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Abstract: Among all the Quantum Mechanics/Molecular Mechanics (QM/MM) methods available
to describe large molecular systems, the Local Self-Consistent Field/MM (LSCF/MM) one uses
frozen doubly occupied Strictly Localized Bonding Orbital (SLBO) to connect the QM fragment
to the one treated at the MM level. This approach is correct as long as the QM part is large
enough to minimize the artifacts that could arise because of the fixed SLBO. If one wants to
decrease the size of the QM subsystem, one clearly needs to help the SLBO to relax according
to the variations of the global wave function. Also, the SLBO have to adjust itself according to
the modification of the surrounding if we want to improve the method. Here, we present a
modification of the original LSCF method called Optimized LSCF (OLSCF) where each SLBO
is allowed to mix with its corresponding Strictly Localized Anti Bonding Orbital (SLABO) resulting
in an adjustment of the two-electron bond described by a self-consistent SLBO (SCSLBO). We
test the new methodology against the modification of the QM part (internal perturbation) and
against the variation of the surroundings (external perturbation) represented either by a dielectric
continuum or by a classical point charge. In each case the initial SLBO is the symmetric C-C
SLBO of the ethane molecule. It is shown that the optimized SCSLBO presents a final polarity
in perfect agreement with what could be expected as the result of a reaction to the internal or
external perturbation.

1. Introduction
During the past decade, the interest of theoreticians for
macromolecular systems, or more globally large systems, has
grown enormously. This is a direct consequence of the
tremendous improvement of computers, both from the storage
(memory and/or hard drive) and the CPU points of view.
However, one has to bear in mind that studying chemical
reactions in such systems (i.e. locating transition states) is
still out of reach for the casual methods of quantum
chemistry, despite the computer enhancement. To be able
to treat such large molecular systems, the community of
quantum chemists has developed new methods that combine
different levels of theory. The total system is divided in
several parts, each one described at a given level of theory.
The levels of theory are chosen such that, for each part, the

most important physical phenomenon is correctly handled.
Various schemes (combinations) are possible. For example,
the part of the macromolecule undergoing the chemical
reaction (generally few atoms) needs to be treated with high
level (for example, correlated ab initio) techniques. This is
called Quantum Mechanics (QM) level. The neighboring
region, larger than the QM one, where consecutive reactions
can take placesfor example proton transfer rearrangement
like in the bacteriorhodopsin moleculescan be described
with a less time demanding method, typically a semiempirical
one. Let us call this level QM′ to avoid confusion with the
former QM level. The remaining atoms of the macro-
molecule, which play a nontrivial and nonisotropic role by
means of electrostatic and mechanic interactions, are often
handled with Molecular Mechanics (MM) force fields.
Finally the surrounding solvent can be included explicitly
via a classical force field (MM′) or implicitly using a* Corresponding author e-mail: Xavier.Assfeld@cbt.uhp-nancy.fr.
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polarizable continuum (Self-Consistent Reaction Field, SCRF).
The combination of these four levels of theory gives rise to
a QM/QM′/MM:MM′ or QM/QM′/MM:SCRF method, if
one uses the “/” symbol to represent the separation between
two parts connected by a chemical bond and the “:” character
when no chemical bond connects the two parts. One could
of course think of more complicated combinations, but the
most widely known and used schemes of hybrid method are
certainly the QM/MM and the QM:MM ones.1

Let us focus our attention on the methods that need the
“/”, i.e. when covalent chemical bonds are formally cut to
divide the system. Many solutions have been proposed and
applied to circumvent the so-called dangling bond problem.2-13
If used carefully each scheme will correctly handle the
connection between the two parts. We refer the interested
reader to a recent review for further details.14 In this article
we will restrain our discussion on the Local Self-Consistent
Field combined with MM (LSCF/MM)15-18 way to treat such
connection.
The connecting bond is described by a frozen doubly

