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ABSTRACT: We report unphysical irregularities and discontinuities in some key
experimentally measurable quantities computed within the GW approximation of
many-body perturbation theory applied to molecular systems. In particular, we
show that the solution obtained with partially self-consistent GW schemes
depends on the algorithm one uses to self-consistently solve the quasiparticle
(QP) equation. The main observation of the present study is that each branch of
the self-energy is associated with a distinct QP solution and that each switch
between solutions implies a significant discontinuity in the quasiparticle energy as
a function of the internuclear distance. Moreover, we clearly observe “ripple”
effects, i.e., when a discontinuity in one of the QP energies induces (smaller)
discontinuities in the other QP energies. Going from one branch to another
implies a transfer of weight between two solutions of the QP equation. The cases of occupied, virtual, and frontier orbitals are
separately discussed on distinct diatomics. In particular, we show that multisolution behavior in frontier orbitals is more likely if
the HOMO−LUMO gap is small.

Many-body perturbation theorymethods based on the one-
body Green function G are fascinating as they are able to

transform an unsolvable many-electron problem into a set of
nonlinear one-electron equations, thanks to the introduction of
an effective potential Σ, the self-energy. Electron correlation is
explicitly incorporated via a sequence of self-consistent steps
connected by Hedin’s equations.1 In particular, Hedin’s
approach uses a dynamically screened Coulomb interaction W
instead of the standard bare Coulomb interaction. Important
experimental properties such as ionization potentials, electron
affinities as well as spectral functions, which are related to direct
and inverse photoemission, can be obtained directly from the
one-body Green function.2 A particularly successful and
practical approximation to Hedin’s equations is the so-called
GW approximation2−4 which bypasses the calculation of the
most complicated part of Hedin’s equations, the vertex
function.1

Although (perturbative) G0W0 is probably the simplest and
most widely used GW variant,5−10 its starting point dependence
has motivated the development of partially11−19 and fully20−28

self-consistent versions in order to reduce or remove this
undesirable feature. Here, we will focus our attention on partially
self-consistent schemes as they have demonstrated comparable
accuracy and are computationally lighter than the fully self-
consistent version.29 Moreover, they are routinely employed for
solid-state and molecular calculations and are available in
various computational packages.6,13,19,29−34 Recently, an ever-
increasing number of successful applications of partially self-
consistent GW methods have sprung in the physics and
c h e m i s t r y l i t e r a t u r e f o r m o l e c u l a r s y s -
tems,7−10,18,27,30,31,35−37,37−41 as well as extensive and elaborate
benchmark sets.9,10,34,35,42−46

There exist two main types of partially self-consistent GW
methods: (i) “eigenvalue-only quasiparticle” GW (evGW),11−14

where the quasiparticle (QP) energies are updated at each
iteration, and (ii) “quasiparticle self-consistent” GW
(qsGW),15−19 where one updates both the QP energies and
the corresponding orbitals. Note that a starting point depend-
ence remains in evGW as the orbitals are not self-consistently
optimized in this case.
In a recent article,47 while studying a model two-electron

system,48−53 we have observed that, within partially self-
consistent GW (such as evGW and qsGW), one can observe,
in the weakly correlated regime, (unphysical) discontinuities in
the energy surfaces of several key quantities (ionization
potential, electron affinity, HOMO−LUMO gap, total and
correlation energies, as well as vertical excitation energies). In
the present manuscript, we provide further evidence and
explanations of this undesirable feature in real molecular
systems. For sake of simplicity, the present study is based on
simple closed-shell diatomics (H2, F2, and BeO). However, the
same phenomenon can be observed in many other molecular
systems, such as LiF, HeH+, LiH, BN, O3, etc. Although we
mainly focus on G0W0 and evGW, similar observations can be
made in the case of qsGW and second-order Green function
(GF2) methods.47,54−64 Unless otherwise stated, all calculations
have been performed with our locally developed GW software,
which closely follows the MOLGW implementation.31

2. THEORY

Here, we provide brief details about the main equations and
quantities behind G0W0 and evGW considering a (restricted)
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Hartree−Fock (HF) starting point.54 More details can be found,
for example, in refs 6, 19, and 31.
For a given (occupied or virtual) orbital p, the correlation part

of the self-energy is conveniently split in its hole (h) and particle
(p) contributions

