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ABSTRACT
Processes related to electronically excited states are central in many areas of science; however, accurately determining excited-
state energies remains a major challenge in theoretical chemistry. Recently, higher energy stationary states of non-linear
methods have themselves been proposed as approximations to excited states, although the general understanding of the nature
of these solutions remains surprisingly limited. In this letter, we present an entirely novel approach for exploring and obtain-
ing excited stationary states by exploiting the properties of non-Hermitian Hamiltonians. Our key idea centres on performing
analytic continuations of conventional quantum chemistry methods. Considering Hartree–Fock theory as an example, we ana-
lytically continue the electron-electron interaction to expose a hidden connectivity of multiple solutions across the complex
plane, revealing a close resemblance between Coulson–Fischer points and non-Hermitian degeneracies. Finally, we demonstrate
how a ground-state wave function can be morphed naturally into an excited-state wave function by constructing a well-defined
complex adiabatic connection.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085121

INTRODUCTION

Electronic excited states are central in chemistry,
physics, and biology, playing a role in key processes such
as photochemistry, catalysis, and solar cell technology. How-
ever, defining effective methods that reliably provide accurate
excited-state energies remains a major challenge in theoret-
ical chemistry. Two of the most widely used approaches to
obtain excited-state energies are (i) the time-dependent (TD)
version of density-functional theory (DFT) which relies on
the linear response formalism and (ii) the equation-of-motion
(EOM) ansatz of coupled cluster (CC) theory.

In particular, TD-DFT has practically revolutionised
computational chemistry due to its user-friendly black-box
nature compared with the more computationally expensive

multi-configurational methods (such as CASPT2 and NEVPT2)
where one must choose an active space based on chem-
ical intuition. Despite their success, fundamental defi-
ciencies associated with TD-DFT and EOM-CC remain.
For example, excited states presenting double excitation
character1–8—which have a key role in the faithful description
of many physical and chemical processes—are notoriously dif-
ficult to model using conventional single-reference methods
such as adiabatic TD-DFT or EOM-CC. Although some viable
and promising alternative approaches have been developed—
for example, spin-flip,5 dressed TD-DFT,2 or ensemble DFT6—
each faces major limitations.

At present, most excited-state techniques, including
TD-DFT and EOM-CC, are built upon a single reference Slater
determinant, often corresponding to a Hartree–Fock (HF)
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solution. As an inherently non-linear method, similar to CC9

and GW,10–17 HF can produce a multitude of distinct station-
ary states. In recent years, multiple HF states have them-
selves been proposed as approximations to excited states.18–21
However, these solutions do not necessarily share the
symmetries of the exact Hamiltonian,22,23 and the onset of
symmetry breaking, where multiple solutions coalesce at so-
called “Coulson–Fischer points,”24 appears intimately linked
to the strength of the electron-electron (e-e) interaction
present.25,26 For cases where the single-determinant repre-
sentation fails, the utilisation of these multiple HF solutions
as a basis for non-orthogonal configuration interaction
(NOCI) has been shown to recover symmetry-pure multi-
reference ground and excited state energies.21,27–31 Despite
significant progress, however, our understanding of the
general nature of multiple solutions remains surprisingly
limited.18,19,23,31–41

In this letter, we propose a totally novel approach for
exploring multiple solutions in electronic structure methods.
Our key idea focuses on performing complex analytic con-
tinuations of conventional methods which, by exploiting the
properties of non-Hermitian Hamiltonians, reveal hidden fea-
tures of multiple stationary states. Although more sophisti-
cated methods will be considered in the future (in particular,
DFT, CC, and GW), we illustrate the general approach by intro-
ducing a complex-scaled e-e interaction in the HF method. In
doing so, we expose a deeper topology of connected stationary
states across the complex plane and identify a close resem-
blance between Coulson–Fischer points and non-Hermitian
degeneracies. Finally we demonstrate how, through this com-
plex landscape, ground and excited states can be naturally
interconverted via a complex adiabatic connection.

NON-HERMITIAN QUANTUM MECHANICS

Our understanding of quantum systems has been trans-
formed by the introduction of non-Hermitian Hamiltoni-
ans42—a complex generalisation of conventional quantum
mechanics42,43—as an approach for exploring multiple eigen-
states through the framework of complex analytic contin-
uation. Using this technique, a real-symmetric Hamiltonian
is analytically continued into the complex plane, becoming
non-Hermitian in the process and exposing the fundamen-
tal topology of eigenstates. For example, one of the most
amazing aspects of non-Hermitian quantum mechanics is
that quantised eigenvalues emerge directly from the differ-
ent sheets of a Riemann surface.44 In other words, our view
of the quantised nature of conventional Hermitian quantum
mechanics arises only from our limited perception of the
more complex and profound structure of its non-Hermitian
variant.