occupied Strictly Localized Bonding Orbital (SLBO). By
frozen we mean that the expansion coefficients of the basis
functions in the SLBO are kept constant during the wave
function optimization (during the Self-Consistent Field (SCF)
procedure). Trivially the SLBO is readjusted by rotation and
renormalization if the geometry is changed during either a
geometry optimization or a molecular dynamics step. Thanks
to the transferability principle, the SLBO is generally
obtained from a preliminary calculation on a small model
molecule that possesses the chemical bond of interest.
Freezing the SLBO implies that it is the same whatever the
state of the QM part is. This can only be correct if the size
of the QM part is large enough to reduce the interaction
between the frozen SLBO and the global wave function to
something negligible. It is a severe limitation if one is willing
to perform reactive dynamic calculations, since the required
CPU time will be enormous and unreachable with normal
computer equipment. The corollary is that to have the size
of the QM part reduced, it is necessary that the SLBO can
relax somehow. In order to keep the QM size as small as
possible we propose a modification of the LSCF methods
based on quantum mechanics only (not of the hybrid LSCF/
MM method yet)scalled Optimized LSCF (OLSCF), in
which the SLBOs can readjust themselves according to the
variation of the global wave function (called internal
perturbation) and to the variation of the surroundings (called
external perturbation). The LSCF method needs SLBO, the
OLSCF one produces Self-Consistent SLBO (SCSLBO).
This paper is organized as follows. Section 2 deals with

the general principle of the method. The basic equations of
the OLSCF method are established in section 3. Finally, some
illustrative calculations are gathered in section 4 and
discussed in the fifth section. Our aim is to prove that the
OLSCF method is able to correctly represent the polarity
variation of the SCSLBO when the surroundings change and
that these changes are consistent with the general chemical
sense, before adapting the new methodology to the QM/MM
framework.

2. Principle
The LSCF method allows the optimization of a wave function
at the Hartree-Fock level, or equivalently at the Kohn-
Sham level in the Density Functional Theory (DFT) frame-
work, knowing that some predefined (spin-)orbitals must
remain unchanged. The predefined orbitals can be of any
shape and occupied or not. Any post-HF method can follow
the LSCF optimization. All orbitals are orthogonal.
Our aim is to allow SLBOs, expanded on the basis

functions of the two atoms defining the bond, to remain
strictly localized but to have some degrees of freedom to
adjust themselves according to the surroundings. We decide
to mix the doubly occupied SLBO to its corresponding empty
Strictly Localized Anti-Bonding Orbital (SLABO). Hence,
each connecting bond will be described with a doubly
occupied SCSLBO that is a linear combination of the initial
SLBO and SLABO, i.e. we give one electronic degree of
freedom to the bond. To avoid the delocalization of the
SCSLBO, we do not mutually orthogonalize the SLBOs nor
the SLABOs. The variational Molecular Orbitals (MO) are
mutually orthogonal and orthogonal to each {SLBO,
SLABO} pair.
The mixing of the SLBO and the SLABO is not new.

Many studies have been performed in the 1980s mainly by
P. Surján,19-24 and even before in the 1960s and 1970s with
the PCILO method of J.-P. Malrieu,25-27 and related
methods.28-31 Here, we are less ambitious since only a few
bonds, those connecting two parts described at different levels
of theory, will be treated like that.

3. Theory
SLBO. Let us consider a closed shell system of 2n electrons
treated with the spin restricted formalism, for simplicity. The
generalization to the unrestricted case is trivial. We use a
set of atom centered basis functions {|φµ〉}µ)1

K . Let say that
L SLBOs {|li〉}i)1

L are considered, with L < K. They are
developed onto the basis functions of the two atoms Xi and
Yi defining the bonds number i.

These SLBOs are obtained from usual localization pro-
cedures32-37 on small model molecules. The strict localization
is attained by zeroing the coefficients of basis functions
belonging to atom different from Xi or Yi, if necessary.38
They can be written in a shorter form introducing

normalized hybrid orbitals (HO)

where hi
Xi is a HO belonging to atom Xi and used in the ith

SLBO li.
SLABO. The corresponding SLABOs, noted {|li

/〉}i)1
L ,

can be obtained with different manners, and we list four of
them below.
(1) They can be obtained the same way SLBOs are created

with the usual localization techniques32-37 applied on the
virtual orbitals of a small model molecule.

|li 〉 ) ∑
µ∈Xi

aµi | φµ 〉 +∑
ν∈Yi

aνi | φν 〉 (1)

|li 〉 ) aXii | hi
Xi 〉 + aYii | hi

Yi 〉 (2)
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(2) However, as the size of the basis set increases, the
number of virtual orbitals increases also, and the convergence
of the localization is more difficult to achieve. In that case
one can just project the SLABO found with a smaller basis
(SB) set on the large basis (LB) set

where Sµν is the overlap integral between the functions φµ

and φν of the large basis set.
(3) SLABOs can also be defined with the elaborate method

proposed by M. Head-Gordon and co-workers.39
(4) Finally, it is also possible to derive the antibonding

orbital directly from the bonding one.20,40 The sign of the
coefficients of the basis functions of one atom is reversed,
and the resulting function is renormalized.

