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Abstract
In this work, we demonstrate the viability of using distributed Gaussian orbitals as a basis set for the calculation of the
properties of electrons subjected to an external potential. We validate our method by studying one-electron systems for
which we can compare to exact analytical results. We highlight numerical aspects that require particular care when using
a distributed Gaussian basis set. In particular, we discuss the optimal choice for the distance between two neighboring
Gaussian orbitals. Finally, we show how our approach can be applied to many-electron problems.

Keywords Basis set · Distributed Gaussians · Quantum chemistry

Introduction

Expanding the electronic wavefunction in a set of one-
electron basis functions is a standard technique to study
many-electron systems [1]. In particular, Gaussian-type
orbitals (GTO) are widely used in quantum chemistry
calculations [2, 3]. In the case of molecular simulations,
GTO are usually centered on nuclei, since this is a very
effective way to describe the internal structure of the
electronic wavefunction. Instead, for systems in which the
electrons are subjected to a smooth effective potential,
a basis set that consists of atom-centered Gaussians is,
in general, not suitable to express the many-body wave
function. Therefore, we have recently used distributed
Gaussian orbitals in order to describe electrons confined in
a quasi one-dimensional region of space [4]. This approach
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seems to be very promising, in particular for the study
of Wigner localization [5]. The use of evenly distributed
orbitals, together with a small number of compact atom-
centered orbitals, has also been investigated by some of us
in the case of molecular calculations [6]. Alternatives are to
use floating Gaussians [7–14] or spherical Gaussians [15].
Finally, we note that also other types of functions such as,
e.g., delta functions, could be used. However, in the case of
delta functions, results converge slowly [16]. In this work,
we investigate to what extent Gaussian orbitals are suitable
basis functions for the description of electronic systems.

Our ultimate goal is to study electronic properties of
real systems, which can be either three-dimensional (3D)
systems, or quasi-one-dimensional (1D) and quasi-two-
dimensional (2D) systems. In particular, we are interested
in studying quantum dots and quantum wires. For this
reason, all Gaussian orbitals used for the expansion of the
wavefunctions have been chosen to be three-dimensional. In
the present work, the Gaussian orbitals have been chosen as
3D equally spaced Gaussians of s type having a common
exponent. The Gaussian centers are placed on a regular grid,
either in 1D, 2D, or 3D. Although different strategies for
paving the space with Gaussian functions can be considered,
for the sake of simplicity we will limit ourselves to an
equidistant grid in 1D, a square grid in 2D and a simple
cubic grid in 3D.

In this work, we investigate the efficiency of Gaussian
basis sets to describe the wave function of electrons that
are confined by a potential. This potential can be either
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explicitly given, e.g., a harmonic potential, or implicitly
generated by the Gaussians in the basis set, i.e., the electrons
can only be present in the region of space that is spanned by
the Gaussian orbitals. In order to validate our approach, we
will mainly focus on one-electron systems because: (i) we
can compare to exact analytical results; (ii) the conclusions
can to a large extent be transferred to many-electron
systems. First, we will study the requirements on the one-
particle basis set to accurately describe the electronic wave
function of a single electron confined by a potential. In
particular, we will consider the cases of a particle-in-a-
box and the harmonic oscillator, which are described by
Hamiltonians that admit an analytical solution. Second, in
order to show that a distributed Gaussian basis set can also
be used for the treatment of interacting electrons, we will
present and discuss some results for six electrons confined
in a quasi-1D potential.

This article is organized as follows: In section “Theory”
we briefly describe the model systems that we will
study here. In section “Distributed Gaussian orbitals”, the
distributed basis set of Gaussian orbitals used to describe the
wavefunction is defined. In section “A single electron in a
quasi-1D potential”, the particular case of quasi-1D systems
is presented for both an explicitly given potential as well
as a potential that is implicitly defined by the basis.
In section “Results and discussion”, we present results
obtained with this basis for a particle in a box and an
electron in a harmonic potential and we compare to exact
results. We also show some results for systems with several
electrons. Finally, in section “Conclusions”, we draw our
conclusions. We will use Hartree atomic units throughout.

