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ABSTRACT: We report an exhaustive study of the performance of different variants of Green
function methods for the spherium model in which two electrons are confined to the surface of a
sphere and interact via a genuine long-range Coulomb operator. We show that the spherium
model provides a unique paradigm to study electronic correlation effects from the weakly
correlated regime to the strongly correlated regime, since the mathematics are simple while the
physics is rich. We compare perturbative GW, partially self-consistent GW and second-order
Green function (GF2) methods for the computation of ionization potentials, electron affinities,
energy gaps, correlation energies as well as singlet and triplet neutral excitations by solving the
Bethe−Salpeter equation (BSE). We discuss the problem of self-screening in GW and show that
it can be partially solved with a second-order screened exchange correction (SOSEX). We find
that, in general, self-consistency deteriorates the results with respect to those obtained within
perturbative approaches with a Hartree−Fock starting point. Finally, we unveil an important
problem of partial self-consistency in GW: in the weakly correlated regime, it can produce
artificial discontinuities in the self-energy caused by satellite resonances with large weights.

1. INTRODUCTION
The electronic structure of a many-body system is well
characterized by its one-body Green function, G, since it
provides several important physical properties of interest, for
example, the total energy, the density, ionization potentials,
electron affinities, as well as spectral functions, which are
related to direct and inverse photoemission.1−6 Formally, G is
defined as an expectation value with respect to the ground-state
wave function of the N-electron system.7 Therefore, it is not
useful in practical calculations. However, a closed set of
equations yielding G, which does not require the explicit
calculation of the ground-state wave function, was obtained by
Hedin.8 It connects the Green function, the irreducible vertex
function Γ, the irreducible polarizability P, the dynamically
screened Coulomb interaction W, and the self-energy Σ
through a set of five integro-differential equations known as
Hedin’s equations (see also Figure 1)

∫= + ΣG G G G(12) (12) (13) (34) (42) d(34)H H (1a)

∫δ δ δ
δ

Γ = + Σ Γ
G

G G(123) (12) (13)
(12)
(45)

(46) (75) (673) d(4567)

(1b)

∫= − ΓP i G G(12) (13) (342) (41) d(34) (1c)

∫= +W v v P W(12) (12) (13) (34) (42) d(34) (1d)

∫Σ = Γi G W(12) (13) (14) (324) d(34) (1e)

where GH is the one-body Hartree Green function, v is the bare
Coulomb interaction, δ(12) is Dirac’s delta function,9 and 1 is a
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Figure 1. Hedin’s pentagon.8 The red path shows the self-consistent
GW process which bypasses the computation of the vertex function Γ.
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composite coordinate gathering spin, space, and time variables
(σ1,r1,t1).
A particularly successful approximation to Hedin’s equations

in electronic-structure calculations is the so-called GW
approximation,8 which bypasses the calculation of the vertex
corrections by setting1−4 (see also Figure 1):

δ δΓ =(123) (12) (13) (2)

Historically, GW methods have been mostly applied to
solids.1,2 However, studies on atoms and molecules have been
flourishing in the past ten years.10−26 Nowadays, efficient
implementations of GW methods for localized basis sets are
available in several software, such as FIESTA,4,10 MOLGW,15

TURBOMOLE,27−30 FHI-AIMS,31−34 and others.
There exists many flavours of GW. The simplest and most

popular variant is perturbative GW or G0W0,
35,36 which has

been widely used in the literature to study solids, atoms and
molecules.12,13,22,23 Although G0W0 provides accurate results
(at least for weakly/moderately correlated systems), it is
strongly starting-point dependent due to its perturbative nature,
and violates some important conservation laws, such as the
conservation of energy, momentum and particle number.37−39

Improvements may be obtained via partial self-consistency
while the conservation laws are satisfied at full self-consistency.
However, things are not that simple, as self-consistency and

vertex corrections are known to cancel to some extent.40

Indeed, there is a long-standing debate about the importance of
partial and full self-consistency in GW.31−34,41−45 In some
situations, it has been found that self-consistency can worsen
spectral properties compared to the simpler G0W0 method. A
famous example has been provided by the calculations
performed on the uniform electron gas,46−49 a paradigm
central to many areas of physics and chemistry.50 This was
further evidenced in real extended systems by several
authors.51−54 However, other approximations may have caused
such deterioration, for example, pseudopotentials55 or finite-
basis set effects.56 These studies have cast doubt on the
importance of self-consistent schemes within GW, at least for
solid-state calculations. For finite systems, such as atoms and
molecules, the situation is less controversial, and partially or
fully self-consistent GW methods have shown great prom-
ise.4,10,11,20,31−34,44,57,58