ω ω ωΣ = Σ + Σ( ) ( ) ( )p p p
c p h

(1)

which, within the GW approximation, read

∑ ∑ω
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[ | ]
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i
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where η is a positive infinitesimal. The screened two-electron
integrals
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are obtained via the contraction of the bare two-electron
integrals65 (pq|rs) and the transition densities (X + Y)ia

x

originating from a random phase approximation (RPA)
calculation66,67
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with

δ δ= ϵ − ϵ + | = |A ia jb B ia bj( ) 2( ), 2( )ia jb ij ab a i ia jb, , (5)

and δpq is the Kronecker delta.
68 The one-electron energies ϵp in

(2a), (2b), and (5) are either the HF or the GW quasiparticle
energies. Equation 4 also provides the neutral excitation energies
Ωx.
In practice, there exist two ways of determining the G0W0 QP

energies.5,6 In its “graphical” version, they are provided by one of
the many solutions of the (nonlinear) QP equation

ω ω= ϵ + [Σ ]Re ( )p p
HF c

(6)

In this case, special care has to be taken in order to select the
“right” solution, known as the QP solution. In particular, it is
usually worth calculating its renormalization weight (or factor),
Zp(ϵp

HF), where

ω
ω

ω
= −

∂ [Σ ]
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Because of sum rules,69−72 the other solutions, known as
satellites, share the remaining weight. In a well-behaved case
(belonging to the weakly correlated regime), the QP weight is
much larger than the sum of the satellite weights, and of the
order of 0.7−0.9.
Within the linearized version of G0W0, one assumes that

ω ω
ω

ω
Σ ≈ Σ ϵ + − ϵ

∂Σ
∂

ω=ϵ

( ) ( ) ( )
( )

p p p p
pc c HF HF
c

p
HF (8)

that is, the self-energy behaves linearly in the vicinity ofω = ϵp
HF.

Substituting (8) into (6) yields

ϵ = ϵ + ϵ [Σ ϵ ]Z ( )Re ( )p
G W

p p p p p
HF HF c HF0 0

(9)

Unless otherwise stated, in the remaining of this paper, theG0W0
QP energies are determined via the linearized method.
In the case of evGW, the QP energies, ϵp

GW, are obtained via eq
6, which has to be solved self-consistently due to the QP energy
dependence of the self-energy [see eq 1].11−14 At least in the
weakly correlated regime where a clear QP solution exists, we
believe that, within evGW, the self-consistent algorithm should
select the solution of the QP equation 6 with the largest
renormalization weight Zp(ϵp

GW). In order to avoid convergence
issues, we have used the DIIS convergence accelerator technique
proposed by Pulay.73,74 Details about our implementation of
DIIS for evGW can be found in the Appendix. Moreover,
throughout this paper, we have set η = 0.

Figure 1.QP energies (left), correlation part of the self-energy (center), and renormalization factor (right) as functions of the internuclear distanceRH2

for various orbitals of H2 at the G0W0@HF/6-31G (top) and evGW@HF/6-31G (bottom) levels. For convenience, the intermediate (center) branch
is presented in lighter green for the LUMO + 2.
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3. RESULTS

3.1. Virtual Orbitals. As a first example, we consider the
hydrogen molecule H2 in a relatively small Gaussian basis set (6-
31G) in order to be able to study easily the entire orbital energy
spectrum. Although the number of irregularities/discontinuities
as well as their locations may vary with the basis set, the
conclusions we are going to draw here are general.
Figure 1 reports three key quantities as functions of the

internuclear distance RH2
for various orbitals at theG0W0 and the

self-consistent evGW levels: (i) the QP energies [ϵp
G0W0 or ϵp

GW],
(ii) the correlation part of the self-energy [Σp

c(ϵp
HF) or Σp

c(ϵp
GW)],

and (iii) the renormalization factor/weight [Zp(ϵp
HF) or

Zp(ϵp
GW)].

