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‡Laboratoire de Chimie Theórique, Sorbonne Universite,́ CNRS, 75005 Paris, France
§Institut des Sciences du Calcul et des Donneés, Sorbonne Universite,́ 75005 Paris, France

*S Supporting Information

ABSTRACT: We report a universal density-based basis-set
incompleteness correction that can be applied to any wave
function method. This correction, which appropriately vanishes
in the complete basis-set (CBS) limit, relies on short-range
correlation density functionals (with multideterminant refer-
ence) from range-separated density-functional theory (RS-DFT)
to estimate the basis-set incompleteness error. Contrary to
conventional RS-DFT schemes that require an ad hoc range-
separation parameter μ, the key ingredient here is a range-
separation function μ(r) that automatically adapts to the spatial
nonhomogeneity of the basis-set incompleteness error. As
illustrative examples, we show how this density-based correction
allows us to obtain CCSD(T) atomization and correlation
energies near the CBS limit for the G2 set of molecules with compact Gaussian basis sets.

Contemporary quantum chemistry has developed in two
directions: wave function theory (WFT)1 and density-

functional theory (DFT).2 Although both spring from the
same Schrödinger equation, each of these philosophies has its
own pros and cons.
WFT is attractive as it exists as a well-defined path for

systematic improvement as well as powerful tools, such as
perturbation theory, to guide the development of new WFT
ansaẗze. The coupled cluster (CC) family of methods is a
typical example of the WFT philosophy and is well regarded as
the gold standard of quantum chemistry for weakly correlated
systems. By increasing the excitation degree of the CC
expansion, one can systematically converge, for a given basis
set, to the exact, full configuration interaction (FCI) limit,
although the computational cost associated with such
improvement is usually high. One of the most fundamental
drawbacks of conventional WFT methods is the slow
convergence of energies and properties with respect to the
size of the one-electron basis set. This undesirable feature was
brought to light by Kutzelnigg more than 30 years ago.3 To
palliate this, following Hylleraas’ footsteps,4 Kutzelnigg
proposed to introduce explicitly the interelectronic distance
r12 = r1 − r2 to properly describe the electronic wave function
around the coalescence of two electrons.3,5,6 The resulting F12
methods yield a prominent improvement in energy con-
vergence and achieve chemical accuracy for small organic
molecules with relatively small Gaussian basis sets.7−12 For
example, at the CCSD(T) level, one can obtain quintuple-ζ
quality correlation energies with a triple-ζ basis,13 although

computational overheads are introduced by the large auxiliary
basis used to resolve three- and four-electron integrals.14 To
reduce further the computational cost and/or ease the
transferability of the F12 correction, approximated and/or
universal schemes have recently emerged.15−20

Present-day DFT calculations are almost exclusively done
within the so-called Kohn−Sham (KS) formalism, which
corresponds to an exact dressed one-electron theory.21 The
attractiveness of DFT originates from its very favorable
accuracy/cost ratio as it often provides reasonably accurate
energies and properties at a relatively low computational cost.
Because of this, KS-DFT21,22 has become the workhorse of
electronic structure calculations for atoms, molecules, and
solids.23 Although there is no clear way to systematically
improve density-functional approximations,24 climbing Per-
dew’s ladder of DFT is potentially the most satisfactory way
forward.25,26 In the context of the work presented here, one of
the interesting features of density-based methods is their much
faster convergence with respect to the size of the basis set.27

Progress toward unifying WFT and DFT is ongoing. In
particular, range-separated DFT (RS-DFT) (see ref 28 and
references therein) rigorously combines these two approaches
via a decomposition of the electron−electron (e−e)
interaction into a nondivergent long-range part and a
(complementary) short-range part treated with WFT and
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DFT, respectively. As the WFT method is relieved from
describing the short-range part of the correlation hole around
the e−e coalescence points, the convergence with respect to
the one-electron basis set is greatly improved.27 Therefore, a
number of approximate RS-DFT schemes have been developed
within single-reference29−34 or multireference35−40 WFT
approaches. Very recently, a major step forward has been
taken by some of the present authors thanks to the
development of a density-based basis-set correction for WFT
methods.41 The work presented here proposes an extension of
this new methodological development alongside the first
numerical tests on molecular systems.
The basis-set correction presented here relies on the RS-

