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (27)

Because of sum rules,87−90 the other solutions, known as
satell ites, share the remaining weight. In eq 26,

p p px, xϕ ϕΣ = ⟨ |Σ | ⟩ is the (static) HF exchange part of the self-

energy and

V vr r r r( ) ( ) ( )dp p pxc, xc∫ ϕ ϕ=
(28)

where v r( )xc is the KS exchange-correlation potential. In
particular, the ionization potential (IP) and electron affinity
(EA) are extracted thanks to the following relationships:62

IP , EAG W G W
HOMO LUMO

0 0 0 0= −ϵ = −ϵ (29)

where ϵHOMO
G0W0 and ϵLUMO

G0W0 are the HOMO and LUMO
quasiparticle energies, respectively.

II.C. Basis-Set Correction. The fundamental idea behind
the present basis-set correction is to recognize that the singular
two-electron Coulomb interaction |r − r′|−1 projected in a finite
basis is a finite, nondivergent quantity at |r − r′| = 0, which
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“resembles” the long-range interaction operator |r− r′|−1 erf(μ|r
− r′|) used within RS-DFT.56

We start therefore by considering an effective nondivergent
two-electron interaction W r r( , )′ within the basis set which
reproduces the expectation value of the Coulomb interaction
over a given pair density n r r( , )2 ′ , i.e.

n
n W

r r
r r

r r r r r r r r
1
2

( , )
d d

1
2

( , ) ( , )d d2
2∬ ∬′

| − ′|
′ = ′ ′ ′

(30)

The properties ofW r r( , )′ are detailed in ref 56. A key aspect is

that because the value of W r r( , )′ at coalescence, W r r( , ), is
necessarily finite in a finite basis , one can approximate
W r r( , )′ by a nondivergent, long-range interaction of the form

W r r
r r r

r r
r r r

r r
( , )

1
2

erf ( ) erf ( )μ μ′ ≈ [ | − ′|]
| − ′|

+ [ ′ | − ′|]
| − ′|

l
moo
noo

|
}oo
~oo

(31)

The information about the finiteness of the basis set is then
transferred to the range-separation function r( )μ , and its value
can be determined by ensuring that the two sides of eq 31 are
strictly equal at |r− r′| = 0. Knowing that limr→0 erf(μr)/r = 2μ/
√π, this yields

Wr r r( )
2

( , )μ π=
(32)

Following refs 56−58, we adopt the following definition for
W r r( , )′

W
f n n

r r
r r r r r r

( , )
( , )/ ( , ), if ( , ) 0

, otherwise
2 2′ =

′ ′ ′ ≠

∞

l
m
ooo
n
ooo

(33)

where, in this work, f r r( , )′ and n r r( , )2 ′ are calculated using
the opposite-spin two-electron density matrix of a spin-
restricted single determinant (such as HF and KS). For a
closed-shell system, we have

f pi qjr r r r r r( , ) 2 ( ) ( )( ) ( ) ( )
pq

N

ij

N

p i q j

bas occ

∑ ∑ ϕ ϕ ϕ ϕ′ = | ′ ′
(34)

and

n n nr r r r r r( , ) 2 ( ) ( )
1
2

( ) ( )
ij

N

i j2
2 2

occ

∑ ϕ ϕ′ = ′ = ′
(35)

where n r( ) is the one-electron density. The quantity n r r( , )2 ′
represents the opposite-spin pair density of a closed-shell system
with a single-determinant wave function. Note that in eq 34 the
indices p and q run over all occupied and virtual orbitals (Nbas =
Nocc + Nvirt is the total dimension of the basis set).
Thanks to this definition, the effective interaction W r r( , )′

has the interesting property

W r r r rlim ( , )
CBS

1′ = | − ′|
→

−
(36)

which means that in the CBS limit one recovers the genuine
(divergent) Coulomb interaction. Therefore, in the CBS limit,
the coalescence value W r r( , ) goes to infinity and so does

r( )μ . Since the present basis-set correction employs
complementary short-range correlation potentials from RS-
DFT which have the property of going to zero when μ goes to
infinity, the present basis-set correction properly vanishes in the
CBS limit.