One has to note that for the first three possibilities, the SLBO
and the corresponding SLABO are not developed over the
same hybrid orbitals, whereas the fourth method expands
the SLBO and the SLABO over the same two HOs.
In this article the two first procedures are used since they

are easy to get and because they give more reliable results,
based on preliminary calculations.
MO. To determine the variational MOs we use the same

procedure as the one we developed for the LSCF method
10 years ago.15 The only exception is that the predefined
orbitals (all pairs of SLBO and SLABO) are not orthogonal.
First, we recall the steps followed in the LSCF method:
- Requirement: the MOs are orthogonal to the frozen

orbitals (FOs). Hence, we expand the MO over basis
functions that are already orthogonal to the FOs.
- Basis functions orthogonal to the FOs: each basis

function φµ from the original basis set {|φµ〉}µ)1
K is pro-

jected out of the subspace defined by the FOs. To have a
simple expression of the projection operator, the FOs are
mutually orthogonalized, generally by means of the Löwdin
procedure

where Rµi is the overlap integral between the basis function
φµ and the orthonormalized FO oli, 〈φµ|oli〉.
- Removing the linear dependencies: since L FOs where

predefined, the new set of K basis functions has at least L
linear dependencies. They are removed by means of the
canonical orthogonalization procedure.41 The set of (K - L)
resulting basis functions is exactly what is needed to expand
the MOs.
The only difference with the new OLSCF method is that

to avoid the delocalization of the SLBOs and SLABOs we
keep them strictly localized and thus possibly nonorthogonal.
The projection operator is then modified

with Dij being the overlap integral between the FOs li and lj,
〈li|lj〉, and Tµi is the overlap integral between the basis
function φµ and the FO li, 〈φµ|li〉. One has to note that here
i and j run over the SLBOs and the SLABOs and that li can
be a SLBO or a SLABO. This transformation can be done
with the matrix M whose elements are given by

where δµV is the Kronecker symbol, and Sηµ is the overlap
integral between functions φη and φµ.
This projection is followed by the canonical orthogonal-

ization to remove the 2L linear dependencies. The orthogo-
nalization is performed with a matrix named X. The
conjunction of these two steps lead to the definition of a
matrix, named B ) MX, that transforms the original basis
set of K nonorthogonal functions into a set of (K - 2L)
functions mutually orthogonal and orthogonal to the SLBOs
and SLABOs. This B matrix plays, for the OLSCF method,
exactly the same role the Löwdin matrix (X ) S-1/2) plays
in the SCF procedure.
The other point one has to take care of in the OLSCF (or

LSCF) method is the definition of the density matrix. In the
LSCF method, the density matrix (PL) due to the occupied
frozen orbitals must be added to the one resulting from the
variational MOs (PQ) to give the total density matrix PT )
PL + PQ. Here, thanks to the orthogonality of the MOs
(mutually orthogonal and orthogonal to the strictly localized
orbitals (SLOs)) the total density matrix can also be split
into the two usual components PQ and PL. However, due to
the nonorthogonality of the SLOs the density matrix due to
the occupied predefined orbital requires special attention. One
matrix element of the PL matrix is written as

where ãνj are the expansion coefficients of the dual orbitals
(DOs).24

The DOs {|l̃i〉}i)1
2L are orthogonal to the set of SLO

{|li〉}i)1
2L (〈li | l̃j〉 ) δij), but the two sets are not mutually

orthogonal 〈li |lj〉 ) Dij and 〈l̃i | l̃j〉 ) D̃ij). The SLOs and the
DOs form a biorthogonal basis set.42 Although it is possible
to express the energy and the Roothaan equation as functions
of the initial nonorthogonal orbitals,43 it requires a lot of
modifications of the existing code. However, the DOs

|li
/ 〉LB )∑

µ,ν

LB

| φµ 〉 (S
-1)µν 〈 φν | li

/ 〉SB (3)

|li
/〉 ) Ni

/ (aXii|hi
Xi 〉 - aYii | hi

Yi 〉)

) aXii
/ | hi

Xi 〉 + aYii
/ | hi

Yi〉 (4)

|φ̃µ〉 ) [1 -∑
i

L

Rµi
2]-1/2 [|φµ〉 -∑

i

L

|oli〉〈oli |φµ〉] (5)

|φ̃µ〉 ) [1 -∑
i

2L

∑
j

2L

Tµi (D
-1)ij Tµj]