DFT formalism to capture the missing part of the short-range
correlation effects, a consequence of the incompleteness of the
one-electron basis set. Here, we provide only the main working
equations. We refer the interested reader to ref 41 for a more
formal derivation.
Let us assume that we have reasonable approximations of

the FCI energy and density of an N-electron system in an
incomplete basis set , say the CCSD(T) energy E TCCSD( ) and

the Hartree−Fock (HF) density nHF. According to eq 15 of ref
41, the exact ground-state energy E may be approximated as

E E E nCCSD(T) HF≈ + ̅ [ ] (1)

where

E n T W T Wmin min
n n

ee ee̅ [ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩ − ⟨Ψ | ̂ + ̂ |Ψ ⟩
Ψ→ Ψ →

(2)

is the basis-dependent complementary density functional, T̂ is
the kinetic operator, and Ŵee = ∑i<j rij

−1 is the interelectronic
repulsion operator. In eq 2, Ψ and Ψ are two general N-
electron normalized wave functions belonging to the Hilbert
space spanned by and the complete basis set (CBS),
respectively. Both wave functions yield the same target density
n (assumed to be representable in ). Importantly, in the CBS
limit (which we term → CBS), we have, for any density n,

E nlim 0CBS ̅ [ ] =→ . This implies that

E E n E Elim ( )
CBS

CCSD(T) HF CCSD(T)
CBS+ ̅ [ ] = ≈

→ (3)

where ECCSD(T)
CBS is the CCSD(T) energy in the CBS limit. Of

course, the above holds true for any method that provides a
good approximation to the energy and density, not just
CCSD(T) and HF. In the case in which CCSD(T) is replaced
by FCI in eq 3, we have a strict equality as EFCI

CBS = E. Provided
that the functional E n̅ [ ] is known exactly, the only sources of
error at this stage lie in the approximate nature of the
CCSD(T) and HF methods and the lack of self-consistency of
the present scheme.
The functional E n̅ [ ] is obviously not universal as it

depends on . Moreover, as E n̅ [ ] aims at fixing the
incompleteness of , its main role is to correct for the lack
of cusp (i.e., discontinuous derivative) in Ψ at the e−e
coalescence points, a universal condition of exact wave
functions. Because the e−e cusp originates from the divergence
of the Coulomb operator at r12 = 0, a cuspless wave function
could equivalently originate from a Hamiltonian with a
nondivergent two-electron interaction at coalescence. There-
fore, as we shall demonstrate below, it feels natural to

approximate E n̅ [ ] by a short-range density functional that is
complementary to a nondivergent long-range interaction.
Contrary to the conventional RS-DFT scheme that requires
a range-separation parameter μ, here we use a range-separation
function r( )μ that automatically adapts to quantify the
incompleteness of in 3.
The first step of the present basis-set correction consists of

obtaining an effective two-electron interaction W r r( , )1 2
“mimicking” the Coulomb operator in an incomplete basis
. In a second step, we shall link W r r( , )1 2 to r( )μ . As a final

step, we employ short-range density functionals42 with r( )μ
as the range-separation function.
We define the effective operator as41

W
f n n

r r
r r r r r r

( , )
( , )/ ( , ), if ( , ) 0

, otherwise
1 2

1 2 2 1 2 2 1 2=
≠

∞

l
m
ooo
n
ooo

(4)

where

n r r r r r r( , ) ( ) ( ) ( ) ( )
pqrs

p q pq
rs

r s2 1 2 1 2 1 2∑ ϕ ϕ ϕ ϕ= Γ
∈ (5)

and a a a a2pq
rs

r s q pΓ = ⟨Ψ | ̂ ̂ ̂ ̂ |Ψ ⟩† †
↓ ↑ ↑ ↓

are the opposite-spin pair

density associated with Ψ and its corresponding tensor,
respectively, ϕp(r) is a (real-value) molecular orbital (MO)

f Vr r r r r r( , ) ( ) ( ) ( ) ( )
pqrstu

p q pq
rs

rs
tu

t u1 2 1 2 1 2∑ ϕ ϕ ϕ ϕ= Γ
∈ (6)

and Vpq
rs = ⟨pq|rs⟩ are the usual two-electron Coulomb integrals.