II.D. Short-Range Correlation Functionals. The fre-
quency-independent local self-energy n r r( , )Σ̅ [ ] ′ =

v n r r r( ) ( )δ̅ [ ] − ′ originates from the functional derivative of
complementary basis-correction density functionals
v n E n nr r( ) / ( )δ δ̅ [ ] = ̅ [ ] .
In this work, we have tested two complementary density

functionals coming from two approximations to the short-range
correlation functional with multideterminant (md) reference of
RS-DFT.91 The first one is a short-range local-density
approximation (srLDA)91,92

E n n nr r r r( ) ( ( ), ( ))dsrLDA c,md
srLDA∫ ε μ̅ [ ] = ̅ (37)

where the correlation energy per particle εc̅,md
srLDA(n, μ) has been

parametrized from calculations on the uniform electron gas93

reported in ref 92. The second one is a short-range Perdew−
Burke−Ernzerhof (srPBE) approximation57,94

E n n n sr r r r r( ) ( ( ), ( ), ( ))dsrPBE c,md
srPBE∫ ε μ̅ [ ] = ̅ (38)

where s(r) = ∇n(r)/n(r)4/3 is the reduced density gradient and
the correlation energy per particle εc̅,md

srPBE(n, s, μ) interpolates
between the usual PBE correlation energy per particle95 at μ = 0
and the exact large-μ behavior92,96,97 using the on-top pair
density of the Coulombic uniform electron gas (see ref 57).
Note that the information on the local basis-set incompleteness
error is provided to these RS-DFT functionals through the
range-separation function r( )μ .
From these energy functionals, we generate the potentials

v n E n nr r( ) / ( )srLDA srLDAδ δ̅ [ ] = ̅ [ ] and v n r( )srPBE̅ [ ] = E n n r/ ( )srPBEδ δ̅ [ ] (con-
sidering r( )μ as being fixed) which are then used to obtain the
basis-set corrected G0W0 quasiparticle energies

Vp
G W

p
G W

p
0 0 0 0ϵ̅ = ϵ + ̅ (39)

with

V v nr r r r( ) ( ) ( )dp p p∫ ϕ ϕ̅ = ̅ [ ]
(40)

where v n v nr r( ) ( )srLDA̅ [ ] = ̅ [ ] or v n r( )srPBE̅ [ ] and the density is
calculated from the HF or KS orbitals. The expressions of these
srLDA and srPBE correlation potentials are provided in the
Supporting Information.
As evidenced by eq 39, the present basis-set correction is a

nonself-consistent, post-GW correction. Although outside the
scope of this study, various other strategies can be potentially
designed, for example, within linearized G0W0 or self-consistent
GW calculations.

III. COMPUTATIONAL DETAILS
All the geometries have been extracted from the GW100 set.16

Unless otherwise stated, all the G0W0 calculations have been
performed with the MOLGW software developed by Bruneval
and co-workers.10 The HF, PBE, and PBE0 calculations as well
as the srLDA and srPBE basis-set corrections have been
computed with Quantum Package,98 which by default uses the
SG-2 quadrature grid for the numerical integrations. Frozen-

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01067
J. Chem. Theory Comput. 2020, 16, 1018−1028

1021

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01067/suppl_file/ct9b01067_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01067?ref=pdf


Table I. IPs (eV) of the 20 Smallest Molecules of the GW100 Set Computed at theG0W0@HF Level of Theory with Various Basis
Sets and Correctionsa