To our knowledge, the multiple solutions to the non-
linear HF equations remain unexplored in the framework of
analytic continuation. Since the conventional complex Hermi-
tian extension of HF theory violates the Cauchy–Riemann con-
ditions (resulting in functions that are not complex analytic),
we rely here on the holomorphic HF (h-HF) approach31–33
originally developed as a method for analytically continuing

real HF solutions beyond the Coulson–Fischer points at which
they coalesce and vanish.45,46 In h-HF theory, the complex
conjugation of orbital coefficients is simply removed from
the conventional HF equations, resulting in a non-Hermitian
Hamiltonian and an energy function that is complex ana-
lytic with respect to the orbital coefficients. When the orbital
coefficients are real, the HF and h-HF formalisms are equiv-
alent. However, h-HF solutions are found to exist over the
full potential energy surface, obtaining complex orbital coef-
ficients when their real counterparts coalesce and disap-
pear.31–33

The use of non-Hermitian Hamiltonians in quantum
chemistry is not itself new; these Hamiltonians have been used
extensively as a method for describing metastable resonance
phenomena.47 Through a complex-scaling of the electronic or
atomic coordinates,48 or by introducing a complex absorbing
potential,49,50 outgoing resonance states are transformed into
square-integrable wave functions that allow the energy and
lifetime of the resonance to be computed (see Ref. 47 for a
general overview).

Although Hermitian and non-Hermitian Hamiltonians are
closely related, the behaviour of their eigenvalues near degen-
eracies is starkly different.51,52 For example, encircling non-
Hermitian degeneracies at “exceptional points” leads to the
interconversion of states51,53 and can apply a geometric
phase.54 By contrast, encircling Hermitian degeneracies at
“conical intersections”55 introduces only a geometric phase,
leaving the states unchanged.56 More dramatically, whilst
eigenvectors remain orthogonal at conical intersections, at
non-Hermitian exceptional points, the eigenvectors them-
selves become equivalent. The result is a self-orthogonal
state and a set of eigenvectors that no longer span the full
space.47

The fascinating aspect of non-Hermitian Hamiltonians—
and the launch-pad for the remainder of this letter—is the
claim that, by analytically continuing the e-e interaction, an
underlying landscape of solutions can be revealed in which a
ground-state wave function can be morphed into an excited-
state wave function by following a well-defined contour in
the complex plane. In what follows, atomic units are used
throughout.

A SIMPLE MODEL

Let us illustrate the general idea of the present letter
by considering a very simple model system comprising two
opposite-spin electrons interacting through the long-range
Coulomb potential whilst confined to the surface of a sphere
of radius R, which we set to unity for convenience. More-
over, let us consider only two basis functions: an s-type orbital
[s≡Υ0(θ)] and a p-type orbital [pz ≡Υ1(θ)], where Υ` (θ) are
zonal harmonics57 and θ is the polar angle of the electron.
To control the strength of the e-e interaction, we introduce
the adiabatic scaling parameter λ, giving λ = 0 for the non-
interacting system and λ = 1 for the physical (i.e., interacting)
system. The e-e scaled Hamiltonian is therefore given by

Ĥλ = T̂ + λ r−1
12 , (1)
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where T̂ = −
(
∇2

1 + ∇2
2

)
/2 is the combined kinetic operator for

the two electrons and r−1
12 ≡ |r1 − r2 |

−1 is the Coulomb operator.
Note that the two electrons interact through the sphere. The
“two-electrons-on-a-sphere” paradigm (see Ref. 58 for more
details) possesses a number of interesting features,58–61 and it
can be seen as a unique theoretical laboratory to test various
theoretical methods.61

Here, we wish to illustrate how one can obtain the
restricted HF (RHF) doubly excited state p2

z starting from the
RHF ground-state s2 configuration, a process which is not as
easy as one might think and particularly challenging with con-
ventional self-consistent field algorithms.18,39,62 Similar to the
H2 molecule (see Ref. 63 for a pedagogical discussion), we
define an unrestricted HF (UHF) wave function

ΨUHF(θ1, θ2) = ϕ(θ1)ϕ(π − θ2), (2)

where the spatial orbital is

ϕ = s cos χ + pz sin χ, (3)

χ is the mixing angle between the two basis functions, and the
associated holomorphic energy is

ẼUHF(χ,λ) = (1 − cos 2χ) +
λ

75
(67 − 6 cos 2χ + 14 cos 4χ). (4)

Ensuring the stationarity of the UHF energy, i.e.,
∂ẼUHF/∂χ = 0, one obtains

sin 2χ(75 + 6λ − 56λ cos 2χ) = 0. (5)