To test the importance of self-consistency one could
compare to benchmark results obtained with high-level
electronic structure calculations. Extensive and elaborate
benchmark sets have been compiled in quantum chemistry
for a long time,59−62 but in the Green-function community,
they are only slowly emerging.14,22,23,63−68 Unfortunately, it is
somewhat difficult to obtain reliable benchmark results for
molecular systems because there are always inherent errors
introduced by the one-electron basis set incompleteness, the
pseudopotentials or additional numerical procedures, such as
Fourier transforms or the resolution of the identity
approximation. In that regard, exactly or very accurately
solvable models have ongoing value and are valuable both for
illuminating the physics of more complicated systems and for
testing theoretical approaches.69−74 Besides, they offer
unparalleled mathematical simplicity, while retaining much of
the key physics.75−78 One such model consists of two electrons,
interacting through the long-range Coulomb potential but
confined to the surface of a sphere, whose radius R can be
tuned to mimic weakly correlated systems (R ≪ 1) or strongly
correlated systems (R ≫ 1).75,79 This paradigm possesses a

number of interesting features, but the one of relevance here is
that, for such a system, it is possible to compute the exact or
near-exact properties of the one-, two- and three-electron
systems. Additionally, one can obtain, like in the Hubbard
model, most of the quantities of interest analytically, and the
electronic interaction is, unlike the Hubbard model, genuinely
long-range. Therefore, the “two-electrons-on-a-sphere”
modeldubbed “spherium” in the remaining of the paper
can be seen as a unique theoretical laboratory to test the
performances of the different GW variants.
The spherium model has already been considered by

Schindlmayr80 within the simple G0W0 method. In particular,
he reported analytical expressions for various quantities, such as
the independent-particle Green function, the dynamically
screened Coulomb interaction and the self-energy. He also
studied the accuracy of G0W0 for the prediction of the
HOMO−LUMO energy gap for various R values and provided
a detailed analysis of the convergence behavior of the energy
gap with respect to the size of the one-electron basis set.
Here, we propose to extend the analysis of Schindlmayr80 to

unveil some interesting properties of self-consistent GW
methods. In particular, we compare G0W0, partially self-
consistent GW and second-order Green function (GF2)
methods for a wide range of properties including ionization
potentials, electron affinities, energy gaps, correlation energies,
as well as singlet and triplet neutral excitations, by solving the
Bethe−Salpeter equation (BSE). We also study a perturbative
and self-consistent version of a second-order screened exchange
correction (SOSEX) to the GW self-energy, labeled as GW
+SOSEX. We focus here on self-consistent schemes that are
widely used and available, for example, through the software
packages mentioned above. For this reason fully self-consistent
GW is beyond the scope of this work. Finally, we note that
spherium represents a challenging test for GW because of the
small amount of screening in two-electron systems.
The paper is organized as follows: In section 2, we briefly

review the GW equations for spherium. Section 3 provides
details about our perturbative and self-consistent GW
implementations, and gives the expression of the self-energy
for GF2 and GW+SOSEX. We also report the expression of the
BSE singlet/triplet excitations and various energy functionals.
Results are reported and discussed in section 4. Finally, we
draw our conclusions in section 5. Atomic units are used
throughout.

2. TWO ELECTRONS ON A SPHERE

In this section, we briefly review the GW equations for the
spherium model, which consists of two opposite-spin electrons
restricted to remain on the surface of a sphere of radius
R.75−79,81−88 The Hamiltonian of the system is simply

̂ = −
∇ + ∇

+H
r2
11

2
2
2

12 (3)

where

θ
θ

θ θ ϕ
∇ = ∂

∂
+ ∂

∂
+ ∂

∂

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R

1
cot

1
sini

i
i

i i i

2
2

2

2 2

2

2
(4)

is the angular part of the Laplace operator for electron i and r12
= |r1 − r2| is the distance between the two electrons i.e., the
electrons interact Coulombically through the sphere. Note that
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we eschew the introduction of a positively charged background,
which is equivalent to a trivial energy shift.
The Hartree−Fock (HF) orbitals of spherium are the

normalized spherical harmonics θ ϕY R( , )/m , where
≤ ≤ L0 , − ≤ ≤ +m , L is the maximum angular

momentum of the one-electron basis set, and (θ,ϕ) are the
polar and azimuthal angles, respectively. We will use this
convenient, orthogonal and complete basis set to represent the
various quantities associated with GW methods. Moreover,
because we focus our attention on the totally symmetric singlet
ground state, all the quantities of interest are independent of m.
Therefore, from here on, we drop the m dependence.75 A
crucial point here is that, as shown by Schindlmayr,80 all the
quantities reported in this section have a diagonal representa-
tion, that is, only their diagonal elements are nonzero. As we
shall see below, this yields important simplifications in the GW
equations and their implementation.
The HF orbital energies are given by