Theory

In order to keep this article self-contained, in this section
we review some basic theory that will be useful in the
remainder of this work. We will solve the time-independent
Schrödinger equation with the following Hamiltonian,

Ĥ = T̂ + V̂ + Ŵ , (1)

where the kinetic energy operator, the potential energy
operator and the two-particle interaction are given by,
respectively,

T̂ = −1

2

N∑

i=1

∇2
ri , (2)

V̂ =
N∑

i=1

V (ri ), (3)

Ŵ =
N∑

i=1

N∑

j=i+1

1

|ri − rj | , (4)

in which V (r) is the external potential and N is the number
of electrons. In most of this work we will be interested in
one-electron systems, in which case Ŵ = 0.

In this work, we want to demonstrate the efficiency of
a basis set of distributed Gaussians. We will do this by
studying quasi-1D systems, i.e., the Gaussian orbitals will
be distributed along a line. In this way, the Gaussians do not
span a strict 1D space [17] since the Gaussian orbitals are
themselves three-dimensional. For this reason, we denote
the space as quasi-1D. The main advantage of this approach
is that the notation remains simple and we can compare to
exact, analytical results for 1D model systems. Moreover,
the conclusions we will obtain for the quasi-1D systems can
be easily extended to 2D or 3D systems. However, due to
the 3D nature of the Gaussian orbitals that we will use, the
energy of a quasi-1D system has a contribution stemming
from the two transverse components of the Gaussians, i.e.,
orthogonal to the line along which the Gaussians are placed.
This contribution to the energy has to be removed in order
to compare to the analytical results of 1D model potentials.
We will discuss how to do this in the following.

In this work, we will consider the potentials related to
the following two 1D models: (i) The particle in a box; (ii)
The harmonic oscillator. Let us now briefly discuss the main
details of these two models that are relevant to this work.

Particle in a box

The solutions to the problem of a particle in a 1D box
(PiB) of length L are well known. We consider here a
symmetric potential, i.e., V (z) = 0 between −L/2 and L/2
and V (z) = ∞ everywhere else. The eigenfunctions of this
system are given by [18] (see also [19])

ψn(z) =
√

2

L
cos

(nπx

L

)
(n = 1, 3, 5, · · · ), (5)

ψn(z) =
√

2

L
sin

(nπx

L

)
(n = 2, 4, 6, · · · ), (6)

and the corresponding eigenenergies are

En(L) = n2π2

2L2
(n = 1, 2, 3, · · · ). (7)

In order to simulate the external potential, one could use
a continuous function of the form Vk(z) = (2z/L)2k where
k is a positive integer, and then take the limit k → ∞ in
order to simulate the presence of the box walls. In fact, we
have limk→∞ Vk(z) = 0 if |z| < L/2 and limk→∞ Vk(z) =
+∞ if |z| > L/2. The problem is that such an approach
should be combined with the use of basis functions that have
compact support, i.e., functions that are identically zero for
|z| > L/2. Unfortunately, Gaussians are different from
zero everywhere, and therefore they do not have compact
support. As a consequence, all the matrix elements of the
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potential with two Gaussians diverge in the limit k → ∞
and, therefore, also the eigenenergies will diverge.

Because of this difficulty, we propose an alternative
procedure in which we implicitly define the box through
the presence of the Gaussian functions. In fact, since the
potential is zero within the box and infinite outside the box,
we can solve a free-electron problem, i.e., Ĥ = − 1

2∇2,
in which the electron is confined to a box spanned by the
orbital basis. However, as a consequence, the boundaries
of the box are not sharp but fuzzy because the Dirichlet
boundary conditions ψ(−L/2) = ψ(L/2) = 0 are not
strictly satisfied [20].