-1/2 [|φµ〉 -

∑
i

2L

∑
j

2L

| li 〉 (D
-1)ij 〈lj | φµ〉] (6)

Mµν ) [1 -∑
i

2L

∑
j

2L

Tµi (D
-1)ij Tµj]

-1/2

[δµν -∑
i

2L

∑
j

2L

∑
η
aνi (D

-1)ij aηj Sηµ] (7)

Pµn
L ) 2∑

j

L

aµj ãνj (8)

ãνj )∑
i

2L

aνi (D
-1)ij (9)
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propose a very simple form very close to the usual one. With
the definition of the density matrix given above (eq 8) the
Fock matrix elements and the electronic energy can be
obtained with the traditional formula (the nonorthogonality
is hidden in the density matrix)

where we have used the usual notation for the various
integrals. Equation 11 is equivalent to half the trace of the
matrix product (PT(H+F)). At this point we have all the
tools to obtain the MOs.
SCSLBO. For each pair (li, li*) composed of a SLBO and

its corresponding SLABO expanded over the basis functions
of the two atoms defining the connecting bond, we build a
2 × 2 Fock matrix

with

where Fµn comes from eq 10.
This matrix is transformed in a basis where the SLBO is

orthogonal to the SLABO, with either a Löwdin or a Gram-
Schmidt orthogonalization and further diagonalized. The two
eigenvectors correspond to the new SLBO and SLABO that
we call SCSLOs. From these new functions a new density
matrix PL can be formed and new MOs can be sought. The
whole process is conducted until convergence is reached. It
is summarized in the algorithm given below.
Algorithm. We have implemented this method in our

modified version of the package Gaussian 03.44
(1) Determine the SLBOs and SLABOs on model mol-

ecules. Orthogonalize the SLABO to its SLBO, with the
Löwdin or the Gram-Schmidt method.
(2) Orthogonalize the basis functions with respect to all

SLOs, i.e. build the matrix M.
(3) Perform the canonical orthogonalization of the new

basis set with the matrix X.
(4) Get an initial guess of the density matrix.
(5) Build in the Fock matrix F.
(6) Transform F in the orthogonal basis: F ′ ) Bt F B.
(7) Diagonalize F ′: ε ) C ′t F ′ C ′ where ε is the diagonal

(K-2L)×(K-2L) matrix of the eigenvalues.
(8) Backtransfrom in the original basis: C ) B C ′.
(9) Compute the density matrix due to the MOs, PQ.
(10) Diagonalize the 2 × 2 Fock matrix, for each (li, li

/)
pair to get the SCSLOs.
(11) Compute the density matrix due to the SCSLBOs,

PL.

(12) Compute PT ) PQ + PL.
(13) Exit test. If not satisfied go back to step 5.

4. Test Results
In order to show that with our new formalism a given SLBO
can adjust itself with respect to either an internal modification
or to the surroundings variation we perform three series of
calculations.
For the first one, we consider the H3C-CX3 molecules

(X)H, Li, BH2, NH3, OH, F) for which the initial SLBO
and SLABO are determined on the ethane molecule. Two
levels of theory (HF/6-31G* and HF/6-311G**) and two
localization schemes (Boys-Foster,32 BF, and Pipek-Mezey,33
PM) are considered. The polarity (P) of the optimized
SCSLBO is represented as half the electronic population (q)
due to this SCSLBO on the carbon atom connected to the X
substituents (CX) computed with the Mulliken partitioning.45

For comparison, the polarity of the SLBO obtained with
the BF or PM a posteriori criterion on a SCF optimized wave
function is also provided. The geometries were optimized
at the SCF level. The polarities are gathered in Table 1.
The second series is concerned with the influence of the

solvent. The solvent is represented by a polarizable con-
tinuum with the help of the SCRF method developed
previously in our group.46,47 The initial SLBO is determined
on the ethane molecule at the B3LYP/6-311++G** level
of theory with the help of the PM localization scheme and

Table 1. Half Mulliken Electronic Population of the C-C
Bond Orbitals (in Electron) of the Carbon Atom Bonded to
the X Ligand in the CH3CX3 Molecules (i.e. Bond Polarity)c

Pipek-Mezey Boys-Foster

X
HF/

6-31G*
HF/

6-311G**a
HF/

6-311G**b
HF/

6-31G*
HF/

6-311G**b

SCSLBO
H 0.500 0.500 0.500 0.500 0.500
Li 0.479 0.481 0.472 0.490 0.484
BH2 0.521 0.519 0.529 0.504 0.507
CH3 0.529 0.524 0.539 0.509 0.516
NH2 0.559 0.553 0.576 0.524 0.539
OH 0.586 0.581 0.612 0.538 0.560
F 0.592 0.594 0.621 0.545 0.571

