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ABSTRACT: Quantum chemistry is a discipline which relies
heavily on very expensive numerical computations. The
scaling of correlated wave function methods lies, in their
standard implementation, between N( )5 and e( )N , where
N is proportional to the system size. Therefore, performing
accurate calculations on chemically meaningful systems
requires (i) approximations that can lower the computational
scaling and (ii) efficient implementations that take advantage
of modern massively parallel architectures. QUANTUM PACKAGE
is an open-source programming environment for quantum
chemistry specially designed for wave function methods. Its
main goal is the development of determinant-driven selected
configuration interaction (sCI) methods and multireference second-order perturbation theory (PT2). The determinant-driven
framework allows the programmer to include any arbitrary set of determinants in the reference space, hence providing greater
methodological freedom. The sCI method implemented in QUANTUM PACKAGE is based on the CIPSI (Configuration Interaction
using a Perturbative Selection made Iteratively) algorithm which complements the variational sCI energy with a PT2 correction.
Additional external plugins have been recently added to perform calculations with multireference coupled cluster theory and
range-separated density-functional theory. All the programs are developed with the IRPF90 code generator, which simplifies
collaborative work and the development of new features. QUANTUM PACKAGE strives to allow easy implementation and
experimentation of new methods, while making parallel computation as simple and efficient as possible on modern
supercomputer architectures. Currently, the code enables, routinely, to realize runs on roughly 2 000 CPU cores, with tens of
millions of determinants in the reference space. Moreover, we have been able to push up to 12 288 cores in order to test its
parallel efficiency. In the present manuscript, we also introduce some key new developments: (i) a renormalized second-order
perturbative correction for efficient extrapolation to the full CI limit and (ii) a stochastic version of the CIPSI selection
performed simultaneously to the PT2 calculation at no extra cost.

I. INTRODUCTION

In 1965, Gordon Moore predicted that the number of
transistors in an integrated circuit would double about every
two years (the so-called Moore’s law).1 Rapidly, this “law” was
interpreted as an expected 2-fold increase in performance every
18 months. This became an industrial goal. The development
of today’s most popular electronic structure codes was initiated
in the 1990s (or even before). At that time, the increase in
computational power from one supercomputer generation to
the next was mostly driven by an increase of processors’

frequency. Indeed, the amount of random access memory was
small, the time to access data from disk was slow, and the
energy consumption of the most powerful computer was 236
kW, hence far from being an economical concern.2 At the very
beginning of the 21st century, having increased continuously,
both the number of processors and their frequency raised the
supercomputer power consumption by 2 orders of magnitude,
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inflating accordingly the electricity bill. The only way to slow
this frenetic growth of power consumption while keeping alive
Moore’s dream was to freeze the processor’s frequency
(between 1 and 4 GHz) and increase the number of CPU
cores. The consequence of such a choice was that “f ree lunch”
was over: the programmers now had to parallelize their
programs to make them run faster.3 At the same time,
computer scientists realized that the increase in performance in
memory access was slower than the increase in computational
power4 and that the floating-point operation (or flop) count
would soon stop being the bottleneck. From now on, data
movement would be the main concern. This paradigm shift
was named the memory wall. Moore’s law is definitely near the
end of its life.5

The traditional sequential algorithms of quantum chemistry
are currently being redesigned and replaced by parallel
equivalents by multiple groups around the world.6−18 This
has obviously a significant influence on methodological
developments. The most iconic example of this move toward
parallel-friendly methods is the recently developed f ull
conf iguration interaction quantum Monte Carlo (FCIQMC)
method by Alavi and co-workers.6 FCIQMC can be
interpreted as a Monte Carlo equivalent of older selected
configuration interaction (sCI) algorithms,9,10,19−54 such as
CIPSI (Configuration Interaction using a Perturbative
Selection made Iteratively),21 that are iterative and thus a
priori not well adapted to massively parallel architecture. As we
see here, things turn out differently, and the focus of the
present article is to show that sCI methods can be made
efficient on modern massively parallel supercomputers.
QUANTUM PACKAGE55 is an open-source suite of wave

function quantum chemistry methods mainly developed at
the Laboratoire de Chimie et Physique Quantiques (LCPQ) in
Toulouse (France) and the Laboratoire de Chimie Theórique
(LCT) in Paris. Its source code is freely available on GitHub at
the following address: https://github.com/QuantumPackage/
qp2. QUANTUM PACKAGE strives to allow easy implementation
and experimentation of new methods, while making parallel
computation as simple and efficient as possible. Accordingly,
the initial choice of QUANTUM PACKAGE was to go toward
determinant-driven algorithms. Assuming a wave function
expressed as a linear combination of determinants, a
determinant-driven algorithm essentially implies that the
outermost loop runs over determinants. On the other hand,
more traditional integral-driven algorithms have their outermost
loop running on the two-electron integrals appearing in the
expression of the matrix elements in the determinant basis
(Section IIB). Determinant-driven algorithms allow more
flexibility than their integral-driven counterparts,56 but they
have been known for years to be less efficient than their
integral-driven variant for solving electronic structure prob-
lems. In high-precision calculations, the number of determi-
nants is larger than the number of integrals, justifying the
integral-driven choice. However, today’s programming stand-
ards impose parallelism, and if determinant-driven calculations
prove to be better adapted to parallelism, such methods could
regain popularity. More conventional approaches have also
been very successfully parallelized: CCSD(T),57,58 DMRG,59

GW,60 QMC,61−63 and many others.
QUANTUM PACKAGE was used in numerous applications, in

particular, to obtain reference ground-state energies34−38,64 as
well as excitation energies44,54,65 for atomic and molecular
systems. For example, in ref 44, QUANTUM PACKAGE has been

used to compute more than 100 very accurate transition
energies for states of various characters (valence, Rydberg, n→
π*, π → π*, singlet, triplet, ...) in 18 small molecules. The high
quality and compactness of the CIPSI wave function was also
used for quantum Monte Carlo calculations to characterize the
ground state of the water and the FeS molecules38,42 and
obtained highly accurate excitation energies.43,66,67 Of course,
the technical considerations were not the main concern of the
different articles that were produced. Because the present work
focused on the actual implementation of the methods at least
as much as on the theory behind them, this article is a perfect
opportunity to discuss in depth their implementation.
This manuscript is organized as follows. In Section II, we

briefly describe the main computational methods implemented
in QUANTUM PACKAGE as well as newly developed methods and
extrapolation techniques. Section III deals with their
implementation. In particular, Section IIIA discusses the
computation of the Hamiltonian matrix elements using
determinant-driven algorithms, while Section IIIC focuses on
the acceleration of the Davidson diagonalization, a pivotal
point of sCI methods. In Section IIID, we focus on the
determinant selection step used to build compact wave
functions. Specifically, the principle is to incrementally build
a reference wave function by scavenging its external space for
determinants that interact with it. To make this step more
affordable, we designed a new stochastic scheme which selects
on the f ly the more important determinants, while the second-
order perturbative (PT2) energy is computed using a hybrid
stochastic-deterministic scheme.10 Therefore, the selection part
of this new stochastic CIPSI selection is virtually free as long as
one is interested in the second-order perturbative correction,
which is crucial in many cases in order to obtain near full
conf iguration interaction (FCI) results. Section IV briefly
explains how we produce spin-adapted wave functions, and
Section V describes parallelism within QUANTUM PACKAGE. The
efficiency of the present algorithms is demonstrated in Section
VIC, where illustrative calculations and parallel speedups are
reported. Finally, Section VII discusses the development
philosophy of QUANTUM PACKAGE as well as other relevant
technical details. Unless otherwise stated, atomic units are used
throughout.

II. METHODS
IIA. Generalities. The correlation energy is defined as68

= −E E Ec exact HF (1)

where Eexact and EHF are, respectively, the exact (non-
relativistic) energy and the Hartree−Fock (HF) energy in a
complete (one-electron) basis set.
To include electron correlation effects, the wave function

associated with the kth electronic state, |Ψk⟩, may be expanded
in the set of all possible N-electron Slater determinants, |I⟩,
built by placing N↑ spin-up electrons in Norb orbitals and N↓
spin-down electrons in Norb orbitals (where N = N↑ + N↓).
These so-called molecular orbitals (MOs) are defined as linear
combinations of atomic orbitals (AOs)

∑ϕ χ=
μ

μ μCr r( ) ( )p

N

p

orb

(2)

Note that the MOs are assumed to be real valued in the
context of this work. The eigenvectors of the Hamiltonian Ĥ
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are consequently expressed as linear combinations of Slater
determinants, i.e.,

∑|Ψ⟩ = | ⟩c Ik
I

N

Ik

det

(3)

where Ndet is the number of determinants. For sake of
conciseness, we restrict the discussion to the ground state (i.e.,
k = 0) and drop the subscript k accordingly. Solving the
eigenvalue problem in this basis is referred to as FCI and
yields, for a given basis set, the exact solution of the
Schrödinger equation. Unfortunately, FCI is usually computa-
tionally intractable because of its exponential scaling with the
size of the system.
IIB. Matrix Elements of the Hamiltonian. In the N-

electron basis of Slater determinants, one expects the matrix
elements of Ĥ to be integrals over 3N dimensions. However,
given the two-electron nature of the Hamiltonian, and because
the MOs are orthonormal, Slater determinants that differ by
more than two spinorbitals yield a zero matrix element. The
remaining elements can be expressed as sums of integrals over
one- or two-electron coordinates, which can be computed at a
reasonable cost. These simplifications are known as Slater−
Condon’s rules and read

∑ ∑⟨ | ̂ | ⟩ = | |̂ + ||
∈| ⟩ ∈| ⟩

I H I i h i ii jj( )
1
2

( )
i I i j I, (4a)

∑⟨ | ̂ | ⟩ = | |̂ + ||
∈| ⟩

I H I p h r pr ii( ) ( )p
r

i I (4b)

⟨ | ̂ | ⟩ = ||I H I pr qs( )pq
rs

(4c)

where ĥ is the one-electron part of the Hamiltonian (including
kinetic energy and electron−nucleus attraction operators).