Harmonic oscillator

The second model system that we consider is the harmonic
oscillator. In this case, the potential function given by 1

2kz2,
with k the force constant, is well defined for any value of z,
and therefore a suitable number of Gaussian orbitals in the
region of the minimum of the potential is well adapted to
reproduce the eigenvectors associated to the low-lying part
of the spectrum. The Hamiltonian operator is given by

Ĥ = T̂ + V̂ = −1

2
∇2 + 1

2
kz2. (8)

The analytical solutions to the corresponding Schrödinger
equation are well known. The eigenenergies are given by

En =
(

n + 1

2

)
ω, (9)

where ω = √
k is the angular frequency and n is a non-

negative integer, while the eigenfunctions are given by

ψn(z) = 1√
2nn!

(ω

π

)1/4
e− ωz2

2 Hn

(√
ωz

)
, (10)

in which Hn are Hermite polynomials.

The effective potential V̄

In the case of the PiB, we implicitly defined the external
potential through the basis set. In this section, we show how
one can obtain an explicit expression for the potential for
a given basis set by reverse engineering. For a given basis
set, the one-particle wave function ψ(z) that is an eigenstate
of the Hamiltonian can be obtained by solving the free-
electron problem. From the wave function we can obtain the
corresponding potential that generated it. The Schrödinger
equation for a single particle in an external potential V (z) is
given by

−1

2

d2ψ(z)

dz2
+ V (z)ψ(z) = Eψ(z). (11)

This means that a multiplicative potential V (z) can be
obtained via the relation

V (z) = 1

2ψ(z)

d2ψ(z)

dz2
− E. (12)

This equation is valid everywhere, except, possibly, at the
nodes of ψ(z). Therefore, if the ground-state wavefunction,
as it often happens, is nodeless, the potential can be defined
everywhere. We note that Eq. (12) gives the exact original
potential V (z) if both the wavefunction ψ and the energy
E are exact. We now turn to approximated energies and
wavefunctions. If these quantities are the result of an
approximated calculation (let us indicate them by ψ̃ and Ẽ),
we can define an effective potential Ṽ (z) as

Ṽ (z) = 1

2ψ̃(z)

d2ψ̃(z)

dz2
− Ẽ. (13)

We have now that Eq. 13 defines the effective potential Ṽ ,
in such a way that

−1

2

d2ψ̃(z)

dz2
+ Ṽ (z)ψ̃(z) = Ẽψ̃(z). (14)

We use Eq. 13 in order to obtain the effective potential
associated to the solution of the Schrödinger equation for a
free particle, projected on a set of Gaussian orbitals.

Distributed Gaussian orbitals

The primitive orbitals used to expand the wavefunction
are chosen as 3D s-type Gaussian orbitals having a single
common exponent, α. For normalized orbitals, we get

φα
i (r) = (2α/π)

3
4 exp(−α‖r − Ri‖2), (15)

where Ri indicates the center of the i-th Gaussian. Here we
place the centers of the Gaussians on a regular linear grid
along the z-axis. The centers Zi of the Gaussians are given
by the expression

Zi = iδ (i = −g, −g + 1, ..., 0, 1, ..., g),

(16)

where g is a non-negative integer. Therefore, M = 2g + 1
is the total number of Gaussians. The overlap between two
Gaussians having the same exponent α, and centers placed
at a distance δ is given by

S(α, δ) = exp(−αδ2/2). (17)

In the present investigation, the distance between two
neighboring centers is related to the exponent of the
Gaussian via the relation

α = ξ

δ2
, (18)



 216 Page 4 of 10 J Mol Model  (2018) 24:216 

where ξ is a constant that characterizes the resolution of the
basis set. This choice implies that the overlap S between two
normalized Gaussians is a function of ξ only. It is given by

S(ξ) = exp(−ξ/2). (19)

One of the main goals of this work is to establish a range
of optimal values for ξ . Before discussing numerical results
in the next section, we can already establish a reasonable
range for ξ from qualitative arguments only.