ϵ = + + + Σ
R R

( 1)
2

2HF
2

x

(5)

where the exchange part of the self-energy is

Σ = −
+ R
1

(2 1)
x

(6)

Within the single-determinant approximation, in its singlet
ground state, the lowest s-type spherical harmonic Y00(θ,ϕ) is
doubly occupied and the electron density is uniform over the
sphere83

ρ θ ϕ
π

= | | =Y R
R

2 ( , )/
1

200
2

2 (7)

All the GW calculations reported in this study have been
performed with a HF starting point.
As derived by Schindlmayr,80 the independent-particle Green

function is

ω
δ

ω η
δ

ω η
=

− ϵ −
+

−
− ϵ +

G
i i

( )
10 0

(8)

(where η is a positive infinitesimal and δ
1 2

is the Kronecker
delta9) and the polarizability function reads

ω
δ

π ω η ω η
=

−
− Δϵ +

−
+ Δϵ −

⎛
⎝⎜

⎞
⎠⎟P

R i i
( )

1
2

1 10
2

(9)

with

Δϵ = ϵ − ϵ0 (10)

Defining

ω ω= +W v W( ) ( )c
(11)

with

π=
+

v R
4

2 1 (12)

the correlation part of the dynamically screened Coulomb
interaction is

ω
δ
π ω η ω η

=
− Δϵ

Ω − Ω +
−

+ Ω −

⎛
⎝⎜

⎞
⎠⎟W

v
R i i

( )
(1 )

2
1 1c 0

2

(13)

where

Ω = Δϵ Δϵ − Σ( 4 )x
(14)

are the (singlet) random phase approximation (RPA) excitation
energies. Defining, respectively, the bare and screened two-
electron integrals as

=
⎛
⎝⎜

⎞
⎠⎟R

v

v
( )

1
0 0 0

1 2
1 22

1 (15a)

=
Δϵ
Ω

[ ] ( )1 2 1 2
2

2 (15b)

this yields

∑

ω
δ

ω η

ω η

Σ =
−

− ϵ + Ω −

+
− ϵ − Ω +=

i

i

( )
2(1 )[0 ]

2[ ]L

GW 0
2

0

, 1

1 2
2

1 2 1 2 (16)

for the correlation part of the GW self-energy, where

∫ ∫

π

θ ϕ θ ϕ θ ϕ θ θ ϕ

=
+ + +

×

ϒ ϒ ϒ
π π

⎛
⎝⎜

⎞
⎠⎟0 0 0

4
(2 1)(2 1)(2 1)

( , ) ( , ) ( , )sin d d

1 2
2

1 2

0

2

0
0 0 01 2

(17)

defines the Wigner 3j symbol.9 More details about the
derivation of all these quantities can be found in ref 80.

3. GREEN FUNCTION METHODS
3.1. G0W0. In G0W0, one only updates once the orbital

energies, which are obtained by solving a linearized (static)
version of the quasiparticle equation35,36

ϵ = ϵ + ϵ Σ ϵZ Re( ) [ ( )]G W HF HF GW HF0 0 (18)

where ϵHF and ΣGW are given by eqs 5 and 16, respectively, and
the renormalization factor

ω
ω

ω
= −

∂ Σ
∂

−⎡
⎣⎢

⎤
⎦⎥Z

Re
( ) 1

[ ( )]GW 1

(19)

specifies the weight of the quasiparticle energy in the spectral
function

ω π ω= | |−S Im G( ) [ ( )]1
(20)

3.2. Self-Consistent GW. As mentioned in section 1, the
major drawback of G0W0 is its starting point dependency. One
way of getting rid of this shortcoming is to iterate the GW
quantities until self-consistency has been reached. The
important point here is that, thanks to the diagonal nature of
all the GW quantities (see section 2), their expressions are valid
(within the quasiparticle approximation), not only at the zeroth
iteration, but at any stage of the self-consistent iterative scheme.
There exists two main types of partially self-consistent GW

methods: (i) in “eigenvalue-only quasiparticle” GW
(evGW),10,11,36,89 the quasiparticle energies are updated at
each iteration; (ii) in “quasiparticle self-consistent” GW
(qsGW),57,90−92 one updates both the quasiparticle energies
and the corresponding orbitals. Note that a starting point
dependency remains in evGW as the orbitals are not self-
consistently optimized in that case. However, in the present
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model, thanks to the diagonal nature of the various
intermediates, the orbitals do not mix from one iteration to
another, and the only “updatable” quantities are the
quasiparticle energies. Consequently, the partially self-consis-
tent GW schemes evGW and qsGW are strictly equivalent.
Hence, we will not be making any distinction between them
and label them as GW in the following.
A pseudocode of the self-consistent GW algorithm is

reported in Figure 2. In the present implementation, at the
nth iteration, the GW quasiparticle orbital energies ϵG Wn n are
determined by solving the nonlinear, frequency-dependent
quasiparticle equation