∫ ϕ ϕ| |̂ = ̂p h q h dr r r r( ) ( ) ( ) ( )p q (5)

are one-electron integrals, i ∈ |I⟩ means that ϕi belongs to the
Slater determinant |I⟩, and |Ip

r⟩ and |Ipq
rs ⟩ are determinants

obtained from |I⟩ by substituting orbitals ϕp by ϕr and ϕp and
ϕq by ϕr and ϕs, respectively.

∬ ϕ ϕ ϕ ϕ| = −pq rs r d dr r r r r r( ) ( ) ( ) ( ) ( )p q r s1 1 12
1

2 2 1 2 (6)

are two-electron electron repulsion integrals (ERIs), r12
−1 = |r1 −

r2|
−1 is the Coulomb operator, and (pq||rs) = (pq|rs) − (ps|rq)

are the usual antisymmetrized two-electron integrals.
Within the HF method, Roothaan’s equations allow us to

solve the problem in the AO basis.69 In this context, one needs
to compute the N( )orb

4 two-electron integrals (μν|λσ) over
the AO basis. Because of a large effort in algorithmic
development and implementation,70−77 these integrals can
now be computed very fast on modern computers. However,
with post-HF methods, the computation of the two-electron
integrals is a potential bottleneck. Indeed, when computing
matrix elements of the Hamiltonian in the basis of Slater
determinants, ERIs over MOs are required. Using eq 2, the
cost of computing a single integral (pq|rs) scales as N( )orb

4 . A
naive computation of all integrals in the MO basis would cost

N( )orb
8 . Fortunately, computing all of them can be scaled

down to N( )orb
5 by transforming the indices one by one.78

This step is known as the four-index integral transformation. In

addition to being very costly, this step is hard to parallelize in a
distributed way, because it requires multiple collective
communications.79−82 However, techniques such as density
fitting (also called the resolution of the identity),83−85 low-rank
approximations,86−89 or the combination of both90 are now
routinely employed to overcome the computational and
storage bottlenecks.

IIC. Selected CI Methods. sCI methods rely on the same
principle as the usual configuration interaction (CI) approach,
except that determinants are not chosen a priori based on
occupation or excitation criteria but selected among the entire
set of determinants based on their estimated contribution to
the FCI wave function. Indeed, it has been noticed long ago
that, even inside a predefined subspace of determinants, only a
small number of them significantly contributes.33,91 Therefore,
an on-the-f ly selection of determinants is a rather natural idea
that has been proposed in the late 1960s by Bender and
Davidson19 as well as Whitten and Hackmeyer.20 sCI methods
are still very much under active development. The main
advantage of sCI methods is that no a priori assumption is
made on the type of electronic correlation. Therefore, at the
price of a brute force calculation, a sCI calculation is less biased
by the user’s appreciation of the problem’s complexity.
The approach that we have implemented in QUANTUM

PACKAGE is based on the CIPSI algorithm developed by Huron,
Rancurel, and Malrieu in 197321 that iteratively selects external
determinants |α⟩, determinants which are not present in the
(reference or variational) zeroth-order wave function

∑|Ψ ⟩ = | ⟩c I
I

I
(0)

(7)

at a given iteration  using a perturbative criterion

α
α α

= ⟨Ψ | ̂ | ⟩
− ⟨ | ̂ | ⟩

αe
H

E H
(2)

(0) 2

(0) (8)

where

= ⟨Ψ | ̂ |Ψ ⟩
⟨Ψ |Ψ ⟩

≥E
H

E(0)
(0) (0)

(0) (0) FCI
(9)

is the zeroth-order (variational) energy, and eα
(2) is the (second-

order) estimated gain in correlation energy that would be
brought by the inclusion of |α⟩. The second-order perturbative
correction

∑ ∑ α
α α

= = ⟨ | ̂ |Ψ ⟩
− ⟨ | ̂ | ⟩α

α
α

E e
H

E H
(2) (2)

(0) 2

(0)
(10)

is an estimate of the total missing correlation energy, i.e., E(2) ≈
EFCI − E(0), for large enough expansions.
Let us emphasize that sCI methods can be applied to any

determinant space. Although presented here for the FCI space,
it can be trivially generalized to a complete active space (CAS)
but also to standard CI spaces such as CIS, CISD, or MR-
CISD. The only required modification is to set to zero the
contributions associated with the determinants which do not
belong to the target space.
There is, however, a computational downside to sCI

methods. In conventional CI methods, the rule by which
determinants are selected is known a priori, and therefore, one
can map a particular determinant to some row or column
indices.92 As a consequence, it can be systematically
determined to which matrix element of Ĥ a two-electron
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integral contributes. This allows for the implementation of so-
called integral-driven methods that work essentially by iterating
over integrals. On the contrary, in (most) sCI methods, the
determinants are selected a posteriori, and an explicit list has to
be maintained as there is no immediate way to know whether
or not a determinant has been selected. Consequently, we must
rely on the so-called determinant-driven approach in which
iterations are performed over determinants rather than
integrals. This can be a lot more expensive since the number
of determinants Ndet is typically much larger than the number
of integrals. The number of determinants scales as !N( )orb ,
while the number of integrals scales (formally) as N( )orb

4 .
What makes sCI calculations possible in practice is that sCI
methods generate relatively compact wave functions, i.e., wave
functions where Ndet is much smaller (by orders of magnitude)
than the size of the FCI space. Furthermore, determinant-
driven methods require an effective way to compare
determinants in order to extract the corresponding excitation
operators and a way to rapidly fetch the associated integrals as
described in Section IIIA.
Because of this high computational cost, approximations

have been proposed.24 Recently, the semistochastic heat-bath
configuration interaction (SHCI) algorithm has taken further
the idea of a more approximate but extremely cheap
selection.9,39,53 Compared to CIPSI, the selection criterion is
simplified to

α= | ⟨ | ̂ | ⟩|αe c I Hmax( )
I

I
SHCI

(11)

This algorithmically allows for an extremely fast selection of
doubly excited determinants by an integral-driven approach.
Nonetheless, the bottlenecks of the SHCI are the diagonaliza-
tion step and the computation of E(2), which remain
determinant driven.
As mentioned above, FCIQMC is an alternative approach of

stochastic nature recently developed in Alavi’s group,6−8 where
signed walkers spawn from one determinant to connected
ones, with a probability that is a function of the associated
matrix element. The average proportion of signed walkers on a
determinant converges to its coefficient in the FCI wave
function. A more “brute force” approach is the purely
stochastic selection of Monte Carlo CI (MCCI),93,94 where
determinants are randomly added to the zeroth-order wave
function. After diagonalization, the determinants of smaller
coefficient are removed, and new random determinants are
added.
A number of other variants have been developed but are not

detailed here.9,10,19−21,24−28,30,31,33−51,51−54,95 Although these
various approaches appear under diverse acronyms, most of
them rely on the very same idea of selecting determinants
iteratively according to their contribution to the wave function
or energy.
IID. Extrapolation Techniques. IID1. Usual Extrapola-

tion Procedure. In order to extrapolate the sCI results to the
FCI limit, we have adopted the method recently proposed by
Holmes, Umrigar, and Sharma40 in the context of the SHCI
method.9,39,40 It consists of extrapolating the sCI energy, E(0),
as a function of the second-order Epstein−Nesbet energy, E(2),
which is an estimate of the truncation error in the sCI
algorithm, i.e., E(0) ≈ EFCI − E(2).21 When E(2) = 0, the FCI
limit has effectively been reached. This extrapolation procedure
has been shown to be robust, even for challenging chemical
situations.9,40−45,54 Below, we propose an improved extrap-

olation scheme which renormalizes the second-order perturba-
tive correction.

IID2. Renormalized PT2. At a given sCI iteration, the sCI
+PT2 energy is given by

= +E E E(0) (2) (12)

where E(0) and E(2) are given by eqs 9 and 10, respectively. Let
us introduce the following energy-dependent second-order
self-energy

∑ α
α α

Σ [ ] = ⟨ | ̂ |Ψ ⟩
− ⟨ | ̂ | ⟩α

E
H

E H
(2)

(0) 2

(13)

Obviously, we have Σ(2)[E(0)] = E(2). Now, let us consider
the more general problem, which is somewhat related to
Brillouin−Wigner perturbation theory, where we have

= + Σ [ ]E E E(0) (2) (14)

and assume that Σ(2)[E] behaves linearly for E ≈ E(0), i.e.,

Σ [ ] ≈ Σ [ ] + − ∂Σ [ ]
∂

=

E E E E
E

E
( )

E E

(2) (2) (0) (0)
(2)

(0) (15)

This linear behavior is corroborated by the findings of
Nitzsche and Davidson.96 Substituting eq 15 into 14 yields

= + Σ [ ] + − ∂Σ [ ]
∂

= +

=

E E E E E
E

E

E ZE

( )
E E

(0) (2) (0) (0)
(2)

(0) (2)

(0)

(16)

where the renormalization factor is

= − ∂Σ [ ]
∂

=

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
Z

E
E

1
E E

(2) 1

(0) (17)

and

∑ α
α α

∂Σ [ ]
∂

= − ⟨ | ̂ |Ψ ⟩
− ⟨ | ̂ | ⟩

<
α=

E
E

H

E H( )
0

E E

(2) (0) 2

(0) 2
(0) (18)

Therefore, the renormalization factor fulfills the condition 0
≤ Z ≤ 1, and its actual computation does not involve any
additional cost when computed alongside E(2) as they involve
the same quantities. This renormalization procedure of the
second-order correction, that we have named rPT2, bears
obvious similarities with the computation of quasiparticle
energies within the G0W0 method.97−100 Practically, the effect
of rPT2 is to damp the value of E(2) for small wave functions.
Indeed, when Ndet is small, the sum E(0) + E(2) usually
overestimates (in magnitude) the FCI energy, yielding a
pronounced nonlinear behavior of the sCI+PT2 energy.
Consequently, by computing instead the (renormalized)
energy E(0) + Z E(2), one observes a much more linear
behavior of the energy, hence an easier extrapolation to the
FCI limit. Its practical usefulness is illustrated in Section VIB.