Let us consider a set of M equally spaced Gaussians,
placed on a straight line along the z-axis. In this case, the
matrix elements of the overlap matrix are of the form Sij =
S(|i − j |), with S(0) = 1, S(1) = S, and S(k) > S(k +
1) > 0 for any non-negative integer k (here we dropped
the dependence of S(k) on ξ to simplify the notation). The
evaluation of the minimum eigenvalue λM of the overlap
matrix becomes particularly simple for an infinite number
of Gaussians since in this case we can map the problem
on that of a periodic system and use the Bloch theorem.
The eigenvectors will be given by plane waves, and the
eigenvector corresponding to the smallest eigenvalue will
have elements given by zk = (−1)k . We thus obtain the
following expression for λ∞,

λ∞(ξ) = 1 + 2
∞∑

k=1

(−1)kS(k)

= 1 + 2
∞∑

k=1

(−1)k exp(−k2ξ/2)

= ϑ4(0, e−ξ/2), (20)

where ϑ4 is a Jacobi theta function [21]. The lowest eigen-
value is particularly relevant for numerical applications,
since if it is very small the problem becomes ill condi-
tioned, and hence numerically unstable. For this reason, in
most quantum chemistry packages a minimum eigenvalue
of about 10−6 is set as a threshold. In Fig. 1, we report the
values of λ∞(ξ) as a function of ξ . We observe that for
ξ = 0.3 the minimum eigenvalue is about 10−6. This means
that for 1D systems ξ = 0.3 can be considered a lower limit.
We can also make an estimate for the lower limit of ξ in
the case of 3D systems if we assume that λ∞ scales with
the dimensionality. If this is the case, the threshold is about
10−2 for each of the three dimensions. From Fig. 1 we then
conclude that for 3D systems ξ = 0.75 is the lower limit.

On the other hand, ξ cannot be chosen too large since
otherwise two neighboring Gaussians will not have a
sufficient overlap. In particular, one can show that the
sum of two Gaussians having identical weights becomes
a double-peaked function for ξ > 2. So this value
can be considered as an upper limit for ξ in order to
get a reasonable description of a smooth wavefunction.

Considering the above arguments, the parameter ξ is limited
to a narrow interval around the value ξ = 1.

A single electron in a quasi-1D potential

We consider here the problem of the expansion of a general
wavefunction via a set Gaussian orbitals in a quasi-1D
situation. In this case, the potential in the Hamiltonian
depends on z only, i.e., V (r) = V (z). We expand the
electron wavefunction in a set of M Gaussian orbitals
having the same exponent α. The centers of the orbitals
are equally spaced, and placed on a straight line along
the z-axis, i.e., Ri = (0, 0, Zi). The property of equal
spacing of the Gaussian centers, although convenient from
the computational point of view, can be relaxed without
noticeable consequences. The use of a common exponent,
on the other hand, is crucial for quasi-1D or quasi-2D
systems, since it permits to factorize out the transverse
components of the wavefunction, and therefore eliminate
the spurious kinetic-energy terms stemming from the
wavefunction confinement. Only in the case of fully 3D
systems this constraint can be dropped. In the quasi-1D
discussed in this work, the energy contribution due to the
transverse components of the 3D Gaussians is equal to α,
the exponent of the Gaussian function. The derivation of this
value can be found in the Appendix.

Therefore, for the two quasi-1D systems considered here,
the particle in a box and the harmonic oscillator the total
energies will tend to, respectively,

Eα
n (L) = n2π2

2L2
+ α, (21)

Eα
n (ω) =

(
n + 1

2

)
ω + α. (22)

As a consequence, when we compare to the exact analytical
values given in Eqs. 7 and 9 we should subtract α from our
calculated values.

Results and discussion

One-particle systems

In order to assess the quality of the Gaussian expansion
to describe quasi-1D wavefunctions, several calculations
have been performed by using a set of M equally spaced
Gaussians with exponent α.