ω ω= ϵ + ΣRe[ ( )]HF GW
(21)

Note that ΣGW is built with the orbital energy differences, Δϵ
and RPA excitation energies, Ω computed with the orbital
energies from the previous iteration, that is, ϵGn−1Wn−1. The self-
consistent process is carried on until the convergence criterion

τ|ϵ − ϵ | <− −max G W G Wn n n n1 1 (22)

is met (where τ is a user-defined threshold).
The various solutions of the quasiparticle eq 21, ω s, , have

different meanings. For each value, in addition to the principal
quasiparticle energy ϵ ≡ ϵ,0 , there is a finite number of

satellites resonances N sat at frequencies ϵ s, (s > 0) stemming
from the poles of the self-energy. One can show that the two
sum rules93

∑ ∑ϵ = ϵ ϵ = ϵ
= =

N
Z

N
Z( ) 1, ( )

s
s

s
s s

0

sat

,
0

sat

, ,
HF

(23)

are fulfilled where ωZ ( ) is given by eq 19.
In a weakly or moderately correlated regime, one can clearly

distinguish dominant quasiparticle peaks from satellites,
whereas this scenario can break down in the strongly correlated
regime. However, as we shall see below, this is not always the
case. In the present quasiparticle GW scheme, one only updates
the quasiparticle energies, and the satellite resonances are
discarded. Hence, the quasiparticle weights are reset to one at
each iteration.
3.3. GF2. Diagrammatically, the difference between GW and

GF2 is simple to explain: while GW takes into account all the
direct ring diagrams, GF2 only includes the two (direct and
exchange) second-order diagrams.6,94,95 Therefore, GF2 does
not take into account the screening of the Coulomb interaction.

This is illustrated in Figure 3 in terms of Feynman diagrams.
Note that GF2 is also known as the second Born

approximation.96 Like in GW, the correlation part of the GF2
self-energy has a diagonal representation

∑

ω
δ

ω η

ω η

Σ =
−

− ϵ + Δϵ −

+
−

− ϵ − Δϵ +=

i

i

( )
(1 )(0 )

2( ) ( )( )L

GF2 0
2

0

, 1

1 2
2

1 2 2 1

1 2 1 2 (24)

Similarly to G0W0, we consider a one-shot, perturbative GF2
procedure. For sake of consistency, we will label these
calculations as G0F2. The G0F2 quasiparticle orbital energies
ϵG F20 are given by eq 18 where one replaces ΣGW by ΣGF2, with
a similar substitution for the renormalization factor reported in
eq 19. We also consider a self-consistent version. The self-
consistent procedure for GF2 is similar to the self-consistent
GW scheme detailed in Figure 2, except that one substitutes the
GW self-energy (16) by its GF2 counterpart given by eq 24.
From here on, we will label these self-consistent calculations as
GF2.

3.4. GW+SOSEX. To combine the best of both worlds, we
propose to study a combination of GW and GF2, which is
equivalent to the GW+SOSEX method recently introduced by
Ren et al.97 GW+SOSEX is a well-defined diagrammatic

Figure 2. Pseudocode for self-consistent GW calculations. τ is a user-defined threshold.

Figure 3. Diagrammatic representation of the correlation part of the
GW, GF2, and GW+SOSEX self-energies. Arrowed solid black lines,
dashed blue lines, and wiggly red lines indicate the one-body Green
function G, the bare Coulomb interaction v, and dynamically screened
Coulomb interaction W, respectively. In perturbative or self-consistent
calculations, the propagator G is bared or dressed, respectively.
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method which adds, like in the SOSEX version of RPA, a subset
of higher-order exchange-type diagrams to the formally infinite
number of direct ring diagrams from GW (see Figure 3).98

Unlike Ren et al.,97 we test both the one-shot version, labeled
G0W0+SOSEX, as well as its self-consistent version GW
+SOSEX. The correlation part of the GW+SOSEX self-energy
is given by

∑

ω
δ

ω η

ω η

Σ =
−

− ϵ + Ω −

+
−

− ϵ − Ω +

+

=

i

i

( )
(1 )[0 ]