3.1.1. G0W0. Let us first consider the results of the G0W0

calculations reported in the top row of Figure 1. Looking at the
curves of ϵp

G0W0 as a function of RH2
(top left graph of Figure 1),

one notices obvious irregularities in the LUMO+2 aroundRH2
=

1.0 bohr and in the LUMO + 1 around RH2
= 2.1 bohr. For

information, the experimental equilibrium geometry of H2 is
around RH2

= 1.4 bohr.75 These irregularities are unphysical and

occur in correspondence with a series of poles in ΣLUMO+1
c and

ΣLUMO+2
c (see top center graph of Figure 1). For example, one

can notice two poles in ΣLUMO+2
c just before and after RH2

= 1.0

bohr, giving birth to three branches. The origin of the
irregularities in ϵLUMO+1 and ϵLUMO+2 can, therefore, be traced
back to the wrong assumption that ΣLUMO+1

c (ω) and
ΣLUMO+2
c (ω) are linear functions of ω in the vicinity of,

respectively, ω = ϵLUMO+1
HF and ω = ϵLUMO+2

HF [see eq 8].

However, despite the divergencies in the self-energy, the QP
energies ϵLUMO+1

G0W0 and ϵLUMO+2
G0W0 remain finite thanks to a rapid

decrease of the renormalization factor at the RH2
values for which

the self-energy diverges [see eq 6 and top right graph of Figure
1]. For example, note that ZLUMO+2 reaches exactly zero at the
pole locations. A very similar scenario unfolds for the LUMO +
1, except that a single pole is present in ΣLUMO+1

c .
Let us analyze this point further. Since the self-energy behaves

as Σp
c ∼ δ−1 (with δ→ 0) in the vicinity of a singularity, one can

easily show that Zp∼ (1+δ−2)−1∼ δ2, which yields ϵp
G0W0 ∼ ϵp

HF +
δ. In plain words, ϵp

G0W0 remains finite near the poles of the self-
energy thanks to the linearization of the QP equation [see eq 6].
It also evidences that, at the pole locations (i.e., δ = 0), we have
ϵp
G0W0 = ϵp

HF, i.e., by construction the QP energy is forced to
remain equal to the zeroth-order energy. This is nicely illustrated
in Figure 2, where we have plotted the HF orbital energies
(dotted lines) as well as the G0W0 QP energies (solid lines)
around the two “problematic” internuclear distances. The
behavior of ϵLUMO+1

G0W0 (solid orange line on the right panel of
Figure 2) is particularly instructive and shows that theG0W0 QP
energies can have an erratic behavior near the poles of the self-
energy.
It is interesting to investigate further the origin of these poles.

As evidenced by eq 1, for a calculation involving 2n electrons and
N basis functions, the self-energy has exactly nN(N − n) poles
originating from the combination of the N poles of the Green
function G (at frequencies ϵp) and the n(N − n) poles of the
screened Coulomb interactionW (at the RPA singlet excitations
Ωx). For example, at RH2

= 2.11 bohr, the combination of ϵLUMO
HF

= 3.83 eV and the HOMO−LUMO-dominated first neutral
excitation energy Ω1 = 22.24 eV are equal to the LUMO + 1

Figure 2.HF orbital energies (dotted lines) andQP energies as functions of the internuclear distance RH2
for the LUMO+ 1 and LUMO+ 2 orbitals of

H2 at the G0W0@HF/6-31G (solid lines) and evGW@HF/6-31G (dashed lines) levels. For convenience, the intermediate (center) branch is
presented in lighter green for the LUMO + 2.
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energy ϵLUMO+1
G0W0 = 26.07 eV. AroundRH2

= 1.0 bohr, the two poles
of ΣLUMO+1

c are due to the following accidental equalities:
ϵLUMO+1
G0W0 = ϵLUMO

HF +Ω2 and ϵLUMO+1
G0W0 = ϵLUMO+1

HF +Ω1. Because the
number of poles in G andW (at the noninteracting or HF level)
are both proportional to N, these spurious poles in the self-
energy become more and more frequent for larger Gaussian
basis sets. For virtual orbitals, the higher in energy the orbital is,
the earlier the singularities seem to appear.
Finally, the irregularities in the G0W0 QP energies as a

function of RH2
can also be understood as follows. Since within

G0W0 only one pole ofG is calculated, i.e., the QP energy, all the
satellite poles are discarded. Mixing between QP and satellites
poles, which is important when they are close to each other,
hence, is not considered. This situation can be compared to the
lack of mixing between single and double excitations in adiabatic
time-dependent density-functional theory and the Bethe−
Salpeter equation76−79 (see also refs 80−83).
3.1.2. evGW. Within partially self-consistent schemes, the

presence of poles in the self-energy at a frequency similar to aQP
energy has more dramatic consequences. The results for H2 at
the evGW@HF/6-31G level are reported in the bottom row of
Figure 1. Around RH2