G0W0@HF G0W0@HF+srLDA G0W0@HF+srPBE G0W0@HF

mol. cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z CBS

He 24.36 24.57 24.67 24.72 24.63 24.69 24.73 24.74 24.66 24.69 24.72 24.74 24.75
Ne 20.87 21.39 21.63 21.73 21.38 21.67 21.80 21.84 21.56 21.73 21.81 21.83 21.82
H2 16.25 16.48 16.56 16.58 16.42 16.54 16.58 16.60 16.42 16.53 16.58 16.60 16.61
Li2 5.23 5.34 5.39 5.42 5.31 5.37 5.41 5.43 5.28 5.37 5.41 5.43 5.44
LiH 7.96 8.16 8.25 8.28 8.13 8.23 8.28 8.30 8.10 8.21 8.27 8.30 8.31
HF 15.54 16.16 16.42 16.52 16.01 16.41 16.57 16.61 16.15 16.45 16.57 16.61 16.62
Ar 15.40 15.72 15.93 16.08 15.85 15.98 16.09 16.18 15.91 15.99 16.08 16.17 16.15
H2O 12.16 12.79 13.04 13.14 12.58 13.01 13.16 13.21 12.68 13.03 13.16 13.20 13.23
LiF 10.75 11.35 11.59 11.70 11.21 11.60 11.73 11.79 11.34 11.63 11.73 11.78 11.79
HCl 12.40 12.77 12.96 13.05 12.79 12.99 13.10 13.13 12.83 12.99 13.09 13.12 13.12
BeO 9.47 9.77 9.98 10.09 9.85 9.97 10.09 10.15 9.93 9.98 10.08 10.15 10.16
CO 14.66 15.02 15.17 15.24 14.99 15.18 15.26 15.29 15.04 15.18 15.25 15.29 15.30
N2 15.87 16.31 16.48 16.56 16.22 16.50 16.59 16.62 16.30 16.50 16.58 16.62 16.62
CH4 14.43 14.74 14.86 14.90 14.69 14.85 14.91 14.93 14.73 14.85 14.90 14.93 14.95
BH3 13.35 13.64 13.74 13.78 13.57 13.73 13.78 13.80 13.58 13.72 13.78 13.80 13.82
NH3 10.59 11.13 11.32 11.40 10.93 11.30 11.41 11.45 10.99 11.30 11.41 11.44 11.47
BF 11.08 11.30 11.38 11.42 11.29 11.40 11.43 11.45 11.29 11.38 11.42 11.45 11.45
BN 11.35 11.69 11.85 11.92 11.67 11.85 11.94 11.98 11.72 11.85 11.93 11.97 11.98
SH2 10.10 10.49 10.65 10.72 10.44 10.67 10.76 10.78 10.45 10.66 10.74 10.77 10.78
F2 15.93 16.30 16.51 16.61 16.42 16.56 16.67 16.71 16.58 16.61 16.67 16.71 16.69
MAD 0.66 0.30 0.13 0.06 0.33 0.13 0.04 0.01 0.27 0.12 0.04 0.01
RMSD 0.71 0.32 0.14 0.06 0.37 0.14 0.04 0.01 0.30 0.13 0.05 0.01
MAX 1.08 0.46 0.22 0.10 0.65 0.22 0.07 0.03 0.54 0.20 0.08 0.03

aThe mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the G0W0@HF/CBS
values are also reported.

Table II. IPs (eV) of the 20 Smallest Molecules of the GW100 Set Computed at the G0W0@PBE0 Level of Theory with Various
Basis Sets and Correctionsa

G0W0@PBE0 G0W0@PBE0+srLDA G0W0@PBE0+srPBE
G0W0@
PBE0

mol.
cc-

pVDZ
cc-

pVTZ
cc-

pVQZ
cc-

pV5Z
cc-

pVDZ
cc-

pVTZ
cc-

pVQZ
cc-

pV5Z
cc-

pVDZ
cc-

pVTZ
cc-

pVQZ
cc-

pV5Z CBS

He 23.99 23.98 24.03 24.04 24.26 24.09 24.09 24.07 24.29 24.10 24.08 24.07 24.06
Ne 20.35 20.88 21.05 21.05 20.86 21.16 21.22 21.16 21.05 21.22 21.23 21.15 21.12
H2 15.98 16.13 16.19 16.21 16.16 16.20 16.22 16.22 16.16 16.19 16.22 16.22 16.23
Li2 5.15 5.24 5.28 5.31 5.23 5.28 5.30 5.32 5.21 5.27 5.30 5.32 5.32
LiH 7.32 7.49 7.56 7.59 7.48 7.55 7.59 7.61 7.45 7.54 7.58 7.61 7.62
HF 14.95 15.61 15.82 15.85 15.41 15.85 15.97 15.94 15.56 15.89 15.97 15.93 15.94
Ar 14.93 15.25 15.42 15.50 15.37 15.50 15.58 15.60 15.44 15.52 15.58 15.59 15.56
H2O 11.53 12.21 12.43 12.47 11.95 12.43 12.55 12.54 12.05 12.45 12.55 12.54 12.56
LiF 9.89 10.60 10.82 10.94 10.35 10.84 10.96 11.02 10.48 10.87 10.96 11.02 11.02
HCl 11.96 12.34 12.50 12.57 12.35 12.56 12.64 12.65 12.39 12.56 12.63 12.64 12.63
BeO 9.16 9.44 9.63 9.74 9.53 9.64 9.74 9.80 9.61 9.65 9.74 9.79 9.80
CO 13.67 14.02 14.13 14.18 14.00 14.18 14.22 14.23 14.05 14.18 14.22 14.23 14.22
N2 14.84 15.30 15.44 15.50 15.22 15.50 15.55 15.56 15.31 15.51 15.54 15.55 15.55
CH4 13.85 14.15 14.27 14.30 14.11 14.27 14.32 14.33 14.15 14.27 14.32 14.33 14.35
BH3 12.87 13.13 13.22 13.26 13.09 13.23 13.27 13.28 13.10 13.22 13.26 13.28 13.29
NH3 9.96 10.56 10.73 10.75 10.31 10.72 10.82 10.80 10.37 10.72 10.81 10.79 10.82
BF 10.66 10.87 10.92 10.94 10.88 10.96 10.97 10.97 10.88 10.95 10.96 10.97 10.96
BN 11.07 11.40 11.54 11.60 11.40 11.56 11.63 11.65 11.45 11.56 11.62 11.65 11.65
SH2 9.69 10.10 10.25 10.30 10.03 10.28 10.35 10.36 10.04 10.27 10.34 10.35 10.36
F2 14.92 15.38 15.57 15.64 15.41 15.65 15.73 15.74 15.57 15.69 15.73 15.73 15.71
MAD 0.60 0.24 0.10 0.05 0.29 0.07 0.02 0.01 0.23 0.07 0.03 0.01
RMSD 0.66 0.26 0.11 0.06 0.33 0.08 0.03 0.02 0.27 0.08 0.04 0.01
MAX 1.12 0.42 0.19 0.09 0.67 0.18 0.09 0.04 0.54 0.15 0.10 0.03