III. IMPLEMENTATION
In this section, we give an overview of the implementation of
the various methods present in QUANTUM PACKAGE. The
implementation of the crucial algorithms is explained in detail
in the Ph.D. thesis of Garniron101 as well as in the Appendix of
the present manuscript.
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IIIA. Determinant-Driven Computation of Matrix
Elements. For performance sake, it is vital that some basic
operations are done efficiently and, notably, the computation
of the Hamiltonian matrix elements. This raises some
questions about the data structures chosen to represent the
two-electron integrals and determinants, as well as their
consequences from an algorithmic point of view. This section
is going to address these questions by going through the basic
concepts of our determinant-driven approach.
IIIA1. Storage of Two-Electron Integrals. In QUANTUM

PACKAGE, the two-electron integrals are kept in memory
because they require a fast random access. Considering the
large number of two-electron integrals, a hash table is the
natural choice allowing the storage of only nonzero values with
a data retrieval in near constant time.102 However, standard
hashing algorithms tend to shuffle data to limit the probability
of collisions. Here, we favor data locality using the hash
function given in Algorithm 1. This hash function (i) returns
the same value for all keys related by permutation symmetry,
(ii) keeps some locality in the storage of data, and (iii) can be
evaluated in 10 CPU cycles (estimated with MAQAO103) if
the integer divisions by two are replaced by right bit shift
instructions.

The hash table is such that each bucket can potentially store
215 consecutive key-value pairs. The 15 least significant bits of
the hash value are removed to give the bucket index [ibucket =
hash(i, j, k, l)/215], and only those 15 bits need to be stored in
the bucket for the key storage [hash(i, j, k, l)mod216]. Hence,
the key storage only requires two bytes per key, and they are
sorted in increasing order, enabling a binary search within the
bucket. The key search is always fast since the binary search is
bounded by 15 misses and the maximum size of the key array
is 64 kiB, the typical size of the L1 cache. The efficiency of the
integral storage is illustrated in the Appendix A1.
IIIB. Internal Representation of Determinants. Deter-

minants can be conveniently written as a string of creation
operators applied to the vacuum state |⟩, e.g., ai

†aj
†ak

†|⟩ = |I⟩.
Because of the Fermionic nature of electrons, a permutation of
two contiguous creation operators results in a sign change aj

†ai
†

= −ai†aj†, which makes their ordering relevant, e.g., aj
†ai

†ak
†|⟩ =

−|I⟩. A determinant can be broken down into two pieces of
information: (i) a set of creation operators corresponding to
the set of occupied spinorbitals in the determinant and (ii) an
ordering of the creation operators responsible for the sign of
the determinant, known as phase factor. Once an ordering

operator ̂ is chosen and applied to all determinants, the phase

factor may simply be included in the CI coefficient. Additional
information about the internal representation of determinants
can be found in Appendix A2.

IIIC. Davidson Diagonalization. Finding the lowest
root(s) of the Hamiltonian is a necessary step in CI methods.
Standard diagonalization algorithms scale as N( )det

3 and

N( )det
2 in terms of computation and storage, respectively.

Hence, their cost is prohibitive as Ndet is usually, at least, of the
order of a few millions. Fortunately, not all the spectrum of Ĥ
is required: only the first few lowest eigenstates are of interest.
The Davidson diagonalization105−109 is an iterative algorithm
which aims at extracting the first Nstates lowest eigenstates of a
large matrix. This algorithm reduces the cost of both the
computation and storage to N N( )states det

2 and N N( )states det ,
respectively. It is presented in Algorithm 2, and further details
about the present Davidson algorithm implementation are
gathered in Appendix A3.

IIID. CIPSI Selection and PT2 Energy. IIID1. The Basic
Algorithm. The largest amount of work for this second version
of QUANTUM PACKAGE has been devoted to the improvement of
the CIPSI algorithm implementation.110 As briefly described in
Section II, this is an iterative selection algorithm, where
determinants are added to the reference wave function
according to a perturbative criterion.
The nth CIPSI iteration can be described as follows:

1. The zeroth-order (reference or variational) wave
function

∑|Ψ ⟩ = | ⟩
∈

c I
I

I
(0)

n (19)

is defined over a set of determinants n, characterized as

internal determinants, from which the lowest eigenvector
of Ĥ are obtained.

2. For all external determinants α| ⟩ ∉ n but connected to

n, i.e., ⟨Ψ(0)|Ĥ|α⟩ ≠ 0, we compute the individual

Algorithm 1: Hash function that maps any orbital quartet (i,
j, k, l) related by permutation symmetry to a unique integer.

Algorithm 2: Davidson diagonalization procedure. Note
that [.,.] stands for column-wise matrix concatenation.
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perturbative contribution eα
(2) given by eq 8. This set of

external determinants is labeled n.
3. Summing the contributions of all the external determi-

nants α ∈ n gives the second-order perturbative
correction provided by eq 10, and the FCI energy can
be estimated as EFCI ≈ E(0) + E(2).

4. We extract α| ⟩ ∈★ ★
n , the subset of determinants

α| ⟩ ∈ n with the largest contributions eα
(2), and add

them to the variational space = ∪+
★

n n n1 . In
practice, in the case of a single-state calculation, we
aim at doubling the size of the reference wave function
at each iteration.

5. Iterate until the desired convergence has been reached.

All the details of our current implementation are reported in
Appendix A4. In the remainer of this section, we only discuss
the algorithm of our new stochastic CIPSI selection.
IIID2. New Stochastic Selection. In the past, CIPSI

calculations were only possible in practice thanks to
approximations. The first approximation restricts the set n
by defining a set of generators. Indeed, it is very unlikely that
|α⟩ will be selected if it is not connected to any |I⟩ with a large
coefficient, so only the determinants with the largest
coefficients are generators. A second approximation defines a
set of selectors in order to reduce the cost of eα

(2) by removing
the determinants with the smallest coefficients in the
expression of Ψ(0) in E(2). This approximate scheme was
introduced in the 1980s and is known as three-class CIPSI.24

The downside of these approximations is that the calculation is
biased and, consequently, does not strictly converge to the FCI
limit. Moreover, similar to the initiator approximation in
FCIQMC,8 this scheme suffers from a size-consistency
issue.111 The stochastic selection that we describe in this
section (asymptotically) cures this problem, as there is no
threshold on the wave function: if the calculation is run long
enough, the unbiased FCI solution is obtained.
Recently, some of us developed a hybrid deterministic/

stochastic algorithm for the computation of E(2).112 The main
idea is to rewrite the expression of

∑ α= ⟨Ψ | ̂ | ⟩
α

αE c H(2) (0)

(20)

into elementary contributions labeled by the determinants of
the internal space

∑ ∑ ∑α ε= ⟨Ψ | ̂ | ⟩ =
α

α
∈

E c H
I I

I
(2) (0)

I (21)

where

α
α α

= ⟨Ψ | ̂ | ⟩
− ⟨ | ̂ | ⟩

αc
H

E H

(0)

(0)
(22)

is the corresponding coefficient estimated via first-order
perturbation theory, and I is the subset of determinants
|α⟩ connected to |I⟩ by Ĥ such that α| ⟩ ∉ ∪ <K I K . The sum
is decomposed into a stochastic and a deterministic
contribution

∑ ∑ε ε= +
∈ ∈

E
J

J
K

K
(2)

(23)

where and are the sets of determinants included in the
deterministic and stochastic components, respectively.