With such a definition, W r r( , )1 2 satisfies (see Appendix A of
ref 41)

n
r

W n
r r

r r r r r r r r
( , )

d d ( , ) ( , ) d d2 1 2

12
1 2 1 2 2 1 2 1 2∬ ∬=

(7)

which intuitively motivates W r r( , )1 2 as a potential candidate
for an effective interaction. Note that the divergence condition
of W r r( , )1 2 in eq 4 ensures that one-electron systems are free
of correction as the present approach must correct only the
basis-set incompleteness error originating from the e−e cusp.
As already discussed in ref 41, W r r( , )1 2 is symmetric, a priori
nontranslational, and not rotationally invariant if does not
have such symmetries. Because of its definition, one can show
that (see Appendix B of ref 41)

W
r

r rlim ( , )
1

CBS
1 2

12
=

→ (8)

for any (r1, r2) such that n r r( , ) 02 1 2 ≠ .
A key quantity is the value of the effective interaction at

coalescence of opposite-spin electrons, W r r( , ), which is
necessarily finite for an incomplete basis set as long as the on-
top pair density n r r( , )2 is nonvanishing. Because W r r( , )1 2 is
a nondivergent two-electron interaction, it can be naturally
linked to RS-DFT, which employs a nondivergent long-range
interaction operator. Although this choice is not unique, we
choose here the range-separation function
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Wr r r( )
2

( , )μ π=
(9)

such that the long-range interaction of RS-DFT, wlr,μ(r12) =
erf(μr12)/r12, coincides with the effective interaction at

coalescence, i.e., w W r r(0) ( , )rlr, ( ) =μ at any r.

Once r( )μ is defined, it can be used within RS-DFT

functionals to approximate E n̅ [ ]. As in ref 41, we consider
here a specific class of short-range correlation functionals
known as correlation energy with multideterminantal reference
(ECMD) whose general definition reads42

E n T W n T W

n

, min
n

c,md
sr

ee eeμ̅ [ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩ − ⟨Ψ [ ]| ̂ + ̂

|Ψ [ ]⟩

μ

μ
Ψ→

(10)

where Ψμ[n] is defined by the constrained minimization

n T Warg min
n

ee
lr,Ψ [ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩μ μ

Ψ→ (11)

where Ŵee
lr,μ = ∑i<j w

lr,μ(rij). The ECMD functionals admit, for
any n, the following two limits

E n E n E nlim , 0, lim ,c,md
sr

0
c,md
sr

cμ μ̅ [ ] = ̅ [ ] = [ ]
μ μ→∞ → (12)

where Ec[n] is the usual universal correlation density
functional defined in KS-DFT. The choice of ECMD in the
present scheme is motivated by the analogy between the
definition of E n̅ [ ] (eq 2) and the ECMD functional (eq 10).
Indeed, the two functionals coincide if Ψ = Ψμ. Therefore,
we approximate E n̅ [ ] by ECMD functionals evaluated with
the range-separation function r( )μ .
Inspired by the recent functional proposed by some of the

authors,40 we propose here a new Perdew−Burke−Ernzerhof
(PBE)-based ECMD functional

E n n n sr r r r r r, ( ) ( ( ), ( ), ( ), ( )) dPBE c,md
sr,PBE∫μ ε ζ μ̅ [ ] = ̅

(13)

where ζ = (n↑ − n↓)/n is the spin polarization and s = ∇n/n4/3
is the reduced density gradient. εc̅,md

sr,PBE(n, s, ζ, μ) interpolates
between the usual PBE correlation functional,43 εc

PBE(n, s, ζ), at
μ = 0 and the exact large-μ behavior,28,44,45 yielding

n s
n s
n s

( , , , )
( , , )

1 ( , , )c,md
sr,PBE c

PBE

3ε ζ μ
ε ζ

β ζ μ̅ =
+ (14a)

n s
n s

n n n
( , , )

3
2 (1 2 )

( , , )
( , )/

c
PBE

2
UEGβ ζ

π
ε ζ

ζ
=

− (14b)

The difference between the ECMD functional defined in ref 40
and the present expression (eqs 14a and 14b) is that we
approximate here the on-top pair density by its uniform
electron gas46 (UEG) version, i.e., n r r( , )2 , ≈ n2