aThe mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the G0W0@PBE0/
CBS values are also reported.
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core (FC) calculations are systematically performed. The FC
density-based basis-set correction57 is used consistently with the
FC approximation in the G0W0 calculations. The G0W0
quasiparticle energies have been obtained “graphically”, i.e., by
solving the nonlinear, frequency-dependent quasiparticle eq 26
(without linearization). Moreover, the infinitesimal η in eq 21
has been set to zero.
Compared to the conventional N N( )occ

3
virt
3 computational

cost of GW, the present basis-set correction represents a
marginal N N N( )occ

2
bas
2

grid additional cost as further discussed in

refs 57 and 58. Note, however, that the formal N N( )occ
3

virt
3

computational scaling ofGW can be significantly reduced thanks
to resolution-of-the-identity techniques9,25,99 and other
tricks.100,101

IV. RESULTS AND DISCUSSION
In this section, we study a subset of atoms and molecules from
the GW100 test set.16 In particular, we study the 20 smallest
molecules of the GW100 set, a subset that we label as GW20.
This subset has been recently considered by Lewis and

Berkelbach to study the effect of vertex corrections to W on
IPs of molecules.103 Later in this section, we also study the five
canonical nucleobases (adenine, cytosine, thymine, guanine, and
uracil) which are also part of the GW100 test set.

IV.A. GW20. The IPs of the GW20 set obtained at the
G0W0@HF and G0W0@PBE0 levels with increasingly larger
Dunning’s basis sets cc-pVXZ (X =D, T, Q, and 5) are reported
in Tables I and II, respectively. The corresponding statistical
deviations (with respect to the CBS values) are also reported:
mean absolute deviation (MAD), root-mean-square deviation
(RMSD), and maximum deviation (MAX). These reference
CBS values have been obtained with the usual X−3 extrapolation
procedure using the three largest basis sets.7

The convergence of the IP of the water molecule with respect
to the basis set size is depicted in Figure 1. This represents a
typical example. Additional graphs reporting the convergence of
the IPs of each molecule of the GW20 subset at the G0W0@HF
and G0W0@PBE0 levels are reported in the Supporting
Information.
Tables I and II (as well as Figure 1) clearly evidence that the

present basis-set correction significantly increases the rate of

Figure 1. IP (eV) of the water molecule computed at theG0W0 (black circles), G0W0+srLDA (red squares), andG0W0+srPBE (blue diamonds) levels
of theory with increasingly large Dunning’s basis sets102 (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) with two different starting points: HF (left) and
PBE0 (right). The thick black line represents the CBS value obtained by extrapolation (see text for more details). The green area corresponds to
chemical accuracy (i.e., error below 1 kcal/mol or 0.043 eV).