The |I⟩’s are sorted by decreasing cI
2, and two processes are

used simultaneously to compute the contributions εI. The first
process is stochastic, and |I⟩ is drawn according to cI

2. When a
given εI has been computed once, its contribution is stored
such that if |I⟩ is drawn again later the contribution does not
need to be recomputed. The only update is to increment the
number of times it has been drawn for the Monte Carlo
statistics. In parallel, a deterministic process is run, forcing us
to compute the contribution εI with the smallest index which
has yet to be computed. The deterministic component is
chosen as the first contiguous set of εI. Hence, the
computation of E(2) is unbiased, and the exact deterministic
value can be obtained in a finite time if the calculation is run
long enough. The stochastic part is only a convergence
accelerator providing a reliable error bar. The computation of
E(2) is run with a default stopping criterion set to |δE(2)/E(2)| =
0.002, where δE(2) is the statistical error associated with E(2).
We would like to stress that, because of the present
semistochastic algorithm, the complete wave function is
considered, and that no threshold is required. Consequently,
size-consistency will be preserved if a size-consistent
perturbation theory is applied.
While performing production runs, we have noticed that the

computation of E(2) was faster than the CIPSI selection.
Hence, we have slightly modified the routines computing E(2)

such that the selection of determinants is performed alongside
the computation of E(2). This new on-the-fly CIPSI selection
performed during the stochastic PT2 calculation completely
removes the conventional (deterministic) selection step, and
the determinants are selected with no additional cost. We have
observed that, numerically, the curves of the variational energy
as a function of Ndet obtained with either the deterministic or
the stochastic selections are indistinguishable, so that the
stochastic algorithm does not harm the selection’s quality.
For the selection of multiple states, one PT2 calculation is

run for each state, and as proposed by Angeli et al.,113 the
selection criterion is modified as

∑ α̃ = ⟨Ψ | ̂ | ⟩α
αe

c
c

H
maxk

N
k

I Ik
k

(2)
2

(0)
states

(24)

with

α
α α

=
⟨Ψ | ̂ | ⟩

⟨Ψ | ̂ |Ψ ⟩ − ⟨ | ̂ | ⟩αc
H

H H
k

k

k k

(0)

(0) (0)
(25)

This choice gives a balanced selection between states of
different multiconfigurational nature.

IV. SPIN-ADAPTED WAVE FUNCTIONS
Determinant-based sCI algorithms generate wave functions
expressed in a truncated space of determinants. Obviously, the
selection presented in the previous section does not enforce
that Ĥ commutes with Ŝ2 in the truncated space. Hence, the
eigenstates of Ĥ are usually not eigenvectors of Ŝ2, although the
situation improves when the size of the internal space tends to
be complete. A natural way to circumvent this problem is to
work in the basis of conf iguration state functions (CSFs), but
this representation makes the direct computation of the
Hamiltonian less straightforward during the Davidson
diagonalization.
Instead, we follow the same path as the MELD and SCIEL

codes114−116 and identify all the spatial occupation patterns
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associated with the determinants.117 We then generate all
associated spin-flipped configurations and add to the internal
space all the missing determinants. This procedure ensures that
Ĥ commutes with Ŝ2 in the truncated space, and spin-adapted
states are obtained by the diagonalization of Ĥ. In addition, we
apply a penalty method in the diagonalization by modifying the
Hamiltonian as118

γ̃ = + − ⟨ ⟩SH H S I( )2 2
target

2
(26)

where I is the identity matrix, and γ is a fixed parameter set to
0.1 by default. This improves the convergence to the desired
spin state but also separates degenerate states with different
spins, a situation that can potentially occur, for example, with
Rydberg states. In the Davidson algorithm, this requires the
additional computation of S2 U, for which the cost is expected
to be the same as the cost of H U (see Algorithm 2). The cost
of computing H U and S2 U is mostly due to the search of the
connected pairs of determinants, namely, the determinants ⟨I|
and |J⟩ for which ⟨I|Ĥ|J⟩ and ⟨I|Ŝ2|J⟩ are not zero due to
Slater−Condon’s rules. We have modified the function
computing H U so that it also computes S2 U at the same
time. Hence, the search of connected pairs is done once for
both operations, and S2 U is obtained with no extra
computational cost.
Working with spin-adapted wave functions increases the size

of the internal space by a factor usually between 2 and 3, but it
is particularly important if one is willing to obtain excited
states.42−44,54 Therefore, the default in QUANTUM PACKAGE is to
use spin-adapted wave functions.

V. PARALLELISM
In QUANTUM PACKAGE, multiple parallelism layers are
implemented: a fine-grained layer to benefit from shared
memory, an intermediate layer to benefit from fast
communication within a group of nodes, and a coarse-grained
layer to interconnect multiple groups of nodes. Fine-grained
parallelism is performed with OpenMP119 in almost every
single routine. Then, to go beyond a single compute node,
QUANTUM PACKAGE does not use the usual single program/
multiple data (SPMD) paradigm. A task-based parallelism
framework is implemented with the ZeroMQ library.120 The
single-node instance runs a compute process as well as a task
server process, while helper programs can be spawned
asynchronously on different (heterogeneous) machines to
run a distributed calculation. The helper programs can connect
via ZeroMQ to the task server at any time and contribute to a
running calculation. As the ZeroMQ library does not take full
advantage of the low latency hardware present in HPC
facilities, the helper programs are parallelized also with the
message passing interface121 (MPI) for fast communication
among multiple client nodes, typically for fast broadcasting of
large data structures.
Hence, we have three layers of parallelism in QUANTUM

PACKAGE: OpenMP, MPI, and ZeroMQ. This allows for an
elastic management of resources: a running calculation taking
too much time can be dynamically accelerated by plugging in
more computing resources and by submitting more jobs in the
queue or possibly in the cloud, i.e., outside of the HPC facility.
This scheme has the advantage that it is not necessary to wait
for all the nodes to be free to start a calculation and hence
minimizes the waiting time in the batch queue. It also gives the
possibility to use altogether different helper programs. For

instance, one could use a specific GPU-accelerated helper
program on a GPU node, while CPU-only helpers run on the
CPU-only partition of the cluster. It is also possible to write a
helper program that helps only one PT2/selection step and
then exit, allowing it to gather resources after the PT2/
selection has started and freeing them for the following
diagonalization step.
The current limitation of QUANTUM PACKAGE is the memory

of the single-node instance. We have not yet considered the
possibility to add more compute nodes to increase the
available memory, but this can be done by transforming the
main program into an MPI program using scattered data
structures.
We now describe how the Davidson and PT2/selection

steps are parallelized.
VA. Davidson Diagonalization. In the direct Davidson

diagonalization method, the computational bottleneck is the
matrix product W = H U, and only this step needs to be
distributed. The calculation is divided into independent tasks
where each task builds a unique piece of W containing 40 000
consecutive determinants. Communicating the result of all the
tasks scales as N( )det , independently of the number of parallel
processes. On the other hand, U needs to be broadcast
efficiently at the beginning of the calculation to each slave
process.
The computation of a task is parallelized with OpenMP,

looping in a way that guarantees a safe write access to W,
avoiding the need of a lock. When idle, a slave process requests
a task to the ZeroMQ task server, computes the corresponding
result, and sends it to the collector thread of the master instance
via ZeroMQ. As the OpenMP tasks are not guaranteed to be
balanced, we have used a dynamic scheduling, with a chunk
size of 64 elements. The reason for this chunk size is to force
that multiple threads access to W at memory addresses far
apart, avoiding the so-called false sharing performance
degradation that occurs when multiple threads write
simultaneously in the same cache line.122 When the task is
fully computed, the computed piece of W is sent back to the
master process and a new task is requested, until the task
queue is empty.
The U and W arrays are shared among threads, as well as all

the large constant data needed for the calculation such as the
ERIs. Sharing U also provides the benefit to reduce the amount
of communication since U needs to be fetched only once for
each node, independently of the number of cores. To make the
broadcast of U efficient, the slave helper program is parallelized
with MPI in a SPMD fashion, and each node runs a single MPI
process. The U matrix is fetched from the ZeroMQ server by
the process with rank zero, and then, it is broadcast to the
other slave processes within the same MPI job via MPI
primitives. Then, each MPI process behaves independently and
communicates via ZeroMQ with the task server and with the
master node which collects the results. A schematic view of the
communication is presented in Figure 1.

VB. CIPSI Selection and PT2 Energy. In the computation
of E(2) and the CIPSI selection, each task corresponds to the
computation of one εJ or εK in eq 23, together with the
selection of the associated external determinants. To establish
the list of tasks, the Monte Carlo sampling is precomputed on
the master node. We associate to each task the number of
drawn Monte Carlo samples such that running averages can be
computed when the results of the tasks have been received by
the collector thread. When the convergence criterion is
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reached, the task queue is emptied and the collector waits for
all the running tasks to terminate.
As opposed to the Davidson implementation where each

task is parallelized with OpenMP, here each OpenMP thread
handles independently a task computed on a single core.
Hence, there are multiple ZeroMQ clients per node, typically
one per core, requesting tasks to the task server and sending
the results back to the collector thread (Figure 2). Here, all the

OpenMP threads are completely independent during the
whole selection, and this explains the pleasing scaling
properties of our implementation, as shown in Section VIC.
As in the Davidson distributed scheme, when the helper
programs are run with MPI, all the common data are
communicated once from the ZeroMQ server to the rank-
zero MPI process. Then, the data are broadcast to all the other
processes with MPI primitives (there is one MPI process per
node).

VI. RESULTS
VIA. Capabilities of QUANTUM PACKAGE. Before illustrating

the new features of QUANTUM PACKAGE, in the next subsection
we propose to give an overview of what can be achieved (in
terms of system and basis set sizes) with the current

implementation of QUANTUM PACKAGE. To do so, we propose
to review some of our very recent studies.
In ref 44, we studied 18 small molecules (water, hydrogen

sulfide, ammonia, hydrogen chloride, dinitrogen, carbon
monoxide, acetylene, ethylene, formaldehyde, methanimine,
thioformaldehyde, acetaldehyde, cyclopropene, diazomethane,
formamide, ketene, nitrosomethane, and the smallest strepto-
cyanine) with sizes ranging from one to three nonhydrogen
atoms. For such systems, using sCI expansions of several
million determinants, we were able to compute more than 100
highly accurate vertical excitation energies with typically
augmented triple-ζ basis sets. It allowed us to benchmark a
series of 12 state-of-the-art excited-state wave function
methods accounting for double and triple excitations.
Even more recently,54 we provided accurate reference

excitation energies for transitions involving a substantial
amount of double excitation using a series of increasingly
large diffuse-containing atomic basis sets. Our set gathered 20
vertical transitions from 14 small- and medium-sized molecules
(acrolein, benzene, beryllium atom, butadiene, carbon dimer
and trimer, ethylene, formaldehyde, glyoxal, hexatriene,
nitrosomethane, nitroxyl, pyrazine, and tetrazine). For the
smallest molecules, we were able to obtain well converged
excitation energies with an augmented quadruple-ζ basis set,
while only augmented double-ζ bases were manageable for the
largest systems (such as acrolein, butadiene, hexatriene, and
benzene). Note that the largest sCI expansion considered in
this study had more than 200 million determinants.
In ref 65, Giner et al. studied even larger systems containing

transition metals: [CuCl4]
2−, [Cu(NH3)4]

2+, and [Cu-
(H2O)4]

2+. They were able, using large sCI expansions, to
understand the physical phenomena that determine the relative
energies of three of the lowest electronic states of each of these
square-planar copper complexes.