For χ = 0 and π/2, we recover the RHF s2 ground state and the
p2
z doubly excited state with respective holomorphic energies,

Ẽs2

RHF(λ) = λ, Ẽp2
z

RHF(λ) = 2 +
29λ
25

. (6)

These are represented, as a function of λ, by the black and
green solid lines in Fig. 1. The two-fold degenerate UHF
solutions (mutually related by spin-flip symmetry) are given
by

2χ = ± arccos
(

3
28

+
75

56λ

)
, (7)

with holomorphic energy

ẼUHF(λ) = −
75

112λ
+

25
28

+
59λ
84

. (8)

For λ > 3/2, the UHF wave function is a real-valued
“symmetry-broken” UHF (sb-UHF) solution of the ground-
state RHF wave function, while it is a real-valued sb-UHF solu-
tion of the excited RHF wave function for λ < −75/62 (purple
dashed lines in Fig. 1). For −75/62 < λ < 3/2, the UHF solution
is a holomorphic UHF (h-UHF) solution with complex coeffi-
cients (orange dotted lines in Fig. 1). Its holomorphic energy,
though still given by Eq. (8), stays real. These energies are rep-
resented as functions of λ in Fig. 1, where one can observe
two distinct regimes: the repulsive regime (λ > 0) and the
attractive regime (λ < 0). The Coulson–Fischer points (black
dots in Fig. 1) correspond to the λ values where the RHF and
sb-UHF solutions coalesce and are located at the “kissing”

FIG. 1. Holomorphic energy of the different HF solutions as functions of the e-e
interaction strength λ. The holomorphic energy of the symmetry-broken h-UHF
states becomes singular at λ = 0.

points of Eq. (8) with the ground and excited RHF states [see
Eq. (6)].

QUASI-EXCEPTIONAL POINTS

The description above provides only a glimpse into
the fundamental nature of sb-UHF solutions. By analytically
extending λ into the complex plane, i.e., taking

arccos(z) = π/2 + i log(i z +
√

1 − z2), (9)

where z = 3/28 + 75/(56λ), the solutions to Eq. (7) elegantly
emerge as two sheets of a Riemann surface, as shown in Fig. 2.
From this surface, we see that the apparent discrete nature
of multiple HF solutions arises by considering only the real
λ-axis and that sb-UHF states are in fact part of a wider unified
structure. The Coulson–Fischer points in our more general
picture correspond to branch points at λ = 3/2 and −75/62
(black stars in Fig. 2), connected by a branch cut (red line in
Fig. 2). By following a path around one of these points, for
example, at λ = 3/2, we observe the interconversion of the
two coalescing sb-UHF states (red solid lines in Fig. 2). Com-
pleting a second rotation restores the solutions to their orig-
inal states, although no geometric phase occurs (red dashed
lines in Fig. 2). Significantly, by extending λ into the complex
plane, we have revealed that Coulson–Fischer points behave
more generally as exceptional points of the non-Hermitian e-
e scaled Hamiltonian, despite the absence of any resonances
or continuum in our closed system.
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FIG. 2. Real (top left) and imaginary (top middle and top right) components of the mixing angle χ for the two degenerate sb-UHF solutions, Eq. (7), as a function of the real
and imaginary parts of λ. The colouring indicates the phase of χ. Periodic repeats of these surfaces exist for Re(χ) < −π/2 and Re(χ) > π/2 representing equivalent
states to those shown. The RHF solutions are given by planes at χ = 0 and π/2; however, these are omitted for clarity. The two sheets of the Riemann surface (bottom left
and bottom right) show three branch points at λ = −75/62, 0, and 3/2 (black stars), connected by a branch cut (solid black). Following a path once around the branch point
at λ = 3/2 interconverts the two sb-UHF solutions (solid red), whilst completing a second rotation returns the solutions to their original states (dashed red). The adiabatic
contour enabling a smooth transition from the ground state to the excited state is represented by the solid blue curve.

This correspondence between Coulson–Fischer points
and conventional exceptional points is not strictly exact. Due
to the non-linearity of the HF equations, its multiple solutions
need not be mutually orthogonal and we find that, although
the sb-UHF wave functions coalesce at the Coulson–Fischer
point, they do not become self-orthogonal.47 We believe that
this is the first reported occurrence of exceptional points
without self-orthogonality, and we henceforth refer to such
peculiar phenomena as “quasi-exceptional points.” By con-
trast, the additional logarithmic branch point that appears at
λ = 0 does behave as a genuine exceptional point. Here, the
self-consistent e-e interaction is removed completely from
the HF equations [see Eq. (1)], and the solutions must share
the spherical symmetry of the non-interacting kinetic oper-
ator. For the sb-UHF solutions in this limit, the mixing angle
[see Eq. (7)] becomes χ → ±i∞, making the orbital coefficients
non-normalisable and the corresponding states unphysical. As
a result, the Fock operator becomes ill-defined, leading to a
singularity in the energy.