= 1.0 bohr, we observe that, for the LUMO
+ 2, one can fall onto three distinct solutions depending on the
algorithm one relies on to solve self-consistently the QP
equation (see bottom left graph of Figure 1). In order to obtain
each of the three possible solutions in the vicinity of RH2

= 1.0
bohr, we have run various sets of calculations using different
starting values for the QP energies and sizes of the DIIS space. In
particular, we clearly see that each of these solutions yield a
distinct energy separated by several electron volts (see zoom in
Figure 2), and each of them is associated with a well-defined
branch of the self-energy, as shown by the center graph in the
bottom row of Figure 1. For convenience, the intermediate
(center) branch is presented in lighter green in Figures 1 and 2,
while the left and right branches are depicted in darker green.
Interestingly, the evGW iterations are able to “push” the QP
solution away from the poles of the self-energy, which explains
why the renormalization factor is never exactly equal to zero (see
bottom right graph of Figure 1). However, one cannot go
smoothly from one branch to another, and each switch between
solutions implies a significant energetic discontinuity. Moreover,
we observe “ripple” effects in other virtual orbitals: a
discontinuity in one of the QP energies induces (smaller)
discontinuities in the others. This is a direct consequence of the
global energy dependence of the self-energy [see eq 1] and is
evidenced on the left graph in the bottom row of Figure 1 around
RH2

= 2.1 bohr.
The main observation of the present study is that each branch

of the self-energy is associated with a distinct QP solution. We
clearly see that, when one goes from one branch to another,
there is a transfer of weight between the QP and one of the
satellites, which becomes the QP on the new branch.47 As
opposed to the strongly correlated regime where the QP picture
breaks down, i.e., there is no clear QP, here there is alway a clear
QP except at the vicinity of the poles where the weight transfer
occurs. As for G0W0, this sudden transfer is caused by the
artificial removal of the satellite poles. However, in the evGW
results the problem is amplified by the self-consistency. We
expect that keeping the full frequency dependence of the self-
energy would solve this problem.

It is also important to mention that the self-consistent
algorithm is fairly robust as it rarely selects a solution with a
renormalization weight lower than 0.5, as shown by the center
graph in the bottom row of Figure 1. In other words, when the
renormalization factor of theQP solution becomes too small, the
self-consistent algorithm switches naturally to a different
solution. From a technical point of view, around the poles of
the self-energy, it is particularly challenging to converge self-
consistent calculations, and we heavily relied on DIIS to avoid
such difficulties. We note that an alternative ad hoc approach to
stabilize such self-consistent calculations is to increase the value
of the positive infinitesimal η.
Figure 3 shows the correlation part of the self-energy for the

HOMO and LUMO + 2 orbitals as a function of ω (orange

curves) obtained at the self-consistent evGW@HF/6-31G level
for H2 with RH2

= 1.0 bohr. The solutions of the QP equation 6
are given by the intersections of the orange and blue curves. On
the one hand, in the case of the HOMO, we have an
unambiguous QP solution (at ω ≈ −20 eV) which is well
separated from the other solutions. In this case, one can
anticipate a large value of the renormalization factor ZHOMO as
the self-energy is flat around the intersection of the two curves.
On the other hand, for the LUMO + 2, we see three solutions of
the QP equation very close in energy from each other around ω
= 50 eV. In this particular case, there is no well-defined QP peak
as each solution has a fairly small weight. Therefore, one may
anticipate multiple solution issues when a solution of the QP
equation is close to a pole of the self-energy.