Particle in a box

In the absence of an external potential, the lowest
approximated solutions will converge to the PiB results.
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Fig. 1 The minimum eigenvalue
of the overlap matrix for a 1D
even-spaced infinite set of
identical Gaussians as a function
of ξ . Zoom in the inset
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As a first step, the dependence of the energies on the ξ

parameter has been investigated. For this reason, the number
of Gaussians has been fixed to a large value, i.e., M = 401.
We keep the distance between the Gaussian centers fixed to
δ = 1 Bohr. We note that for this particular value of δ, the
parameter ξ coincides with the exponent of the Gaussians
α. In Fig. 2, the longitudinal energy component of the
lowest four eigenvalues are reported as a function of ξ , and
compared to the exact energies of the PiB model, given in
Eq. 7. It can be seen that the reported energies are very close
to the exact values for ξ ≤ 1, while the agreement quickly
deteriorates for larger values of ξ . For small values of ξ ,
the calculated energies lie below the exact values, although
by a very small amount, which implies that the energies are

not variational approximations of the exact ones. For large
values of ξ the calculated energies lie well above the exact
energies.

In fact, there are two sources of error stemming from the
discretization procedure. The first one is that for large values
of α a linear combination of Gaussians do not sufficiently
overlap to be able to describe the smooth one-electron wave
functions. Instead, it will lead to an oscillating function. The
energies are, therefore, above the exact values, and this error
can be estimated via the variational principle. The second
source of error is due to the fact that the Gaussian orbitals do
not vanish outside of the boundaries of the box. This error,
which produces energies that are below the exact values, is
more difficult to evaluate, and depends on both the number

Fig. 2 Absolute energies for a
particle in a box with 401
Gaussians as a function of ξ .
Since δ = 1 Bohr, in this case
α = ξ
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Fig. 3 Relative energies with
respect to the ground state εk/ε0
(k =1, 2, 3) for a particle in a
box with 401 Gaussians,
L = 400 Bohr, as a function of
ξ . Since δ = 1 Bohr, in this case
α = ξ
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of Gaussians and their width. For a given box length, and a
fixed value of ξ , one can show that the second error goes to
zero as 1/M2 when M → ∞.

Because of the incertitude about the (implicit) box length,
a better way to assess the energy quality is to compute the
ratio of the eigenvalues, since, according to Eq. 7, its value
does not depend on L. This is shown in Fig. 3, where the
ratios εn/ε1 as a function of ξ are plotted for n = 2, 3, 4.
By looking at the exact energies, we see that the value of
the ratio should be n2. The calculated values are quite close
to the exact ones for ξ < 1, then decrease dramatically, and
converge to a common value εk/ε1 = 1 in the limit ξ → ∞.
This means that the Gaussian basis set is well adapted to
describe the exact eigenfunctions if ξ < 1. We note that,

as discussed before, in practical calculations one also has to
pay attention to the problem of quasi-linear dependencies
when ξ is too small. Instead, in the limit ξ � 1, the
Gaussians will essentially be isolated. The dominant effect
in the energy will be the kinetic energy of the Gaussians,
given by α/2, regardless of the value of k. Therefore, the
ratio εk/ε1 converges to 1.

In Fig. 4, the lowest eigenfunction for a box of length
L = 10 Bohr calculated with 1024 Gaussians is reported for
different values of ξ . The presence of oscillations is visible
when ξ > 1 which stems from the insufficient overlap
between the Gaussians mentioned before. From the results
in the inset of Fig. 4, we also see that the wave functions do
not vanish beyond the boundaries of the box. This overflow

Fig. 4 Ground-state wave
function for a particle in a box
along the z-axis as a function of
the position z. Box with L = 10
Bohr and 1024 Gaussians,
different values of ξ are
reported. Inset: zoom of the
region close to the boundary of
the box at z = 5 Bohr

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
position along the box (bohr)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

gr
ou

nd
-s

ta
te

 w
av

ef
un

ct
io

n

ξ=0.5
ξ=0.7
ξ=1.0
ξ=1.5
ξ=2.0
ξ=4.0

4.9 4.95 5
0

0.0005

0.001

0.0015



J Mol Model  (2018) 24:216 Page 7 of 10 216 

Fig. 5 The ground-state
wavefunction of a particle in a
box along the z-axis as a
function of the position z for
several values of M , the number
of Gaussians. The box length is
10 Bohr and ξ = 0.5
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is bigger for the more diffuse Gaussians, i.e., those with
small values for ξ .