SLBO
H 0.500 0.500 0.500 0.500 0.500
Li 0.415 0.460 0.460 0.430 0.475
BH2 0.518 0.544 0.544 0.519 0.548
CH3 0.498 0.529 0.529 0.498 0.529
NH2 0.527 0.580 0.580 0.524 0.575
OH 0.546 0.579 0.579 0.544 0.574
F 0.523 0.559 0.559 0.515 0.553

a SLABO obtained at the HF/6-311G**. b SLABO obtained at the
HF/6-31G* and projected on the 6-311G** basis set. c The SCSLBOs
result from an OLSCF calculation. Their polarities are given in the
upper part of the table. The SLBOs are obtained as usual (see the
Theory section) after a traditional SCF calculation. Their polarities
are given in the lower part of the table.

P )
qCX

2
)∑

µ

∈CX

∑
ν

AO

cµicνiSµν (14)

Fµν ) Hµν
c +∑

λ,σ
Pλσ
T [(µν|λσ) -

1

2
(µσ|λν)] (10)

E )∑
µ,ν

Pµν
T Hµν

c +
1

2∑µ,ν ∑λ,σ
Pµν
T Pλσ

T [(µν|λσ) -
1

2
(µσ|λν)]

(11)

(〈li |F̂| li〉 〈li
/|F̂| li〉

〈li |F̂| li
/〉 〈li

/ |F̂| li
/〉 ) (12)

〈li |F̂| li〉 )∑
µ,ν

aµiaνiFµν (13)
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transferred on the central C-C bond of the &-alanine
molecule in its neutral and zwitterionic forms, H2N-CH2-
CH2-COOH and H3N+-CH2-CH2-COO-, respectively.
Calculations are performed in the gas phase and in solution
at the B3LYP/6-311++G** level of theory. The geometries
are optimized at this same level in solvent phase only and
without frozen orbital. The polarities of the SCSLBO are
given in Table 2. For comparison purposes, pure B3LYP/
6-311++G** calculations are carried out and followed by
a PM localization procedure to obtained SLBOs. The polarity
of the SLBO of the central C-C bond is given in Table 2.
Polarities correspond to half the electronic population, arising
from the SLO, of the carbon atom bearing the NH2 group.
Finally, the effect of a surrounding classical point charge

(q ) +|e|) is studied in the third series, to anticipate QM/
MM calculations. The chosen molecule is ethane. The
starting SLBO comes from a preceding calculation on the
C2H6 molecule at the HF/6-311G** level of theory with the
PM criterion. The point charge is placed on the line defined
by the two carbon atoms. The distance between the point
charge and the nearest carbon atom is varied from 1 to 4 Å.
The polarity of the SCSLBO, represented as half the
electronic population due to this SCSLBO of the C atom
nearest to the point charge, is sketched in Figure 1.

5. Discussion
From the results presented in Table 1, one can readily extract
that the polarity (i.e. half the electronic population, due to

the SCSLBO only, of the carbon atom connected to the X
substituents) increases when the electronegativity of the
substituent increases. This result is in perfect agreement with
the usual “chemical sense” (see Scheme 1). Although not
exactly identical, this trend is the same whatever the level
of theory is (double- or triple-'), whatever the localization
criterion is (BF or PM), and whatever the SLABO is
(projected from double-' or not). However, it seems that the
PM SLOs give a larger polarization than the BF ones.
To have a point of comparison, we run traditional SCF

calculations on all molecules, and we determine the C-C
Localized Molecular Orbital (LMO) for each molecule with
either the PM or the BF criterion at all levels of theory. These
LMOs were further transformed in SLBOs, and their
polarities are given in the second part of Table 1. If one
compares the polarity of the SCSLBO with the one obtained
for the SLBO, one can remark that the values are quite
similar although not identical. The increase of the electronic
population with the increasing electronegativity of the
ligands, for the SLBO, is not as straight as it is for SCSLBO.
For SLBO, the polarity seems to drop down for the CH3
and the F ligand. This is due to the fact that these SLBOs
are obtained by rotation of all the occupied molecular orbitals
of the molecule and thus reflect the global effect of the
ligands on the total wave function. Of course this effect
cannot be fully reproduced by the polarity of just one
function even if it is a SCSLBO. Anyway, we can conclude
that the SCSLBOs correctly show the expected trend and
that they adequately adjust themselves according to the
chemical modification of the molecule.
The values given in Table 2 show that the SCSLBO and