UEG(n(r),ζ(r)),
where n2

UEG(n, ζ) ≈ n2(1 − ζ2)g0(n) with the parametrization
of the UEG on-top pair-distribution function g0(n) given in eq
46 of ref 44. This represents a major computational saving
without a loss of accuracy for weakly correlated systems as we
eschew the computation of n r r( , )2 . The complementary

functional E nHF̅ [ ] is approximated by E n ,PBE HF μ̅ [ ] where

r( )μ is given by eq 9. The slightly simpler local-density

approximation (LDA) version of the ECMD functional is
discussed in the Supporting Information.
As most WFT calculations are performed within the frozen-

core (FC) approximation, it is important to define an effective
interaction within a subset of MOs. We then naturally split the
basis set as = ∪ (where and are the sets of core
and active MOs, respectively) and define the FC version of the
effective interaction as

W
f n n

r r
r r r r r r

( , )
( , )/ ( , ), if ( , ) 0

, otherwise
1 2

1 2 2 1 2 2 1 2̃ =
̃ ̃ ̃ ≠

∞

l
m
ooo
n
ooo

(15)

with

f Vr r r r r r( , ) ( ) ( ) ( ) ( )
pq rstu

p q pq
rs

rs
tu

t u1 2 1 2 1 2∑ ∑ ϕ ϕ ϕ ϕ̃ = Γ
∈ ∈

(16a)

n r r r r r r( , ) ( ) ( ) ( ) ( )
pqrs

p q pq
rs

r s2 1 2 1 2 1 2∑ ϕ ϕ ϕ ϕ̃ = Γ
∈ (16b)

and the corresponding FC range-separation function
Wr r r( ) ( /2) ( , )μ π̃ = ̃ . It is noteworthy that, within the

present definition, W r r( , )1 2̃ still tends to the regular

Coulomb interaction as CBS→ . If nHF̃ is defined as the
FC (i.e., valence-only) HF one-electron density in , the FC
contribution of the complementary functional is then
approximated by E n ,PBE HF μ̅ [ ̃ ̃ ].
The most computationally intensive task of the present

approach is the evaluation of W r r( , ) at each quadrature grid

point. In the general case (i.e., Ψ is a multideterminant
expansion), we compute this embarrassingly parallel step in

N N( )grid
4 computational cost with a memory requirement of

N N( )grid
2 , where N is the number of basis functions in .

The computational cost can be reduced to N N N( )grid
2 2 with

no memory footprint when Ψ is a single Slater determinant.
As shown in ref 41, this choice for Ψ already provides, for
weakly correlated systems, a quantitative representation of the
incompleteness of . Hence, we will stick to this choice
throughout this study. In our current implementation, the
computational bottleneck is the four-index transformation to
obtain the two-electron integrals in the MO basis that appear
in eqs 5 and 6. Nevertheless, this step usually has to be
performed for most correlated WFT calculations.
To conclude this section, we point out that, because of the

definitions (eqs 4 and 9) as well as the properties (eq 8 and
12), independently of the DFT functional, the present basis-set
correction (i) can be applied to any WFT method that
provides an energy and a density, (ii) does not correct one-
electron systems, and (iii) vanishes in the CBS limit, hence
guaranteeing an unaltered CBS limit for a given WFT method.
We begin our investigation of the performance of the basis-

set correction by computing the atomization energies of C2,
N2, O2, and F2 obtained with Dunning’s cc-pVXZ basis (X = D,
T, Q, and 5). In a second run, we compute the atomization
energies of the entire G2 set47 composed by 55 molecules with
the cc-pVXZ basis-set family. This molecular set has been
intensively studied in the past 20 years (see, for example, refs
48−56) and can be considered as a representative set of small
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organic and inorganic molecules. We employ either CCSD(T)
or exFCI to compute the energy of these systems. Here, exFCI
stands for extrapolated FCI energies computed with the CIPSI
algorithm.57−59 We refer the interested reader to refs 60−64
for more details. In the case of the CCSD(T) calculations, we
use the restricted open-shell HF (ROHF) one-electron density
to compute the complementary basis-set correction energy. In
the case of exFCI, the one-electron density is computed from a
very large CIPSI expansion containing several million
determinants. CCSD(T) energies are computed with Gaus-
sian09 using standard threshold values,65 while RS-DFT and
exFCI calculations are performed with QUANTUM PACKAGE.66