2[ ] [ ][ ]L

GW SOSEX 0
2

0

, 1

1 2
2

1 2 2 1

1 2 1 2 (25)

which corresponds to the GF2 expression 24, where one has
substituted the bare two-electron integrals (eq 15a) by their
screened version (eq 15b) stemming from the GW self-energy
expression 16. As we shall see later on, the main advantage of
this hybrid method is to partially remove self-screening which
hampers the accuracy of the GW method, in particular for few-
electron systems.99−101 Again, the implementation of GW
+SOSEX follows closely the algorithm detailed in Figure 2,
except that one replaces the GW self-energy (eq 16) by its
SOSEX-corrected version given by eq 25.
3.5. Bethe−Salpeter Equation. From the first-order

variation of G with respect to a general nonlocal external
potential, one can get the neutral excitations of the system. This
corresponds to solving the Bethe−Salpeter equation (BSE).102

Here, we use the BSE within the GW approximation (BSE@
GW)4,103 to study the singlet and triplet neutral excitations of
spherium. Note that the BSE calculations are performed as a
post-GW step (see Figure 2). We compare BSE with two
common quantum chemistry methods: configuration inter-
action singles (CIS) and time-dependent HF (TDHF). We
refer the interested readers to the review of Dreuw and Head-
Gordon for more details about these conventional methods.104

Thanks to the unique feature of the present model, the linear
response eigenvalue problem has a diagonal structure. It implies
that the eigenvalues and eigenvectors can be trivially obtained,
and the singlet and triplet excitation energies can be easily
written in closed form for all the methods mentioned above.
Their expressions are gathered in Table 1.
To compute the BSE excitation energies for the singlet and

triplet manifolds, one must solve the following linear response
problem105

= Ω
−

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠

A B
B A

X
Y

X
Y

1 0
0 1 (26)

which is usually transformed (when the orbitals do not exhibit
triplet instabilities105) into an eigenvalue problem of smaller
dimension

− + − = ΩA B A B A B Z Z( ) ( )( )1/2 1/2 2
(27)

where the excitation amplitudes are

+ = Ω −−X Y A B Z( )1/2 1/2
(28)

The only difference between CIS, TDHF, RPA, and BSE lies
in the specific expression of the matrix elements of A and B. As
mentioned above, in the present case, the matrices A and B
have a diagonal structure, and the BSE diagonal elements are
given by

δ δ= + = +A A A B B B,BSE RPA BSE BSE RPA BSE
(29)

where the RPA part is

δ δ= Δϵ − − Σ = − − Σσσ σσ′ ′A B2(1 ) , 2(1 )RPA x RPA x

(30)

and the BSE correction reads

δ δ= Σ = Σ −
Σ
+

A B
A B

,
4( )BSE

0
x BSE x

x 2

RPA RPA
(31)

with

δ
σ σ

σ σ
=

≠ ′

= ′σσ′ ⎪

⎪⎧⎨
⎩

0, (singlet manifold)

1, (triplet manifold) (32)

Therefore, substituting eq 30 into eq 27 yields the BSE
excitation energy

Ω = − +A B A B( )( )BSE BSE BSE BSE BSE
(33)

Their explicit expression for the singlet and triplet manifold
are provided in Table 1. The CIS, TDHF, and RPA excitations
energies can be obtained via the same derivation and their
expressions are also reported in Table 1.

3.6. Correlation Energy. The correlation energy is defined
as

= −E E Ec HF (34)

where E is a total energy estimate provided by a given
correlated method and EHF = 1/R is the (restricted) HF energy
of the singlet ground-state of spherium.75

We followed two distinct routes to estimate the correlation
energy within GW. First, we estimated the correlation energy
within the RPA15,106−108

Table 1. Expression of the th Singlet Excitation Energy Ω1 and the th Triplet Excitation Energy Ω3 for Various Methodsa

method singlet excitation energies Ω1 triplet excitation energies Ω3

CIS Δϵ − Σ + Σ2HF x
0
x Δϵ + ΣHF

0
x

TDHF Δϵ − Σ + Σ Δϵ − Σ + Σ( )( 3 )HF x
0
x HF x

0
x Δϵ − Σ + Σ Δϵ + Σ + Σ( )( )HF x

0
x HF x

0
x

RPA Δϵ Δϵ − Σ( 4 )x Δϵ

BSE Δϵ − Σ + Σ −
Σ

Δϵ − Σ
Δϵ − Σ + Σ +

Σ
Δϵ − Σ

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

4( )
4

3
4( )