THE HIDDEN CONNECTION

Having revealed a deeper connectivity between multiple
HF solutions, the final key observation is that the sb-UHF solu-
tion is a ground-state wave function in the repulsive regime
but becomes an excited-state wave function for the attractive

regime, as shown in Fig. 1. This can be confirmed by looking
at the number of nodes of the wave function. In principle,
therefore, by slowly varying the e-e interaction strength in
a similar (yet different) manner to an adiabatic connection
in DFT,64,65 one can “morph” a ground-state wave function
into an excited-state wave function via a stationary path of
HF solutions. Clearly, any path connecting the sb-UHF states
of the repulsive regime to those in the attractive regime must
avoid the singularity at λ = 0. One possibility would be to follow
a route, “the other way around” the real number line, passing
from λ > 0, through λ = +∞, and returning via λ = −∞ at λ < 0.
Such a route would, however, involve its own obvious compu-
tational complications. Alternatively, one can simply follow a
complex contour around the branch cut running between the
repulsive and attractive Coulson–Fischer points, as shown by
the solid blue curves in Fig. 2. In such a way, one can ensure
a smooth transition of the wave function coefficients from the
repulsive to the attractive states whilst maintaining station-
arity with respect to the parameterised Hamiltonian. Some-
how, because one cannot order complex energies, ground and
excited states are able to mix away from the real axis.

The complex adiabatic path followed to obtain the phys-
ical transition s2 → p2

z (at λ = 1) is shown in blue in Fig. 3.
Starting on the RHF ground-state wave function at λ = 1, one
increases λ in order to reach the repulsive Coulson–Fischer
point at λ = 3/2, where one can transfer directly to the
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FIG. 3. An example of a complex adiabatic connection path (in blue) enabling the physical transition s2 → p2
z (at λ = 1) to be obtained. The contour followed in the complex

plane is represented diagrammatically against the holomorphic energies (left), whilst the real component of χ along the contour demonstrates the connection pathway from
the ground to the excited state (right).

sb-UHF state. From this point, one follows the complex con-
tour represented in Fig. 2 in order to avoid the singularity at
λ = 0 and the branch cut running along the real axis (see also
the right panel of Fig. 3). In doing so, one ends up on the
excited sb-UHF state. By increasing λ again, one reaches the
attractive Coulson–Fischer point at λ = −75/62, where one can
transfer directly from the sb-UHF state to the p2

z RHF state.
From here, adiabatically following the p2

z RHF state up to λ = 1
completes the complex adiabatic connection path. Notably,
in contrast to the usual density-fixed adiabatic path in DFT,
we allow the HF density to relax at each λ in a similar man-
ner to Ref. 66. The present methodology is implemented in a
modified version of Q-Chem.67

CONCLUDING REMARKS

The use of non-Hermitian Hamiltonians as a tool for
understanding stationary states in electronic structure meth-
ods is in its infancy, and many exciting properties remain to be
found and understood. Here we have presented a first study
of non-Hermitian quantum mechanics for the exploration of
multiple solutions at the HF level. Albeit simple, the present
model system perfectly illustrates the deeper topology of the
multiple electronic states revealed using a complex-scaled e-
e interaction. Indeed, we have found identical connections
in various other systems, including the Hubbard model and
simple diatomics such as H2. In this more complex land-
scape, solutions are connected as part of a continuous struc-
ture of stationary states, and Coulson–Fischer points show
a close resemblance to non-Hermitian exceptional-point

degeneracies. Through the introduction of non-Hermiticity,
we are provided with a more general framework in which the
complex and diverse characteristics of multiple solutions can
be explored and understood.

The practical implications of non-Hermitian analytic con-
tinuations remain very much unexplored. In the current work,
we have used the construction of a complex adiabatic connec-
tion between ground and excited HF solutions as a simple first
application for the determination of excited states. Indeed,
the natural stationary paths identified between multiple solu-
tions may have wider relevance across quantum chemistry,
for example, in the development of novel DFT functionals or
for understanding the evolution of stationary states between
different levels of theory. In the future, we plan to extend
our non-Hermitian approach to correlated methods, in par-
ticular, the CC family of methods that are widely regarded
as the gold standard of quantum chemistry. Similar to HF,
the non-linearity of CC methods yields a large manifold of
solutions (including complex ones), as described in Ref. 9. An
analytic continuation of the CC amplitudes—instead of the
orbital coefficients—may therefore reveal a similar fundamen-
tal topology of multiple solutions.
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