VIB. Extrapolation. To illustrate the extrapolation
procedure described in Section IID, we consider a cyanine
dye123 H2N−CH=NH2

+ (labeled as CN3 in the remaining) in
both its ground state and first excited state.45,124,125 The
geometry is the equilibrium geometry of the ground state
optimized at the PBE0/cc-pVQZ level.125 The ground state is
a closed shell, well described by a single reference, while the
excited state is singly excited and requires, at least, two
determinants to be properly modeled. The calculations were
performed in the aug-cc-pVDZ basis set with state-averaged
natural orbitals obtained from an initial CIPSI calculation. All
the electrons were correlated, so the FCI space which is
explored corresponds to a CAS(24,114) space. The reference
excitation energy, obtained at the CC3/ANO-L-VQZP level is
7.18 eV124 (see also ref 45). Note that this particular transition
is fairly insensitive to the basis set as long as at least one set of
diffuse functions is included. For example, we have obtained
7.14 and 7.13 eV at the CC3/aug-cc-pVDZ and CC3/aug-cc-
pVTZ levels, respectively.44

In Figure 3, we plot the energy convergence of the ground
state (GS) and the excited state (ES) as a function of the
number of determinants Ndet, with and without the second-
order perturbative contribution. From the data gathered in
Table 1, one can see that, although E(2) is still large (roughly
0.02 au), the sCI+PT2 and sCI+rPT2 excitation energies
converge to a value of 7.20 eV compatible with the reference
energy obtained in a larger basis set. We have also plotted the
sCI+rPT2 energy given by E(0) + ZE(2) (Section IID2), and we
clearly see that this quantity converges much faster than the

Figure 1. Communications in the Davidson diagonalization for a
calculation with a master node and two helper MPI jobs, each using
four cores for the computation. Red arrows represent the broadcast of
U starting from the compute process of the master node, gray arrows
the exchange of ZeroMQ messages with the task server, and blue
arrows the collection of the results.

Figure 2. Communications in the stochastic selection for a calculation
with a master node and one helper MPI job, each using four cores for
the computation. Red arrows represent the broadcast of the common
data starting from the compute process of the master node, gray
arrows the exchange of ZeroMQ messages with the task server, and
blue arrows the collection of the results.
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usual sCI+PT2 energy. Even for a very small reference wave
function, the energy gap between GS and ES is qualitatively
correct. The graph of Figure 4, which shows the zeroth-order
energy E(0) as a function of the second-order energy E(2)

(dotted lines) or its renormalization variant Z E(2) (solid lines),
also indicates that it is practically much easier to extrapolate to
the FCI limit using the rPT2 correction.
As a second test case for rPT2, we consider the widely

studied example of the chromium dimer (Cr2) in its 1Σg
+

ground state.9,10,39,126−136 This system is notoriously challeng-

ing as it combines dynamic and static correlation effects, hence
requiring multiconfigurational methods and large basis sets in
order to have a balanced treatment of these two effects.
Consequently, we compute its ground-state energy in the cc-
pVQZ basis set with an internuclear distance RCr−Cr = 1.68 Å
close to its experimental equilibrium geometry. Our full-
valence calculation corresponds to an active space CAS-
(28,198), and the computational protocol is similar to the
previous example. The second-order corrected value E(0) + E(2)

as well as its renormalized version E(0) + ZE(2) as a function of

Figure 3. Energy convergence of the ground state (GS, in blue) and excited state (ES, in red) of CN3 with respect to the number of determinants
Ndet in the reference space. The zeroth-order energy E(0) (dashed) and its second-order corrected value E(0) + E(2) (dotted), as well as its
renormalized version E(0) + ZE(2) (solid) are represented. See Table 1 for raw data.

Table 1. Zeroth-Order Energy E(0), Second-Order Perturbative Correction E(2), and Its Renormalized Version ZE(2) (in
hartree) of CN3 for Increasingly Large Wave Functionsa

E(0) E(0) + E(2) E(0)+ZE(2)

Ndet GS (a.u.) ES (a.u.) GS (a.u.) ES (a.u.) ΔE(eV) GS (a.u.) ES (a.u.) ΔE(eV)
28 −149.499574 −149.246268 −150.155(1) −149.863(1) 7.95(5) −150.020(1) −149.743(1) 7.54(5)
58 −149.519908 −149.261390 −150.134(1) −149.853(1) 7.67(5) −150.018(1) −149.744(1) 7.48(5)
131 −149.537424 −149.277496 −150.118(1) −149.8427(9) 7.52(4) −150.017(1) −149.7449(9) 7.39(4)
268 −149.559465 −149.298484 −150.1035(9) −149.8308(9) 7.42(4) −150.0158(9) −149.7457(9) 7.35(4)
541 −149.593434 −149.323302 −150.0845(8) −149.8186(8) 7.24(4) −150.0152(8) −149.7463(8) 7.32(4)
1101 −149.627202 −149.354807 −150.0683(8) −149.8045(8) 7.18(3) −150.0137(8) −149.7460(8) 7.28(3)
2207 −149.663850 −149.399522 −150.0549(7) −149.7879(7) 7.26(3) −150.0132(7) −149.7462(7) 7.27(3)
4417 −149.714222 −149.448133 −150.0409(6) −149.7762(6) 7.20(3) −150.0130(6) −149.7478(6) 7.22(3)
8838 −149.765886 −149.496401 −150.0296(5) −149.7655(5) 7.19(2) −150.0124(5) −149.7473(5) 7.21(2)
17 680 −149.817301 −149.545048 −150.0239(4) −149.7615(4) 7.14(2) −150.0141(4) −149.7505(4) 7.17(2)
35 380 −149.859737 −149.587668 −150.0216(3) −149.7582(3) 7.17(1) −150.0161(3) −149.7518(3) 7.19(1)
70 764 −149.893273 −149.623235 −150.0207(2) −149.7566(3) 7.18(1) −150.0174(2) −149.7530(3) 7.19(1)
141 545 −149.919463 −149.650109 −150.0214(2) −149.7572(2) 7.189(8) −150.0194(2) −149.7550(2) 7.196(8)
283 108 −149.937839 −149.669735 −150.0224(2) −149.7576(2) 7.206(7) −150.0211(2) −149.7562(2) 7.209(7)
566 226 −149.950918 −149.683278 −150.0233(1) −149.7580(1) 7.217(6) −150.0223(1) −149.7570(1) 7.219(6)
1 132 520 −149.960276 −149.693053 −150.0238(1) −149.7588(1) 7.212(5) −150.0231(1) −149.7580(1) 7.214(5)
2 264 948 −149.968203 −149.700907 −150.0240(1) −149.7590(1) 7.211(4) −150.0235(1) −149.7584(1) 7.212(4)
4 529 574 −149.975230 −149.708061 −150.0245(1) −149.7594(1) 7.215(4) −150.0241(1) −149.7589(1) 7.216(4)
9 057 914 −149.981770 −149.714526 −150.02463(9) −149.75981(8) 7.206(3) −150.02434(9) −149.75948(8) 7.207(3)
18 110 742 −149.987928 −149.720648 −150.02495(7) −149.76025(8) 7.203(3) −150.02474(7) −149.76000(8) 7.204(3)
36 146 730 −149.993593 −149.726253 −150.02527(6) −149.76065(7) 7.198(3) −150.02502(6) −149.760 47(7) 7.198(3)

aThe excitation energy ΔE (in eV) is the energy difference between the ground state (GS) and the excited state (ES). The statistical error,
corresponding to one standard deviation, is reported in parentheses.
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the number of determinants in the reference wave function are
reported in Table 2 and depicted in Figure 5. Here also, we

observe that rPT2 is clearly a superior extrapolation framework
compared to the standard PT2 version as it yields a much
straighter extrapolation curve, even in the case of a strongly
correlated system such as Cr2. The renormalization factor Z
(eq 17) mitigates strongly the overestimation of the FCI
energy for small wave functions by damping the second-order
energy E(2). Linear extrapolations of the PT2 and rPT2
energies based on the two largest wave functions yield
extrapolated FCI energies of −2087.734 and −2087.738,
respectively (Table 2). The difference between these two

extrapolated FCI energies provides a qualitative idea of the
extrapolation accuracy.