For the numerical quadratures, we employ the SG-2 grid.67

Apart from the carbon dimer where we have taken the
experimental equilibrium bond length (1.2425 Å), all geo-
metries have been extracted from ref 68 and have been
obtained at the B3LYP/6-31G(2df,p) level of theory. Frozen-
core calculations are systematically performed and defined as
such: a He core is frozen from Li to Ne, while a Ne core is
frozen from Na to Ar. The FC density-based correction is used
consistently with the FC approximation in WFT methods. To
estimate the CBS limit of each method, following ref 69, we
perform a two-point X−3 extrapolation of the correlation
energies using the quadruple- and quintuple-ζ data that we add
to the HF energies obtained in the largest (i.e., quintuple-ζ)
basis.
As the exFCI atomization energies are converged with a

precision of ∼0.1 kcal/mol, we can label these as near FCI.
Hence, they will be our references for C2, N2, O2, and F2. The
results for these diatomic molecules are reported in Figure 1.
The corresponding numerical data (as well as the correspond-
ing LDA results) can be found in the Supporting Information.
As one can see, the convergence of the exFCI atomization
energies is, as expected, slow with respect to the basis set:

chemical accuracy (error below 1 kcal/mol) is barely reached
for C2, O2, and F2 even with the cc-pV5Z basis set, and the
atomization energies are consistently underestimated. A similar
trend holds for CCSD(T). With regard to the effect of the
basis-set correction, several general observations can be made
for both exFCI and CCSD(T). First, in a given basis set, the
basis-set correction systematically improves the atomization
energies. A small overestimation can occur compared to the
CBS value by a few tenths of a kilocalorie per mole [the largest
deviation being 0.6 kcal/mol for N2 at the CCSD(T)+PBE/cc-
pV5Z level]. Nevertheless, the deviation observed for the
largest basis set is typically within the CBS extrapolation error,
which is highly satisfactory knowing the marginal computa-
tional cost of the present correction. In most cases, the basis-
set-corrected triple-ζ atomization energies are on par with the
uncorrected quintuple-ζ ones.
The fundamental quantity of the present basis-set correction

is r( )μ . As it grows when one gets closer to the CBS limit, the

value of r( )μ quantifies the quality of a given basis set at a

given r. Another important quantity closely related to r( )μ is

the local energetic correction, n(r)εc,md
sr,PBE(n(r),s(r),ζ(r), r( ))μ ,

which integrates to the total basis-set correction E n,PBE μ̅ [ ]
(see eq 13). Such a quantity essentially depends on the local
values of both r( )μ and n(r). To qualitatively illustrate how

the basis-set correction operates, we report, in Figure 2, μ ̃
and ñ × εc̅,md

sr,PBE along the molecular axis (z) of N2 for = cc-
pVDZ, cc-pVTZ, cc-pVQZ. This figure illustrates several
general trends. (i) The value of z( )μ ̃ tends to be much larger
than 0.5 bohr−1, which is the common value used in RS-DFT.
(ii) z( )μ ̃ is highly nonuniform in space, illustrating the
nonhomogeneity of basis-set quality in quantum chemistry.

Figure 1. Deviation (in kilocalories per mole) from CBS atomization energies of C2 (top left), O2 (top right), N2 (bottom left), and F2 (bottom
right) obtained with various methods and basis sets. The green region corresponds to chemical accuracy (i.e., error below 1 kcal/mol). See the
Supporting Information for raw data and the corresponding LDA results.
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(iii) z( )μ ̃ is significantly larger close to the nuclei, a signature
that nucleus-centered basis sets better describe these high-
density regions than the bonding regions. (iv) The value of the
energy correction becomes smaller as one improves the basis-
set quality, the reduction being spectacular close to the nuclei.
(v) A large energetic contribution comes from the bonding
regions, highlighting the imperfect description of correlation
effects in these regions with Gaussian basis sets.
As a second set of numerical examples, we compute the error