From the above results, we conclude that values between
ξ = 0.5 and ξ = 1 are a good choice for quasi-1D
systems. We will now study the convergence behavior with
respect to the number of Gaussians. In Fig. 5, the calculated
ground-state wavefunction obtained with different numbers
of Gaussians are shown using ξ = 0.5. With a large number
of Gaussians, i.e., M ≥ 256, the agreement is excellent.
Instead, for smaller values of the number of Gaussians,
small oscillations are visible, and the wavefunction has
relatively large nonzero values outside the boundaries of the
box.

Finally, we will have a look at the effective potential that
is implicitly defined by the Gaussian basis set using the
approach outlined in section “The effective potential V̄ ”. In
Fig. 6, the effective potential is reported for several values
of M i.e., M = 8, 16, 32, and ξ = 1. The potential
is close to zero inside the box, and grows parabolically
beyond the boundaries of the box. Close to the boundaries,
there are oscillations that become more pronounced if the
number of Gaussians is increased. There are also small
oscillations inside the box, as can be seen from the inset in
Fig. 6. We note that the small oscillations inside the box
correspond to the positions of the Gaussian centers. In Fig. 7
we report the effective potential obtained with more diffuse

Fig. 6 The effective potential Ṽ

along the z-axis, ξ = 1.0, for
M = 8, 16, 32
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Fig. 7 The effective potential Ṽ

along the z-axis, ξ = 0.5, for
M = 8, 16, 32
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Gaussians (ξ = 0.5). The oscillations of the potential close
to the box borders tend to increase when ξ is reduced.
It is remarkable that despite this oscillating potential, the
calculated eigenvalues are so close to the exact ones. This
is probably due to the fact that the wavefunction vanishes
at the boundaries of the box. Therefore the value of the
potential has little influence on the wavefunction. We note
that similar oscillations can be observed for the one-electron
density within the Thomas-Fermi approximation [22].

Harmonic oscillator

We will now show results obtained with an explicit external
potential, namely that of the harmonic oscillator. Since

the exact ground-state wave function is a Gaussian, one
might think that the harmonic-oscillator model can be easily
described with a basis set of Gaussian functions. However,
for a given basis set, only for one specific value of the force
constant k does one Gaussian function suffice to describe
the wave function. Moreover, none of the excited states are
Gaussians. Here we set the force constant k to unity. This
means that the exact eigenvalues of the ground state and
the first two excited states are 0.5, 1.5, and 2.5 Hartree,
respectively. We set the box length equal to L = 12 Bohr.

In Fig. 8, the errors with respect to these exact values are
reported as a function of ξ for 13, 25, and 241 Gaussians.
We conclude that the error can be reduced to very a small
value (below 10−10 Hartree) if a suitable value of ξ and

Fig. 8 The absolute error with
the exact energy for a harmonic
oscillator, with 13,25 and 241
Gaussians
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Fig. 9 The normalized electron
density of six electrons confined
in a 1D box as a function of the
position for several values of the
Wigner–Seitz radius rs
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M is chosen. Even with only 13 Gaussians it is possible
to reproduce the exact energy of the two lowest states with
an error that is below one mHartree. We note that the error
for the ground-state energy using 13 Gaussians at ξ = 0.5
is not reported because for this particular value of ξ the
error is identically zero since the basis set contains the exact
ground-state wave function.

Many-electron systems

To demonstrate that our approach is suitable for many-
electron systems, we also studied a quasi-1D system with
six electrons [4]. Since the kinetic energy scales as 1/r2

s

and the electron-electron repulsion as 1/rs , where rs is
the Wigner–Seitz radius, we expect that at small rs (large
density) the system behaves as six non-interacting electrons
since the kinetic energy is dominant. Instead, at large rs (low
density) we expect that the electrons will localize since in
this case the electron-electron repulsion is dominant.

In Fig. 9, we report the full configuration interaction
(FCI) electron density for both the low-spin (LS) and high-
spin (HS) wave functions, and for four values of rs , namely
0.05, 0.5, 5, and 50 Bohr [4]. We used ξ = 1 and M = 25.
We verified that the results are converged using these values.
We observe that for rs = 0.05 and rs = 0.5, the density
is close to being a constant. It is comparable to the density
profile of six non-interacting electrons in a 1D box. We note
that while six peaks can be observed in the HS case, only
three peaks are visible for the LS case. This stems from the
double occupation of the orbitals.