VIC. Speedup. In this section, we discuss the parallel
efficiency of the algorithms implemented in QUANTUM

PACKAGE. The system we chose for these numerical experi-
ments is the benzene molecule C6H6 for which we have
performed sCI calculations with the 6-31G* basis set. The
frozen-core approximation has been applied, and the FCI space
that we explore is a CAS(30,90). The measurements were
made on GENCI’s Irene supercomputer. Each Irene’s node is a
dual-socket Intel(R) Xeon(R) Platinum 8168 CPU@2.70 GHz
with 192GiB of RAM, with a total of 48 physical CPU cores.
Parallel speedup curves are made to 12 288 cores (i.e., 256
nodes) for (i) a single iteration of the Davidson diagonaliza-
tion and (ii) the hybrid semistochastic computation of E(2)

(which includes the CIPSI selection). The speedup reference
corresponds to the single node calculation (48 cores).
First, we measure the time required to perform a single

Davidson iteration as a function of the number of CPU cores
for the two largest wave functions (Ndet = 25 × 106 and 100 ×
106). The timings are reported in Table 3, while the parallel
speedup curve is represented in Figure 6. The parallel
efficiency increases together with Ndet, as shown in Figure 6.
For the largest wave function, a parallel efficiency of 66% is
obtained on 192 nodes (i.e., 9216 cores). We note that the
speedup reaches a plateau at 3072 cores (64 nodes) for Ndet =
25 × 106. For this wave function, there are 625 tasks
computing each 40 000 rows ofW. When the number of nodes
reaches 64, the number of tasks is too small for the load to be
balanced between the nodes, and the computational time is
limited by the time taken to compute the longest task. The
same situation arises for Ndet = 100 × 106 with 9408 cores (192
nodes), with 2500 tasks to compute.
Second, we analyze the parallel efficiency of the calculation

of E(2) for the sCI wave function with Ndet = 25 × 106. The
stopping criterion during the calculation of E(2) is given by a
relative statistical error below 2 × 10−3 of the current E(2)

value. The speedups are plotted in Figure 6 (Table 3). For 192
nodes, one obtains a parallel efficiency of 89%. The present
parallel efficiency is not as good as the one presented in the

Figure 4. Zeroth-order energy E(0) as a function of the second-order energy E(2) (dotted lines) or its renormalization variant Z E(2) (solid lines). A
linear fit (dashed lines) of the last six points is also reported for comparison. See Table 1 for raw data.

Table 2. Zeroth-Order Energy E(0), Second-Order
Perturbative Correction E(2), and Its Renormalized Version
ZE(2) (in hartree) as a Function of the Number of
Determinants Ndet for the Ground-State of the Chromium
Dimer Cr2 Computed in the cc-pVQZ Basis Seta

Ndet E(0) E(0) + E(2) E(0) + ZE(2)

1631 −2086.742321 −2087.853(3) −2087.679(2)
3312 −2086.828496 −2087.821(2) −2087.688(1)
6630 −2086.920161 −2087.792(1) −2087.694(1)
13 261 −2087.008701 −2087.764(1) −2087.694(1)
26 562 −2087.091669 −2087.743(1) −2087.692(1)
53 129 −2087.165533 −2087.725(1) −2087.689(1)
106 262 −2087.234564 −2087.7102(9) −2087.6850(8)
212 571 −2087.293488 −2087.7030(8) −2087.6850(7)
425 185 −2087.343762 −2087.6973(7) −2087.6844(7)
850 375 −2087.386276 −2087.6978(6) −2087.6881(6)
1 700 759 −2087.422707 −2087.6989(6) −2087.6916(5)
3 401 504 −2087.454427 −2087.7007(5) −2087.6951(5)
6 802 953 −2087.482238 −2087.7032(4) −2087.6988(4)
13 605 580 −2087.506838 −2087.7056(4) −2087.7022(4)
27 210 163 −2087.528987 −2087.7092(4) −2087.7064(4)
54 415 174 −2087.549261 −2087.7116(3) −2087.7095(3)
Extrap. −2087.734 −2087.738

aThe statistical error, corresponding to one standard deviation, is
reported in parentheses.
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original paper.112 The reason behind this is a faster
computation of eα

(2), which reduces the parallel efficiency by
increasing the ratio communication/computation.

VII. DEVELOPING IN QUANTUM PACKAGE
VIIA. The QUANTUM PACKAGE Philosophy. QUANTUM

PACKAGE is a standalone easy-to-use library for developers.
The main goals of QUANTUM PACKAGE are to (i) facilitate the
development of new quantum chemistry methods, (ii)
minimize the dependency on external programs/libraries, and
(iii) encourage the collaborative and educative work through
human readable programs. Therefore, from the developer
point of view, QUANTUM PACKAGE can be seen as a standalone
library containing all important quantities needed to perform
quantum chemistry calculations, both involving wave function
theory, through the determinant driven algorithms, and DFT
methods, because of the presence of a quadrature grid for
numerical integrations and basic functionals. These appealing
features are made more concrete due to the organization of

QUANTUM PACKAGE in terms of core modules and plugins
(Section VIIC) together with its programming language
(Section VIIB), which naturally creates a very modular
environment for the programmer.
Although QUANTUM PACKAGE is able to perform all the

required steps from the calculation of the one- and two-
electron integrals to the computation of the sCI energy,
interfacing QUANTUM PACKAGE, at any stage, with other
programs is relatively simple. For example, canonical or
CASSCF molecular orbitals can be imported from
GAMESS,137 while atomic and/or molecular integrals can be

Figure 5. (Left) Energy convergence of the ground state of Cr2 with respect to the number of determinants Ndet in the reference space. The zeroth-
order energy E(0) (dashed) and its second-order corrected value E(0) + E(2) (dotted), as well as its renormalized version E(0) + ZE(2) (solid) are
represented. (Right) Zeroth-order energy E(0) as a function of the second-order energy E(2) (dotted lines) or its renormalization variant Z E(2)

(solid lines). A linear fit (dashed lines) of the last two points is also reported for comparison. See Table 2 for raw data.

Table 3. Wall-Clock Time (in seconds) To Perform a Single
Davidson Iteration and a Second-Order Correction E(2)

Calculation (which also includes the CIPSI selection) with
an Increasing Number of 48-Core Compute Nodes Nnodes

a

Wall-clock time (s)

Nnodes

Davidson for
Ndet = 25 × 106

Davidson for
Ndet = 100 × 106

PT2/selection:
Ndet = 25 × 106

1 3340 65 915 406 840
32 142 2168 12 711
48 109 1497 8515
64 93 1181 6421
96 93 834 4323
128 93 674 3287
192 96 522 2435
256 96 519 1996

aThe statistical error obtained on E(2), defining the stopping criterion,
is 0.17 × 10−3 a.u.

Figure 6. Speedup obtained for a single Davidson iteration (blue and
yellow curves) and the combination of CIPSI selection and PT2
calculation (red curve) as a function of the number of CPU cores. For
the Davidson diagonalization, two sizes of reference wave functions
are reported (Ndet = 25 × 106 and 100 × 106), while for the PT2/
selection, calculation results only corresponding to the smallest wave
function (Ndet = 25 × 106) are reported. See Table 3 for raw data.
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read from text files like FCIDUMP. Because of this flexibility,
some of us are currently developing plugins for performing sCI
calculations for periodic systems.
VIIB. The IRPF90 Code Generator. It is not a secret that

large scientific codes written in Fortran (or in similar
languages) are difficult to maintain. The program’s complexity
originates from the interdependencies between the various
entities of the code. As the variables are more and more
coupled, the programs become more and more difficult to
maintain and to debug. To keep a program under control, the
programmer has to be aware of all the consequences of any
source code modification within all possible execution paths.
When the code is large and written by multiple developers, this
becomes almost impossible. However, a computer can easily
handle such a complexity by taking care of all the dependencies
between the variables, in a way similar to how GNU Make
handles the dependencies between source files.
IRPF90 is a Fortran code generator.138 Schematically, the

programmer only writes computation kernels, and IRPF90
generates the glue code linking all these kernels together to
produce the expected result, handling all relationships between
variables. To illustrate in a few words how IRPF90 works, let
us consider the simple example which consists of calculating
the total energy of a molecular system as the sum of the
nuclear repulsion and the electronic energy Etot = Enuc + Eele.
The electronic energy is the sum of the kinetic and potential
energies, i.e., Eele = Ekin + Epot.
The production tree associated with the computation of the

total energy is shown in Figure 7. Within the IRPF90

framework, the programmer writes a provider for each entity,
i.e., a node of the production tree. The provider is a subroutine
whose only goal is to compute the value associated with the
entity, assuming the values of the entities on which it depends
are computed and valid. Hence, when an entity is used
somewhere in the program (in a subroutine, a function, or a
provider), a call to its provider is inserted in the code before it
is used such that the corresponding value is guaranteed to be
valid.
QUANTUM PACKAGE is a library of providers designed to make

the development of new wave function theory and DFT
methods simple. Only a few programs using these providers are
part of the core modules of QUANTUM PACKAGE, such as the sCI
module using the CIPSI algorithm or the module containing
the semistochastic implementation of the second-order
perturbative correction. The main goal of QUANTUM PACKAGE
is to be used as a library of providers, and programmers are
encouraged to develop their own modules using QUANTUM