(with respect to the CBS values) of the atomization energies
from the G2 test set with CCSD(T) and the cc-pVXZ basis
sets. Here, all atomization energies have been computed with
the same near-CBS HF/cc-pV5Z energies; only the correlation
energy contribution varies from one method to the other.
Investigating the convergence of correlation energies (or
differences of such quantities) is commonly done to appreciate
the performance of basis-set corrections aiming at correcting

two-electron effects.13,20,70 The “plain” CCSD(T) atomization
energies as well as the corrected CCSD(T)+PBE values are
depicted in Figure 3. The raw data (as well as the
corresponding LDA results) can be found in the Supporting
Information. A statistical analysis of these data is also provided
in Table 1, where we report the mean absolute deviation

(MAD), root-mean-square deviation (RMSD), and maximum
deviation (MAX) with respect to the CCSD(T)/CBS
atomization energies. Note that the MAD of our CCSD(T)/
CBS atomization energies is only 0.37 kcal/mol compared to
the values extracted from ref 53, which corresponds to frozen-
core nonrelativistic atomization energies obtained at the
CCSD(T)(F12)/cc-pVQZ-F12 level of theory corrected for
higher-excitation contributions [ECCSDT(Q)/cc‑pV(D+d)Z −
ECCSD(T)/cc‑pV(D+d)Z]. From the double- to quintuple-ζ basis,
the MAD associated with the CCSD(T) atomization energies
decreases slowly from 14.29 to 1.28 kcal/mol. For a commonly
used basis like cc-pVTZ, the MAD of CCSD(T) is still 6.06
kcal/mol. Applying the basis-set correction drastically reduces
the basis-set incompleteness error. Already at the
CCSD(T)+PBE/cc-pVDZ level, the MAD is reduced to 1.96

Figure 2. μ ̃ (top) and ñ × εc̅,md
sr,PBE (bottom) along the molecular axis

(z) for N2 for various basis sets. The two nitrogen nuclei are located
at z = 0 and z = 2.076 bohr. The calculations have been performed in
the FC approximation.

Figure 3. Deviation (in kilocalories per mole) from the CCSD(T)/CBS atomization energy obtained with various basis sets for CCSD(T) (top)
and CCSD(T)+PBE (bottom). The green region corresponds to chemical accuracy (i.e., error of <1 kcal/mol). Note the different scales of the
vertical axes. See the Supporting Information for raw data and the corresponding LDA results.

Table 1. Statistical Analysis (in kilocalories per mole) of the
G2 Atomization Energies Depicted in Figure 3a

method MAD RMSD MAX CA

CCSD(T)/cc-pVDZ 14.29 16.21 36.95 2
CCSD(T)/cc-pVTZ 6.06 6.84 14.25 2
CCSD(T)/cc-pVQZ 2.50 2.86 6.75 9
CCSD(T)/cc-pV5Z 1.28 1.46 3.46 21
CCSD(T)+PBE/cc-pVDZ 1.96 2.59 7.33 19
CCSD(T)+PBE/cc-pVTZ 0.85 1.11 2.64 36
CCSD(T)+PBE/cc-pVQZ 0.31 0.42 1.16 53

aMean absolute deviation (MAD), root-mean-square deviation
(RMSD), and maximum deviation (MAX) with respect to the
CCSD(T)/CBS reference atomization energies. CA corresponds to
the number of cases (of 55) obtained with chemical accuracy. See the
Supporting Information for raw data and the corresponding LDA
results.
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kcal/mol. With the triple-ζ basis , the MAD of
CCSD(T)+PBE/cc-pVTZ is already below 1 kcal/mol with
36 cases (of 55) where we achieve chemical accuracy.
CCSD(T)+PBE/cc-pVQZ returns a MAD of 0.31 kcal/mol,
while CCSD(T)/cc-pVQZ still yields a fairly large MAD of
2.50 kcal/mol.
Therefore, similar to F12 methods,13 we can safely claim

that the present basis-set correction provides significant basis-
set reduction and recovers quintuple-ζ quality atomization and
correlation energies with triple-ζ basis sets for a much lower
computational cost. Encouraged by these promising results, we
are currently pursuing various avenues toward basis-set
reduction for strongly correlated systems and electronically
excited states.
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