Table III. IPs (eV) of the Five Canonical Nucleobases (Adenine, Cytosine, Thymine, Guanine, and Uracil) Computed at the
G0W0@PBE Level of Theory for Various Basis Sets and Correctionsa

IPs of nucleobases (eV)

method basis adenine cytosine guanine thymine uracil

G0W0@PBEb def2-SVP 7.27[−0.88] 7.53[−0.92] 6.95[−0.92] 8.02[−0.85] 8.38[−1.00]
G0W0@PBE+srLDAb def2-SVP 7.60[−0.55] 7.95[−0.50] 7.29[−0.59] 8.36[−0.51] 8.80[−0.58]
G0W0@PBE+srPBEb def2-SVP 7.64[−0.51] 8.06[−0.39] 7.34[−0.54] 8.41[−0.45] 8.91[−0.47]
G0W0@PBEb def2-TZVP 7.74[−0.41] 8.06[−0.39] 7.45[−0.42] 8.48[−0.38] 8.86[−0.52]
G0W0@PBE+srLDAb def2-TZVP 7.92[−0.23] 8.26[−0.19] 7.64[−0.23] 8.67[−0.20] 9.25[−0.13]
G0W0@PBE+srPBEb def2-TZVP 7.92[−0.23] 8.27[−0.18] 7.64[−0.23] 8.68[−0.19] 9.27[−0.11]
G0W0@PBEc def2-QZVP 7.98[−0.18] 8.29[−0.16] 7.69[−0.18] 8.71[−0.16] 9.22[−0.16]
G0W0@PBEd def2-TQZVP 8.16(1) 8.44(1) 7.87(1) 8.87(1) 9.38(1)
G0W0@PBEe plane waves 8.12 8.40 7.85 8.83 9.36
G0W0@PBEf plane waves 8.09(2) 8.40(2) 7.82(2) 8.82(2) 9.19(2)
CCSD(T)g aug-cc-pVDZ 8.40 8.76 8.09 9.04 9.43
CCSD(T)h def2-TZVPP 8.33 9.51 8.03 9.08 10.13
experimenti 8.48 8.94 8.24 9.20 9.68

aThe deviation with respect to the G0W0@PBE/def2-TQZVP extrapolated values are reported in square brackets. The extrapolation error is
reported in parentheses. Extrapolated G0W0@PBE results obtained with plane-wave basis sets, as well as CCSD(T) and experimental results are
reported for comparison. bThis work. cUnpublished data taken from https://gw100.wordpress.com obtained with TURBOMOLE v7.0.
dExtrapolated values obtained from the def2-TZVP and def2-QZVP values. eExtrapolated plane-wave results from ref 23 obtained with WEST.
fExtrapolated plane-wave results from ref 106 obtained with VASP. gCCSD(T)//CCSD/aug-cc-pVDZ results from ref 107. hReference 108.
iExperimental values are taken from ref 16 and correspond to vertical ionization energies.
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convergence of IPs. At theG0W0@HF (see Table I), theMADof
the conventional calculations (i.e., without basis-set correction)
is roughly divided by two each time one increases the basis set
size (MADs of 0.60, 0.24, 0.10, and 0.05 eV going from cc-pVDZ
to cc-pV5Z) with maximum errors higher than 1 eV for
molecules such as HF, H2O, and LiF with the smallest basis set.
Even with the largest quintuple-ζ basis, the MAD is still above
chemical accuracy (i.e., error below 1 kcal/mol or 0.043 eV).
For each basis set, the correction brought by the short-range

correlation functionals reduces by roughly half or more the
MAD, RMSD, and MAX compared to the correction-free
calculations. For example, we obtain MADs of 0.27, 0.12, 0.04,
and 0.01 eV at the G0W0@HF+srPBE level with increasingly
larger basis sets. Interestingly, in most cases, the srPBE
correction is slightly larger than the srLDA one. This
observation is clear at the cc-pVDZ level, but for larger basis
sets, the two RS-DFT-based corrections are essentially
equivalent. Note also that, in some cases, the corrected IPs
slightly overshoot the CBS values. However, it is hard to know if
it is not due to the extrapolation error. In a nutshell, the present
basis-set correction provides cc-pVQZ quality results at the cc-
pVTZ level. Besides, it allows chemical accuracy to be reached
with the quadruple-ζ basis set, an accuracy that could not be
reached even with the cc-pV5Z basis set for the conventional
calculations.
Very similar conclusions are drawn at the G0W0@PBE0 level