the SLBO are not much modified by the solvent effects for
the neutral form of the &-alanine molecule. The difference
of electronic population between the gas and the solvent
phase is small in both cases. For the zwitterionic molecule,
the electronic polarization induced by the solvent is at least
ten times stronger than for the neutral isomer. We can put
that in parallel with the electrostatic solvation free energy
that is also small for the neutral form, 14.5 kcal‚mol-1,
compared to the one of the zwitterionic form, 59.7 kcal‚mol-1.
The polarization of the SCSLBO is less than the one of the
SLBO, albeit both present the same tendency. Again, this
discrepancy can be attributed to the global character of the
SLBO and to the local nature of the SCSLBO. Anyway, it
is shown that the SCSLBO reacts correctly with respect to
the perturbation of an external electric field (here produced
by the dielectric continuum).
Finally, before the adaptation of the OLSCF scheme to

the QM/MM formalism, we decide to focus our attention to
the action of a classical charge on the polarity of the
SCSLBO. One can see (Figure 1) that the stronger the
interaction, i.e. the shorter the distance between the classical

Table 2. Half Mulliken Electronic Population (in Electron)
of the Carbon Atom Bearing the NH2 Group in the
&-Alanine Molecule (i.e. Bond Polarity), Due to the
SCSLBO and to the SLBO(PM)a

form phase SCSLBO SLBO(PM)

neutral gas 0.495 0.501
solvent 0.495 0.493

∆ +0.0004 -0.0079
zwitterionic gas 0.553 0.637

solvent 0.528 0.552
∆ -0.0246 -0.0854

a ∆ is the difference of polarity between the solvent and the gas
phases.

Figure 1. Half Mulliken electronic population (q, in electron)
of the carbon atom nearest to the classical point charge due
to the SCSLBO (i.e. bond polarity), as a function of the
distance (d, in Å) between the positive point charge and the
nearest carbon atom of the ethane molecule. The point charge
is placed on the line defined by the two carbon atoms.

Scheme 1. Polarization of the C-C SLBO by the
Electronegative Substituents X
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charge and the molecule, the stronger the polarization of the
SCSLBO. That is exactly what could be expected and is
encouraging for the future implementation in a QM/MM
framework.

6. Conclusion
In this first step, we propose a modification of the LSCF
methodsbased on quantum mechanics only (not the LSCF/
MM hybrid method)swhich allows the relaxation of strictly
localized bonding orbitals according to the variation of the
surroundings and/or of the quantum state. The new method
is named Optimized LSCF (OLSCF). For each SLBO, a
SLABO is defined, and the mixing of these two functions
gives the electronic degree of freedom responsible for the
relaxation of the orbital. The new methodology is tested
against the modification of the molecule itself, against the
influence of the surrounding solvent (modeled by means of
a polarizable continuum), and against the presence of a
classical point charge. In all three cases investigated here, it
is shown that the SCSLBOs properly adjust themselves to
the situation. According to these encouraging results, we will
further apply our new technique to the QM/MM formalism
and to the QM/QM′ method in forthcoming papers.

Acknowledgment. P.-F.L. and X.A. are deeply in-
debted to Professor Jean-Louis Rivail for the initial idea
leading to this new development and for many fruitful
discussions.
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(21) Surján, P.; Révész, M.; Mayer, I. J. Chem. Soc., Faraday

Trans. 2 1981, 77, 1129-1131.
(22) Surján, P. J. Mol. Struct. (THEOCHEM) 1988, 169, 95-

104.

(23) Surján, P. Chem. Phys. Lett. 1985, 117, 386-388.
(24) Surján, P. Chem. Phys. Lett. 1982, 92, 483-485.
(25) Diner, S.; Malrieu, J.-P.; Clavery, P. Theor. Chim. Acta 1969,

13, 1-17.

(26) Malrieu, J.-P.; Clavery, P.; Diner, S. Theor. Chim. Acta 1969,
13, 18-45.

(27) Malrieu, J.-P. In Semiempirical methods in electronic
structure calculation; Segal, G. A., Ed.; Plenum: New York,
1977.

(28) Kvasnika, V. Theor. Chim. Acta 1974, 34, 61-65.
(29) Cullen, J. M.; Zerner, M. C. Int. J. Quantum Chem. 1982,

22, 497-535.
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