4
x

0
x

x 2

x
x

0
x

x 2

x Δϵ − Σ + Σ −
Σ

Δϵ
Δϵ + Σ + Σ +

Σ
Δϵ

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

4( ) 4( )x
0
x

x 2
x

0
x

x 2

aThe lowest excitation corresponds to = 1.
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∑= − − Ω
=

E A( )
L

c
RPA

1

RPA

(35)

where the A RPA and Ω values are given by eqs 30 and 14,
respectively. We note that eq 35 can be obtained from the
variational Klein functional109 if the GW approximation is used
for the Luttinger−Ward (or Φ) functional.110

The second route we followed was to calculate the
functional34,46

∫∑ ω
π

ω ω= − Σ ωη

=

∞

E
i

G e
2

d
2

( ) ( ) i
c
GM

0

c

(36)

This equation is equivalent to the correlation part of the
Galitskii−Migdal (GM) functional111 for the total energy if the
self-energy and the Green function are connected through the
Dyson equation. For this reasons, we will refer to the above
expression as the GM functional for the correlation energy. In
our case, the frequency integration in eq 36 can be performed
analytically. We obtain

∑= − +
Δϵ + Ω=

E 2
[0 ] [ 0]L

c
GM@GW

1

2 2

(37a)

∑= − +
Δϵ + Δϵ=

E
(0 ) ( 0)L

c
GM@GF2

1

2 2

(37b)

∑= − +
Δϵ + Ω

+

=

E
[0 ] [ 0]L

c
GM@GW SOSEX

1

2 2

(37c)

where the denominator of eq 37b has been written in such a
way to highlight its similarity with eqs 37a and 37c.
As ev idenced by eqs 37a and 37c , we have

=+E Ec
GM@GW SOSEX 1

2 c
GM@GW . As discussed in the next section

this is related to the self-screening problem of GW. Note that
the correlation energy provided by the RPA and the GM
functional within the GW approximation are equal only at full
self-consistency.32−34 Since we only consider partially self-
consistent GW schemes here, the two energy estimates will
differ.41

For comparison purposes, we have also computed the
second-order Møller−Plesset (MP2) correlation energy,112

which reads

∑= −
Δϵ + Δϵ=

E
(0 )

c

L
MP2

1

2

(38)

It is interesting to note the similarity between the MP2
expression (eq 38) and the GM expressions reported in eqs
37a, 37b, and 37c.

4. RESULTS
4.1. Computational Details. In practice, one only requires

the energy of the main quasiparticle peaks at each iteration (i.e.,
the satellites can be discarded). For each value, the
quasiparticle energy is found by solving the quasiparticle
equation (see, for example, eq 21) using Newton’s method (as
implemented in Mathematica 11) starting from the result of the
previous iteration. To avoid finite-size basis set effects, the
maximum angular momentum of the basis set has been set to L
= 50, which ensures converged results with respect to the basis
set size up to R = 10, the largest radius considered here.

However, we only update the eigenvalues for ≤ ≤0 10,
which corresponds to the HOMO =( 0), the LUMO =( 1),
and the next nine unoccupied orbitals. As mentioned earlier, all
the calculations have been performed with a (restricted) HF
starting point.75 For the self-consistent GW calculations, the
convergence threshold has been set to τ = 10−5. In case of
convergence issues, instead of the usual linear mixing
performed in standard implementations,29,33 we have found
that the DIIS extrapolation technique originally proposed by
Pulay113,114 is more robust and rather efficient.
The quantities labeled as “exact” have been obtained from

near-exact calculations computed with the full configuration
interaction (FCI) method.75 In particular, to obtain the exact
ionization potential, electron affinity and gap of the two-
electron system, we have computed the exact ground-state total
energies of the one-, two-, and three-electron systems for
various R values, as well as the singlet and triplet excitation
energies of the two-electron system. For some well-defined
values of R (such as =R 3 /2 or 7 ), exact wave functions
and energies are available in the case of the two-electron
system.76,84 Finally, we note that we have verified that the sum
rules in eq 23 are satisfied in our calculations.