Figure 3. ΣHOMO
c (ω) and ΣLUMO+2

c (ω) (eV) as functions of the
frequencyω obtained at the evGW@HF/6-31G level for H2 at RH2

= 1.0
bohr. The solutions of the QP equation are given by the intersection of
the orange and blue curves.
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Finally, we note that the multiple solutions discussed here are
those of the QP equation, i.e., multipleQP poles associated with
a single Green function. This is different from the multiple
solutions discussed in refs 84−90, in which it is shown that, in
general, the nonlinear Dyson equation admits multiple Green
functions, which can be physical but also unphysical.
3.2. Occupied Orbitals. So far, we have seen that multiple

solutions seem to only appear for virtual orbitals (LUMO
excluded). However, we will show here that it can also happen in
occupied orbitals. We take as an example the fluorine molecule
(F2) in a minimal basis set (STO-3G), and perform evGW@HF
calculations within the frozen-core approximation, that is, we do
not update the orbital energies associated with the core orbitals.
Figure 4 shows the behavior (as a function of the distance
between the two fluorine atoms RF2) of the same quantities as in
Figure 1 but for some of the occupied orbitals of F2 (HOMO −
6, HOMO − 5, and HOMO − 4). Similarly to the case of H2
discussed in the previous section, we see discontinuities in the
QP energies aroundRF2 = 2.3 bohr (for theHOMO− 6) andRF2

= 2.7 bohr (for the HOMO − 5). For information, the
experimental equilibrium geometry of F2 is RF2 = 2.668 bohr,
which shows that the second discontinuity is extremely close to
the experimental geometry. Let us mention here that we have
not found any discontinuity in the HOMO orbital. The case of
the frontier orbitals will be discussed below. For F2, here again,
we clearly observe ripple effects on other occupied orbitals.
Similarly to virtual orbitals, we have found that the lower in
energy the occupied orbital, the earlier the singularities seem to
appear.
3.3. Frontier Orbitals. Before concluding, we would like to

know whether or not this multisolution behavior can potentially
appear in frontier orbitals. This is an important point to discuss
as these orbitals are directly related to the ionization potential
and the electron affinity, hence to the gap.
Let us take the HOMO orbital as an example. A similar

rationale holds for the LUMO orbital. According to the
expression of the hole and particle parts of the self-energy
given in eqs 2a and 2b respectively, ΣHOMO

c (ω) has poles at ω =
ϵi−Ωx andω = ϵa +ΩxwithΩx > 0. Evaluating the self-energy at
ω = ϵHOMO would yield ϵHOMO − ϵi = −Ωx and ϵHOMO − ϵa =
+Ωx, which is in clear contradiction with the assumption thatΩx
> 0. Therefore, the self-energy is never singular atω = ϵHOMO and
ω = ϵLUMO and the linearized G0W0 equations can be solved
without any problem for the frontier orbitals. This is true for any
G0, that is, it does not depend on the starting point. As can be
seen from eqs 2a and 2b, the two poles of the self-energy closest
to the Fermi level are located atω = ϵHOMO−Ω1 andω = ϵLUMO
+ Ω1. As a consequence, there is a region equal to ϵHOMO −

ϵLUMO + 2Ω1 around the Fermi level in which the self-energy
does not have poles. Because Ω1 ≈ ϵHOMO − ϵLUMO = Egap, this
region is approximately equal to 3Egap.
For “graphical” G0W0, the solution might lie outside this

range, even for the frontier orbitals. This can happen when Egap is
much smaller than the true GW gap. In particular, this could
occur for graphicalG0W0 on top of a Kohn−Sham starting point,
which is known to yield gaps that are (much) smaller than GW
gaps. Within graphical G0W0, multiple solution issues for the
HOMO have been reported by van Setten and co-workers9,34 in
several systems (LiH, BN, BeO, and O3). In their calculations,
they employed PBE orbital energies91 as starting points, and this
type of functional is well-known to drastically underestimate
Egap.

92

As an example, we have computed, within the frozen-core
approximation, ΣHOMO

c (ω) and ΣLUMO
c (ω) as functions of ω at

the G0W0@PBE/cc-pVDZ level for beryllium monoxide (BeO)
at its experimental geometry (i.e., RBeO = 2.515 bohr).75 These
calculations have been performed with MOLGW.31 The results
are gathered in Figure 5, where one clearly sees that multiple
solutions appear for both the HOMO and LUMO orbitals. Note
that performing the same set of calculations with a HF starting
point yields a perfectly unambiguous single QP solution. For this
system, PBE is a particularly bad starting point for a GW
calculation with a HOMO−LUMO gap equal to 1.35 eV. Using
the same basis set, HF yields a gap of 8.96 eV, while G0W0@HF
andG0W0@PBE yields 7.54 and 5.60 eV. The same observations
can be made for the other systems reported as problematic by
van Setten and co-workers.9,34 As a general rule, it is known that
HF is usually a better starting point for GW in small molecular
systems.8,13,47,93 For larger systems, hybrid functionals94 might
be the ideal compromise, thanks to the increase of the HOMO−
LUMO gap via the addition of (exact) HF exchange.8,35,38,46,95