PACKAGE.
VIIC. The Plugin System. External programmers should

not add their contributions by modifying directly QUANTUM

PACKAGE’s core but by creating their own modules in
independent repositories hosted and distributed by themselves.
This model gives more freedom to the developers to distribute

modules as we do not enforce them to follow any rule. The
developers are entirely responsible for their own plugins. This
model has the advantage to redirect immediately the users to
the right developer for questions, installation problems, bug
reports, etc.
QUANTUM PACKAGE integrates commands to download

external repositories and integrate all the plugins of these
repositories into the current installation of QUANTUM PACKAGE.
External plugins appear exactly as if they were part of
QUANTUM PACKAGE, and if a plugin is useful for many users,
it can be easily integrated in QUANTUM PACKAGE’s core after all
the coding and documentation standards are respected.
Multiple external plugins were developed by the authors. For

instance, one can find a multireference coupled cluster
program,112,139 interfaces with the quantum Monte Carlo
programs QMC = Chem,61 QMCPack,63 and CHAMP,140 an
implementation of the shifted-Bk method,45 a program
combining CIPSI with RSDFT,141 a four-component rela-
tivistic RSDFT code,142 and many others.
In particular, QUANTUM PACKAGE also contains the basic tools

to use and develop range-separated density-functional theory
(RSDFT, see, for example, refs 143 and 144), which allows us
to perform multiconfigurational density-functional theory
(DFT) calculations within a rigorous mathematical framework.
In the core modules of QUANTUM PACKAGE, single-determinant
approximations of RSDFT are available, which fall into the so-
called range-separated hybrid145,146 (RSH) approximation.
These approaches correct for the wrong long-range behavior
of the usual hybrid approximations because of the inclusion of
the long-range part of the HF exchange. QUANTUM PACKAGE
contains all necessary integrals to perform RSDFT calculations,
including the long-range interaction integrals and Hartree-
exchange-correlation energies and potentials derived from the
short-range version of the local-density approximation
(LDA)147 and a short-range generalized-gradient approxima-
tion (GGA) based on the Perdew−Burke−Ernzerhof (PBE)
functional.148 All numerical integrals are performed using the
standard Becke quadrature grid149 associated with the
improved radial grids of Mura et al.150 With these tools,
more evolved schemes based on RSDFT have been developed,
such as an energy correlation functional with multidetermi-
nantal reference depending on the on-top pair density151 or a
basis set correction.141 The corresponding source code can be
found as external plugins (see, for example, https://gitlab.
com/eginer/qp_plugins_eginer).

VIII. CONCLUSION
Significant improvements were brought to the second version
of QUANTUM PACKAGE. Some were single-core optimizations,
and others focused on the algorithm adaptation to large-scale
parallelism (load balancing in particular). Currently, the code
has a parallel efficiency that enables routinely to realize runs on
roughly 2000 CPU cores, with tens of millions of determinants
in the reference space. Moreover, we have been able to push up
to 12 288 cores (256 nodes) on GENCI’s supercomputer
Irene. Such a gain in efficiency has and will lead to many more
challenging chemical applications.34−38,43,44,54,66,67

The Davidson diagonalization, which is at the center of sCI
and FCI methods, suffers from the impossibility to fully store
the Hamiltonian in the memory of a single node. The solution
we adopted was to resort to direct methods, i.e., recomputing on
the f ly the matrix elements at each iteration. While an
extremely fast method was already available to detect zero

Figure 7. Production tree of the energy computed by IRPF90.
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matrix elements,152 the former implementation still had to
search over the N( )det

2 matrix elements for interacting
determinant pairs. Now, determinants are split in disjoint
sets entirely disconnected from each other. Thus, only a small
fraction of the matrix elements need to be explored, and an
algorithm with N( )det

3/2 scaling was proposed. While the
parallelization of this method was somewhat challenging due to
the extremely unbalanced nature of the elementary tasks, a
distributed implementation was realized with satisfying parallel
speedups (typically 35 for 50 nodes) with respect to the 48-
core single-node reference.
Significant improvements were also realized in the

computation of the second-order perturbative correction,
E(2). A natural idea was to take into account the tremendous
number of tiny contributions via a stochastic Monte Carlo
approach. E(2) being itself an approximate quantity used for
estimating the FCI energy, its exact value is indeed not
required, as long as the value is unbiased and the statistical
error is kept under control. Our scheme allows to compute E(2)

with a small error bar for a few percent of the cost of the fully
deterministic computation.
Similarly, the CIPSI selection is now performed stochasti-

cally alongside the PT2 calculation. Therefore, the selection
part of the new stochastic CIPSI selection is virtually free as
long as one is interested in the second-order perturbative
correction.
Finally, efforts have been made to make this software as

developer friendly as possible due to a very modular
architecture that allows any developer to create his/her own
module and to directly benefit from all pre-existing work.

■ APPENDIX: IMPLEMENTATION DETAILS

A1. Efficiency of Integral Storage
The efficiency of the storage as a hash table was measured on a
dual socket Intel Xeon E5-2680 v2@2.80 GHz processor,
taking the water molecule with the cc-pVQZ basis set (115
MOs). The time to access all the integrals was measured by
looping over the entire set of ERIs using different loop
orderings. The results are given in Table 4, the reference being
the storage as a plain four-dimensional array.

In the array storage, the value of 170 ns/integral in the
random access case is typical of the latency to fetch a value in
the RAM modules, telling that the requested integral is almost
never present in any level of cache. When the data are accessed
with a stride of one (i, j, l, k storage), the hierarchical
architecture of the cache levels accelerates the access by a
factor of 18, down to 9.71 ns/integral, corresponding mostly to

the overhead of the function call, the retrieval of the data being
negligible.
With the hash table, the random access is only 2.18 times

slower than the random access in the array. Indeed, two
random accesses are required: one for the first element of the
key bucket to do the search and one for the value of the
integral. The remaining time corresponds to the binary search.
The results show that data locality is exploited: when the
access is done with a regular access pattern, the data are
fetched roughly 3 times faster than using a random access,
giving a latency below the latency of a random access in the
array.
A CIPSI calculation was run once with the array storage and

once with the hash table storage. With the hash storage, the
total wall clock time was increased only by a factor of two. To
accelerate the access to the most frequently used integrals and
reduce this overhead, we have implemented a software cache.
All the integrals involving the 128 MOs closest to the Fermi
level are copied in a dense array of 1284 elements (2 GiB) and
benefit from the fastest possible access.
A2. Internal Representation of Determinants
The determinants are built using the following order: (i) spin-
up (↑) spinorbitals are placed before spin-down (↓)
spinorbitals, as in the Waller−Hartree double determinant
representation104 ̂ | ⟩ = |̂⟩ = ̂ ̂ |⟩↑ ↓I I I I , and (ii) within each
operator I↑̂ and I↓̂, the creation operators are sorted by
increasing indices. For instance, let us consider the
determinant |J⟩ = aj

†ak
†ai ̅

†ai
†|⟩ built from the set of spinorbitals

{i↑, j↑, k↑, i↓} with i < j < k. If we happen to encounter such a
determinant, our choice of representation imposes to consider

its re-ordered expression ̂ | ⟩ = − |⟩ = −| ⟩† † †
̅

†J a a a a Ji j k i , and the
phase factor must be handled.
The indices of the creation operators (or equivalently the

spinorbital occupations) are stored using the so-called bitstring
encoding. A bitstring is an array of bits; typically, the 64-bit
binary representation of an integer is a bitstring of size 64.
Quite simply, the idea is to map each spinorbital to a single bit
with value set to its occupation number. In other words, 0 and
1 are associated with the unoccupied and occupied states,
respectively.
For simplicity and performance considerations, the

occupations of the spin-up and spin-down spinorbitals are
stored in different bitstrings, rather than interleaved or
otherwise merged in the same one. This allows us to
straightforwardly map orbital index p to bit index p − 1
(orbitals are usually indexed from 1, while bits are indexed
from 0). This makes the representation of a determinant a
tuple of two bitstrings, associated with respectively spin-up and
spin-down orbitals. A similar parity representation of the
Fermionic operators is commonly used in quantum comput-
ing.153

The storage required for a single determinant is, in principle,
one bit per spinorbital, or 2 × Norb bits. However, because
CPUs are designed to handle efficiently 64-bit integers, each
spin part is stored as an array of 64-bit integers, the unused
space being padded with zeros. The actual storage needed for a
determinant is 2 × 64 × Nint bits, where Nint = (Norb − 1)/64 +
1 is the number of 64-bit integers needed to store one spin
part.
Taking advantage of low-level hardware instructions,152 we

are able, given two arbitrary determinants |I⟩ and |J⟩, to find
with a minimal cost the excitation operator T̂ such that

Table 4. Time to Access Integrals (in ns/integral) with
Different Access Patternsa

Access Array Hash table

i, j, k, l 9.72 125.79
i, j, l, k 9.72 120.64
i, k, j, l 10.29 144.65
l, k, j, i 88.62 125.79
l, k, i, j 88.62 120.64
Random 170.00 370.00

aThe time to generate random numbers (measured as 67 ns/integral)
was not counted in the random access results.
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|J⟩ = T̂|I⟩. This is a necessary step to obtain the (i, j, k, l)
indices of the two-electron integral(s) involved in the
Hamiltonian matrix element between |I⟩ and |J⟩. Then,
fetching the values of the integrals can be done quickly using
the hash table presented in Section IIIA.
Because the data structure used to store determinants

implies an ordering of the MOs, we also need to compute a
phase factor. Here, we propose an algorithm to perform
efficiently the computation of the phase factor. For a
determinant |I⟩ that is going to be used repeatedly for phase
calculations, we introduce a phase mask represented as a
bitstring:

∑[ ] = ∧ [ ]
=

P i I k1I
k

i

0 (A1)

where ∧ denotes the and bitwise operation, and I[k] is the kth
bit of bitstring I, corresponding to the (k + 1)th spinorbital of
determinant |I⟩ (remember that the orbital indices start at 1
and the bit indices start at 0). In other words, the ith bit of the
phase mask is set to 1 if the number of electrons occupying the
i + 1 lowest spinorbitals is odd, and 0 otherwise. When an
electron of determinant |I⟩ is excited from orbital h to p, the
associated phase factor is

+ − >

− − >

[ − ]⊕ [ − ]

[ − ]⊕ [ − ]

l
m
ooo
n
ooo

p h

h p

( 1) , if

( 1) , if

P h P p

P h P p

1 1

1 1

I I

I I
(A2)

where ⊕ denotes the exclusive or (xor) operation. So if the
phase mask is available, the computation of the phase factor
only takes a few CPU cycles. Another important aspect is to
create efficiently the phase masks. We propose Algorithm 3,
which computes it in a logarithmic time for groups of 64 MOs,
taking advantage of the associativity of the exclusive or
operator. Indeed, the “for” loop executes six cycles to update
the mask for 26 = 64 MOs.