The density distribution completely changes going from
rs = 0.5 to rs = 5 Bohr. In the case of rs = 5 Bohr
there are six peaks for both HS and LS. Moreover, the peaks

are divided by deep valleys. In the case of the largest rs
that we report, rs = 50 Bohr, the density almost vanishes
between the peaks. We, therefore, observe that the electrons
indeed localize for large rs . Moreover, the HS and LS
density profiles are indistinguishable for large rs , as one
would expect, since the spin coupling is not important for
localized electrons. Finally, we note that the results in Fig. 9
are not influenced by the underlying basis of distributed
Gaussians, i.e., the density profiles are smooth. We conclude
that our approach, based on distributed Gaussians, is
well suited to study electron localization in many-electron
systems.

Conclusions

We have demonstrated the viability of using distributed
Gaussian orbitals as a basis set for the calculation of the
properties of electrons subjected to an external potential. We
have validated our method by studying one-electron systems
for which we could compare to exact analytical results.
We have highlighted the numerical aspects that require
particular care when using a distributed Gaussian basis set.

We have also shown how our approach can be applied
to many-electron problems. In the future, we plan to use
this formalism for a systematic ab initio investigation of
the physics of few-electron systems confined in quasi-1D
regions, and possibly subjected to an external potential.
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Appendix: Energy contribution
from the transverse components
of the Gaussians

In this appendix, we derive the contribution to the energy
due to the transverse components of the 3D Gaussian
functions.

The electron wavefunction ψα(r) is expanded as a linear
combination of the φα

i orbitals:

ψα(r) =
∑

i

Ciφ
α
i (r). (23)

By inserting Eq. 15 into Eq. 23, we obtain

ψα(r) =
∑

i

Ci exp(−α‖r − Ri )‖2) =

= exp(−α(x2 + y2))
∑

i

Ci exp(−α(z − Zi)
2). (24)

By acting on ψα(r) with the Hamiltonian, given in Eq. 8,
and scalar multiplying the resulting equation by 〈φα(r)|
one finally gets, after a separation of variables, the three
independent equations

〈exp(−αx2)|Tx | exp(−αx2)〉 = Ex〈exp(−αx2)| exp(−αx2)〉, (25)

〈exp(−αy2)|Ty | exp(−αy2)〉 = Ey〈exp(−αy2)| exp(−αy2)〉, (26)

〈exp(−α(z − Zj )
2)|Tz + Vz|

∑

i

Ci exp(−α(z − Zi)
2)〉 = Ez〈exp(−α(z − Zi)

2)|
∑

i

Ci exp(−α(z − Zi)
2)〉. (27)

The first two equations have the solution Ex = Ey = α/2.
This can be easily verified by explicitly performing the sec-
ond derivative contained in the kinetic energy, and integrat-
ing the resulting expression. Alternatively, we note that a one-
dimensional Gaussian with exponent α is the ground-state
eigenfunction of a harmonic oscillator with eigenvalue α.
Because of the virial theorem, the mean value of the kinetic
energy is equal to the mean value of the potential energy,
and hence equal to one half of the total energy, i.e., Ex =
Ey = α/2.

The third equation corresponds to the projection of a true
1D eigen-equation for Hz onto the set of non-orthogonal
basis functions | exp(−α(z − Zi)

2)〉. This means that the
wavefunction is expressed as the product of three independent
functions, depending on x, y, and z, respectively. Since the
Hamiltonian is separable, the time-independent Schrödinger
equation will have an energy given by the sum of three indepen-
dent terms. The functions ψα(x) and ψα(y) do not contain
any parameter, and their energy contributions will be those
of a single Gaussian. The ψα(z) function can be computed,
via the variational principle, by minimizing its energy. In the
limit M → ∞, ψα(z) will be an arbitrary function on the
[0, L] interval, vanishing in all points z /∈ [0, L].
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