4. CONCLUDING REMARKS

The GW approximation of many-body perturbation theory has
been highly successful at predicting the electronic properties of
solids and molecules.2−4 However, it is also known to be
inadequate to model strongly correlated systems.87,96−99 Here,
we have found severe shortcomings of two widely used variants
of GW in the weakly correlated regime. We have evidenced that
one can hit multiple solution issues within G0W0 and evGW due
to the location of the QP solution near poles of the self-energy.
Within linearized G0W0, this implies irregularities in key
experimentally measurable quantities of simple diatomics,
while, at the partially self-consistent evGW level, discontinues
arise. Because the RPA correlation energy31,66,100,101 and the
Bethe−Salpeter excitation energies30,102,103 directly dependent
on the QP energies, these types of discontinuities are also

Figure 4.QP energies (left), correlation part of the self-energy (center), and renormalization factor (right) as functions of the internuclear distance RF2

for various occupied orbitals of F2 at the evGW@HF/STO-3G level.
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present in these quantities, hence in the energy surfaces of
ground and excited states. Illustrative examples can be found in
our previous study.47 We believe that such discontinuities would
not exist within a fully self-consistent scheme where one does
not iterate the QP energies but the one-body Green’s function
and therefore takes into account each QP peak as well as its
satellites at every iteration. Obviously, this latter point deserves
further investigations. However, if confirmed, this would be a
strong argument in favor of fully self-consistent schemes. Also,

for extended systems, these issues might be mitigated by the
plasmon modes that dominate the high-energy spectrum of the
screened Coulomb interaction. The results of this work will be
useful for self-consistent GW calculations of dynamical
phenomena, i.e., with nuclear motion.
We are currently exploring different routes in order to remove

these unphysical features. Pade ́ resummation techniques could
be of great interest104 for such a purpose. However, other
techniques might be successful at alleviating this issue. For
example, one could (i) impose a larger offset from the real axis
(i.e., increasing the value of η), (ii) favor, in the case of small
systems, an HF starting point in order to avoid small HOMO−
LUMO gaps, or (iii) rely, for larger systems, on hybrid
functionals including a significant fraction of HF exchange.
Also, regularization techniques, such as the one developed for
orbital-optimized second-order Møller−Plesset perturbation
theory, could be a pragmatic and efficient way of removing
such discontinuities.105

■ APPENDIX: DIIS IMPLEMENTATION FOR GW

DIIS (standing for “direct inversion of the iterative subspace”) is
an extrapolation technique introduced by Pulay in 198073,74 in
order to speed up the convergence of self-consistent HF
calculations. The DIIS implementation for the evGWmethod is
rather straightforward and reminiscent of the coupled cluster
(CC) implementation.106 Within evGW, at iteration n, DIIS
provides a set of normalized weight w in order to extrapolate the
current values of the QP energies ϵGnWn based on the NDIIS =
min(n − 1, Nmax

DIIS) previous values, i.e.

∑ϵ = ϵ
=

− −wG W

m

N

m
G W

1

n n n m n m

DIIS

(10)

where Nmax
DIIS is a user-defined parameter setting the maximum

size of the DIIS space. This procedure only requires to store the
QP energies ϵGnWn at each iteration. The DIIS extrapolation
technique relies on the fact that, at convergence, ΔϵGn−1Wn−1 =
ϵGn−1Wn−1 − ϵGn−2Wn−2 = 0. Consequently, the weights are obtained
by solving the linear system Aw = b, where

=
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When the linear system becomes ill-conditioned, we reset NDIIS

= 0 and restart the DIIS extrapolation procedure. For Nmax
DIIS = 2,

the present algorithm can be seen as an optimal linear mixing
strategy, as usually implemented in other software packages.19,25

For qsGW, we have found that extrapolating the self-energy

similarly to what is done for the Fock matrix in HF or KS
methods is particularly efficient.73,74
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