4.2. Ionization Potential, Electron Affinity, and Energy
Gap. The ionization potential (IP) and electron affinity (EA)
are defined as112

= −ϵ = −ϵIP , EAHOMO LUMO (39)

where ϵHOMO and ϵLUMO are the HOMO =( 0) and LUMO
=( 1) orbital energies, respectively, while the energy gap is

= ϵ − ϵ = −E IP EAgap LUMO HOMO (40)

These results are shown in Figure 4, where we have reported
the relative error (in %) on IP, EA, and Egap as a function of R
for various methods from the weakly correlated regime (R ≪
1) to the strongly correlated regime (R ≫ 1). (The associated
numerical results can be found in Tables I−III in the
Supporting Information.)
The first striking observation is the quality of G0F2 (solid

blue curve in Figure 4), which yields accurate results up to R ≈
2, a regime in which the system can certainly be considered as
weakly correlated. Indeed, for two-electron systems, GF2 is
known to be particularly accurate.115−117 However, within GF2
and GW, the effect of self-consistency is disappointing. For
example, the perturbative G0W0 version (solid red curve) yields
more accurate estimates than its self-consistent counterpart
(dashed red curve). Similar observations can be made for GF2
(blue lines) although the self-consistency starts deteriorating
the results at larger R.
G0W0 and GW are particularly bad at reproducing the

ionization energies, even in the high-density (i.e., small-R) limit.
The electron affinities are better reproduced, while Egap benefits
from error cancellations (at least for small R). This indicates
that the poor performance of GW for the IP is mainly due to
self-screening, that is, the hole that is left behind after ionization
is not just screened by the electron that remains but also by the
electron that is removed.73,99,101,118 This is clearly not physical
and happens only for the IP; for the EA, the additional electron
is correctly screened by both electrons.
Indeed, GW+SOSEX (dashed green line), which is mostly

self-screening-free, does a decent job for the IP, although it still
overestimates at large R. The SOSEX correction significantly
improves the EA, but Egap is slightly less accurate for
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intermediate R values. This behavior is consistent with the
findings of Knight et al.66 In the case of GW+SOSEX, the effect
of self-consistency is also disappointing and, except for the IP,
deteriorates the results compared to the perturbative version.
Finally, we note that discontinuities appear around R = 1 and

2 in the case of GW and GF2, respectively. We will discuss this
in more detail in section 4.5.
4.3. Neutral Excitations. Figure 5 shows the relative error

(in %) for the lowest singlet (left) and triplet (right) excitation
energies (i.e., = 1) as a function of R for various methods.
(The associated numerical results can be found in Tables IV
and V in the Supporting Information.) Because for R > 3/2
triplet instabilities appear due to the existence of a lower-energy
(symmetry-broken) HF solution,75 we restrict our study to the
high-density region 0 < R ≤ 3/2.

Because the GW eigenvalues are not significantly modified by
the level of self-consistency in the high-density region (as one
can see from Figure 4), we have chosen not to report the G0W0
curves which are very similar (yet not strictly identical) to the
self-consistent GW ones depicted in Figure 5. In other words,
the BSE excitations do not depend strongly on the input GW
eigenvalues.
Concerning the singlet manifold (left graph of Figure 5),

TDHF is the most reliable method. Although BSE@GW
appears as the least accurate method, it yields singlet excitation
energies within a few percents of the FCI results. BSE@GW
+SOSEX shows significant improvement compared to the
SOSEX-free methods. Again, one can notice the discontinuity
around R = 1 in the BSE@GW curve (see below).
For the triplet manifold (right graph of Figure 5), BSE@GW

outperforms more conventional methods, such as CIS and
TDHF as well as BSE@GW+SOSEX and BSE@GF2. Note,
however, that the magnitude of the errors for the triplet
excitations are much larger than for the singlet ones. This
behavior is also observed in molecular systems58 because of the
inadequate singlet reference wave function used in most
cases.105

4.4. Correlation Energy. Concerning the correlation
energy of spherium, the results are represented in Figure 6.
(The associated numerical results can be found in Table VI in
the Supporting Information.)
MP2 (see eq 38) provides a fairly consistent and reliable

estimate of the correlation energy in the weakly correlated
regime, although the relative error increases slightly when one
gets to the strongly correlated regime where Møller−Plesset
perturbation theory naturally breaks down.112

First, let us mention that, in the weakly correlated regime, as
expected, the correlation energies obtained with perturbative
and self-consistent methods are very similar. This has also been
observed for atoms and molecules.41,42,107,119−123 However, the
situation is different in the strongly correlated regime and, for R
> 2, the perturbative and its self-consistent variant start to
deviate.
Because of its relation to the variational Klein functional,

Ec
RPA is also independent of the approximation to the self-

energy up to R ≈ 2. Interestingly, even in the large-R regime,
the RPA yields decent Ec estimates with a maximum error of
∼20%.
Unlike Ec

RPA, the GM functional (known to be nonvaria-
tional) is strongly dependent on the quality of G, and generally
yields too negative correlation energies, an observation already
made by several authors for the uniform electron gas,47−49

solids,53,54 atoms and molecules.32−34,41 The self-screening in
GW has a huge effect on Ec

GM. For example, GM@GW is
consistently wrong by about a factor two. When one improves
the Green function, for instance by the introduction of second-
order exchange, Ec

GM gets closer to the values obtained with
Ec
RPA. In particular, GM@SOSEX, which removes most of the

self-screening in GW, greatly improves the correlation energy,
and even becomes more accurate than MP2 at large R.
For the correlation energies the influence of self-consistency

is ambiguous. While self-consistency improves the correlation
energies in the case of Ec

RPA, they deteriorate for Ec
GM.