(see Table II) with a slightly faster convergence to the CBS limit.
For example, at the G0W0@PBE0+srLDA/cc-pVQZ level, the
MAD is only 0.02 eV with a maximum error as small as 0.09 eV.
It is worth pointing out that, for ground-state properties such

as atomization and correlation energies, the density-based
correction brought a larger acceleration of the basis-set
convergence. For example, we evidenced in ref 57 that
quintuple-ζ quality atomization and correlation energies are
recovered with triple-ζ basis sets. Here, the overall gain seems to
be less important. The possible reasons for this could be (i) DFT
approximations are usually less accurate for the potential than
for the energy104 and (ii) because the present scheme only
corrects the basis-set incompleteness error originating from the
electron−electron cusp, some incompleteness remains at theHF
or KS level.105

IV.B. Nucleobases. In order to check the transferability of
the present observations to larger systems, we have computed
the values of the IPs of the five canonical nucleobases (adenine,
cytosine, thymine, guanine, and uracil) at the G0W0@PBE level

of theory with a different basis set family.109,110 The numerical
values are reported in Table III, and their error with respect to
the G0W0@PBE/def2-TQZVP extrapolated values16 (obtained
via extrapolation of the def2-TZVP and def2-QZVP results) are
shown in Figure 2. Table III also contains extrapolated IPs
obtained with plane-wave basis sets with two different software
packages.23,106 The CCSD(T)/def2-TZVPP computed by
Krause et al.108 on the same geometries, the CCSD(T)//
CCSD/aug-cc-pVDZ results from ref 107, as well as the
experimental results extracted from ref 16 are reported for
comparison purposes.
For these five systems, the IPs are all of the order of 8 or 9 eV

with an amplitude of roughly 1 eV between the smallest basis set
(def2-SVP) and the CBS value. The conclusions that we have
drawn in the previous subsection do apply here as well. For the
smallest double-ζ basis def2-SVP, the basis-set correction
reduces by roughly half an eV the basis-set incompleteness
error. It is particularly interesting to note that the basis-set
corrected def2-TZVP results are on par with the correction-free
def2-QZVP numbers. This is quite remarkable as the number of
basis functions jumps from 371 to 777 for the largest system
(guanine).

V. CONCLUSION
In the present manuscript, we have shown that the density-based
basis-set correction developed by some of the authors in ref 56
and applied recently to ground- and excited-state properties57,58

can also be successfully applied to Green's function methods
such as GW. In particular, we have evidenced that the present
basis-set correction (which relies on LDA- or PBE-based short-
range correlation functionals) significantly speeds up the
convergence of IPs for small and larger molecules toward the
CBS limit. These findings have been observed for different GW
starting points (HF, PBE, and PBE0).We have observed that the
performance of the two short-range correlation functionals
(srLDA and srPBE) are quite similar with a slight edge for srPBE
over srLDA. Therefore, because srPBE is only slightly more
computationally expensive than srLDA, we do recommend the
use of srPBE.
As mentioned earlier, the present basis-set correction can be

straightforwardly applied to other properties of interest such as
electron affinities or fundamental gaps. It is also applicable to
other flavors ofGW such as the partially self-consistent evGW or
qsGWmethods and, more generally, to any approximation of the
self-energy. We are currently investigating the performance of

Figure 2. Error (eV) with respect to theG0W0@PBE/def2-TQZVP extrapolated values for the IPs of the five canonical nucleobases (adenine, cytosine,
thymine, guanine, and uracil) computed at the G0W0@PBE level of theory for various basis sets and corrections.
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the present approach within linear response theory in order to
speed up the convergence of excitation energies obtained within
the RPA and Bethe−Salpeter equation24,111,112 formalisms. We
hope to report on this in the near future.
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GWApproximation and Bethe-Salpeter Equation for Groups IB and IIB
Atoms andMonoxides. J. Chem. Theory Comput. 2017, 13, 2135−2146.
(16) van Setten, M. J.; Caruso, F.; Sharifzadeh, S.; Ren, X.; Scheffler,
M.; Liu, F.; Lischner, J.; Lin, L.; Deslippe, J. R.; Louie, S. G.; Yang, C.;
Weigend, F.; Neaton, J. B.; Evers, F.; Rinke, P. GW100: Benchmarking
G0W0 forMolecular Systems. J. Chem. Theory Comput. 2015, 11, 5665−
5687.
(17) van Setten, M. J.; Costa, R.; Viñes, F.; Illas, F. Assessing GW
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