A3. Davidson Diagonalization
Within QUANTUM PACKAGE, the Davidson diagonalization
algorithm is implemented in its multistate version. Algorithmi-
cally, the expensive part of the Davidson diagonalization is the
computation of the matrix product H U. As mentioned above
(Section II), two determinants |I⟩ and |J⟩ are connected via H
(i.e., ⟨I|Ĥ|J⟩ ≠ 0) only if they differ by no more than two
spinorbitals. Therefore, the number of nonzero elements per
row in H is equal to the number of single and double excitation
operators, namely, −↑ ↑N N N( ( ) )2

orb
2 . As H is symmetric, the

number of nonzero elements per column is identical. This
makes H very sparse. However, for large basis sets, the whole
matrix may still not fit in a single node memory, as the number
of nonzero entries to be stored is of the order of

−↑ ↑N N N N( )det
2

orb
2. One possibility would be to distribute

the storage of H among multiple compute nodes and use a
distributed library such as PBLAS154 to perform the matrix-
vector operations. Another approach is to use a so-called direct
algorithm, where the matrix elements are computed on the f ly,
and this is the approach we have chosen in QUANTUM PACKAGE.
This effectively means iterating over all pairs of determinants
|I⟩ and |J⟩, checking whether |I⟩ and |J⟩ are connected by H,
and if they are accessing the corresponding integral(s) and
computing the phase factor. Even though it is possible to
compute the excitation degree between two determinants very
efficiently,152 the number of such computations scales as Ndet

2 ,
which becomes rapidly prohibitively high. To get an efficient
determinant-driven implementation, it is mandatory to filter
out all pairs of determinants that are not connected by H and
iterate only over connected pairs. To reach this goal, we have
implemented an algorithm similar to the Direct Selected
Configuration Interaction Using Strings (DISCIUS) algo-
rithm.56

The determinants of the internal space are reordered in
linear time as explained in ref 62, such that the wave function
can be expressed as

∑ ∑|Ψ ⟩ = | ⟩
↑

↑ ↓

↑

↓

↓

↑ ↓
C I I

I

N

I

N

I I
(0)

det det

(A3)

where we take advantage of the Waller−Hartree double
determinant representation.104

Moving along a row or a column of C keeps the spin-up or
spin-down determinants fixed, respectively. For a given
determinant, finding the entire list of same-spin single and
d o u b l e e x c i t a t i o n s c a n b e p e r f o r m e d i n

= =↑ ↓N N N( ) ( ) ( )det det det , while finding the opposite-
spin double excitations is done via a two-step procedure. First,
we look for all the spin-up single excitations. Then, starting
from this list of spin-up single excitations, we search for the
spin-down single excitation such that the resulting opposite-
spin doubly excited determinant belongs to Ψ(0). Hence, the
formal scaling is reduced to N( )det

3/2 . It could be further
reduced to N( )det at the cost of storing the list of all singly
and doubly excited determinants for each spin-up and spin-
down determinant, but we preferred not to follow this path in
order to reduce the memory footprint as much as possible.
A4. CIPSI Selection and PT2 Energy
There are multiple ways to compute the eα

(2)’s. One way is to
loop over pairs of internal determinants |I⟩ and |J⟩, generate
the list of external determinants {|α⟩} connecting |I⟩ and |J⟩,

Algorithm 3: Function that returns a phase mask as a
bitstring.
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and increment the corresponding values eα
(2) stored in a hash

table. Using a hash table to store in memory a list of |α⟩’s
without duplicates and their contributions eα

(2) is obviously not
a reasonable choice since the total number of |α⟩’s scales as

−↑ ↑N N N N( ( ) )det
2

orb
2 . To keep the memory growth in check,

we must design a function that can build a stream of unique
external determinants, compute their contribution eα

(2), and
retain in memory only the few most significant pairs (|α⟩, eα

(2)).
In QUANTUM PACKAGE, we build the stream of unique

external determinants as follows. We loop over the list of
internal determinants (the generators) sorted by decreasing cI

2.
For each generator |I⟩, we generate all the singly and doubly
excited determinants {|α⟩}, removing from this set the internal
determinants and the determinants connected to any other
generator |J⟩ such that J < I. This guarantees that the |α⟩’s are
considered only once, without any additional memory
requirement.
For each generator |I⟩, before generating its set of |α⟩’s, we

precompute the diagonal of the Fock matrix associated with |I⟩.
This enables to compute the diagonal elements ⟨α|Ĥ|α⟩
involved in eq 8 for a few flops.155 The computation of

α α⟨Ψ | ̂ | ⟩ = ∑ ⟨ | ̂ | ⟩H c J HJ J
(0) is more challenging than the

diagonal term since, at first sight, it appears to involve the
Ndet internal determinants. Fortunately, most of the terms
amongst this sum vanish due to Slater−Condon’s rules.
Indeed, we know that the terms where |J⟩ is more than doubly
excited with respect to |α⟩ vanish, and these correspond to the
determinants |J⟩ which are more than quadruply excited with
respect to |I⟩.155 To compute efficiently ⟨Ψ(0)|Ĥ|α⟩, for each
generator |I⟩, we create a filtered wave function |ΨI

(0)⟩ by
projecting |Ψ(0)⟩ on a subset I of internal determinants {|J⟩},
where ⟨J|Ĥ|α⟩ is possibly nonzero. This yields ⟨Ψ(0)|Ĥ|α⟩ =
⟨ΨI

(0)|Ĥ|α⟩, where ΨI
(0) is a much smaller determinant

expansion than Ψ(0). In addition, as we have defined the
|α⟩’s in such a way that they do not interact with |J⟩ when J < I,
all these |J⟩’s can also be excluded from I . This pruning
process yielding to |ΨI

(0)⟩ will be referred to as the coarse-
grained filtering. A f ine-grained filtering of |ΨI

(0)⟩ is performed
in a second stage to reduce even more the number of
determinants, as we explain later.
To make the coarse-grained filtering efficient, we first filter

out the determinants that are more than quadruply excited in
the spin-up and spin-down sectors separately. Using the
representation shown in eq A3, this filtering does not need to
run through all the internal determinants and scales as

=↑N N( ) ( )det det . It is important to notice that, at this
stage, the size of I is bounded by the number of possible
quadruple excitations in both spin sectors and does not scale
any more as N( )det . Next, we remove the determinants that
are (i) quadruply excited in one spin sector and excited in the
other spin sector, (ii) triply excited in one spin sector and
more than singly excited in the other spin sector, and (iii) all
the determinants that are doubly excited in one spin sector and
more than doubly excited in the other spin sector.
The external determinant contributions are computed in

batches. A batch Ipq is defined by a doubly ionized generator
|Ipq⟩ = apaq|I⟩. When a batch is created, the fine-grained
filtering step is applied to I to produce Ipq

and ΨIpq
(0), such

that α α⟨Ψ | ̂ | ⟩ = ⟨Ψ | ̂ | ⟩H HI I
(0) (0)

pq
.

Each external determinant produced in the batch Ipq is

characterized by two indices r and s with ̂ | ⟩ = | ⟩† †a a a a I Ir s p q pq
rs .

The contribution associated with each determinant of a given
batch is computed incrementally in a two-dimensional array
A(r, s) as follows. A first loop is performed over all the
determinants |J⟩ belonging to the filtered internal space Ipq

.

Comparing |J⟩ to |Ipq⟩ allows us to quickly identify if |J⟩ will be
present in the list of external determinants and consequently
tag the corresponding cell A(r, s) as banned. Banned cells will
not be considered for the computation of eα

(2) nor the
determinant selection, as they correspond to determinants
already belonging to the internal space. A second loop over all
the | ⟩ ∈J Ipq

is then performed. During this loop, all the (r, s)

pairs where |Ipq
rs ⟩ is connected to |J⟩ are generated, and the

corresponding cells A(r, s) are incremented with cJ⟨J|Ĥ|Ipq
rs ⟩.

After this second loop, A(r, s) = ⟨Ψ|Ĥ|Ipqrs ⟩, and all the
contributions eα

(2) of the batch can be obtained using A(r, s).
The running value of E(2) is then incremented, and the Ndet
most significant determinants are kept in an array sorted by
decreasing |eα

(2)|.
Figure 8 shows the number of determinants retained in ΨI

(0)

or ΨIpq
(0) after filtering out disconnected determinants of the

ground state of the CN3 molecule with 935 522 determinants.
This example shows that, starting from Ψ(0), the coarse-grained
process which consists of removing the determinants more
than quadruply excited with respect to the generator |I⟩
produces wave functions ΨI

(0) with a typical size of 120 000
determinants, a reduction by a factor 8. Then, starting from
ΨI

(0), the fine-grained filtering, specific to the batch generating
ΨIpq

(0), reduces even more the number of determinants (by a
factor 3), down to a typical size of 40 000 determinants, which
represents only 4% of the total wave function Ψ(0).
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