4.5. Binary System. As mentioned several times earlier in
this manuscript, there is an obvious discontinuity in Figures
4−6) around R ≈ 0.9. Note that this “glitch” is only present in
self-consistent calculations and is more pronounced in the
SOSEX-free GW version. Note also that its magnitude is small

Figure 4. Relative error (in %) on IP (top), Egap (middle), and EA
(bottom) as a function of R for various schemes. See the Supporting
Information for raw data.
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(yet numerically significant) and one would hardly notice it by
looking at absolute energies. From a technical point of view, the
left and right sides of the discontinuity originate from two
distinct solutions of the quasiparticle equation. We note that
this problem is different from the unphysical solutions
discussed in ref 72.
Our analysis has shown that this discontinuity is caused by

the proximity of the quasiparticle peak of the LUMO+1 orbital
(at ϵ2 ≡ ϵ2,0 ≈ 4.3) and a singularity of Σ2

GW (at ϵ1 + Ω1 ≈ 4.8).
This is illustrated in Figure 7 for a sphere of unit radius.
Because of the local symmetry of ΣGW at the vicinity of a
singularity, it implies the existence of a satellite resonance (at
ϵ2,1 ≈ 5.2) having a weight Z2(ϵ2,1) of similar magnitude as the
main quasiparticle peak Z2(ϵ2,0). In that case, one cannot really
talk about a quasiparticle peak and its satellite. It would be
more appropriate to describe this peculiar situation as a binary
system where both resonances have similar weights. Figure 7
clearly shows the presence of two large-weight peaks for the
LUMO+1 (thick cyan curve). For these two peaks, we have
reported, in the inset graph of Figure 7, ϵZ ( )l s, as a function of
R. We see that, outside the range 1/2 ≤ R ≤ 3/2, one
resonance prevails over the other. However, for R ≈ 1 the
weight of the two resonances become similar and they cross
around R ≈ 0.85. Therefore, depending on the value of R, the

self-consistent process selects one or the other solution
depending on their relative weights. This ultimately leads to a
discontinuity in the self-consistent result for the quasiparticle
energies.
Although a similar issue has been observed in G0W0 by van

Setten and co-workers,22,63 to be best of our knowledge, this
type of observation has never been reported in the literature for
self-consistent GW schemes. Note that all this happens in the
weakly correlated regime, where one should safely assume the
validity of the quasiparticle picture. We believe that such
discontinuity would not exist within a fully self-consistent
scheme where one takes into account the quasiparticle peak, as
well as its satellites at each iteration. If confirmed, this would be
a strong argument in favor of fully self-consistent schemes.
Finally, we note that these discontinuities are ubiquitous: they
also appear for higher-energy orbitals and for larger radii. We
are currently analyzing the cause of such discontinuities in more
details.

5. CONCLUSION
We have provided an exhaustive study of the performance of
different commonly used variants of Green function methods
for the two-electron spherium model. We found that, in
general, self-consistency deteriorates the results with respect to
those obtained within perturbative GW starting from Hartree−

Figure 5. Relative error (in %) on the lowest singlet excitation 1Ω1 (left) and the lowest triplet excitation 3Ω1 (right) as a function of R for various
schemes. Note the different scales of the two graphs. See the Supporting Information for raw data.

Figure 6. Relative error (in %) on the correlation energy Ec as a function of R for various schemes. See the Supporting Information for raw data.
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Fock orbital energies. This is the case for many properties of
interest, such as ionization potentials, electron affinities, and
energy gaps. Only for RPA correlation energies do we observe a
small improvement when doing the calculations self-consis-
tently. We showed that the same is true for GF2, that is, self-
consistent GF2 results are, in general, worse than those
obtained perturbatively. We have also discussed the problem of
self-screening in GW and showed that it can be partially cured
by adding a second-order screened exchange (SOSEX)
correction. We observe that this correction generally improves
results. However, here again, self-consistency is disappointing.
Finally, we have evidenced that partially self-consistent GW can
lead to artificial discontinuities in the self-energy. We traced this
problem back to the appearance of a satellite resonance with a
weight similar to that of the quasiparticle.
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