
Hybrid stochastic-deterministic calculation of the second-order perturbative
contribution of multireference perturbation theory
Yann Garniron, Anthony Scemama, Pierre-François Loos, and Michel Caffarel

Citation: The Journal of Chemical Physics 147, 034101 (2017); doi: 10.1063/1.4992127
View online: http://dx.doi.org/10.1063/1.4992127
View Table of Contents: http://aip.scitation.org/toc/jcp/147/3
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Garniron%2C+Yann
http://aip.scitation.org/author/Scemama%2C+Anthony
http://aip.scitation.org/author/Loos%2C+Pierre-Fran%C3%A7ois
http://aip.scitation.org/author/Caffarel%2C+Michel
/loi/jcp
http://dx.doi.org/10.1063/1.4992127
http://aip.scitation.org/toc/jcp/147/3
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 147, 034101 (2017)

Hybrid stochastic-deterministic calculation of the second-order
perturbative contribution of multireference perturbation theory

Yann Garniron, Anthony Scemama,a) Pierre-François Loos, and Michel Caffarel
Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
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A hybrid stochastic-deterministic approach for computing the second-order perturbative contribution
E(2) within multireference perturbation theory (MRPT) is presented. The idea at the heart of our
hybrid scheme—based on a reformulation of E(2) as a sum of elementary contributions associated
with each determinant of the MR wave function—is to split E(2) into a stochastic and a deterministic
part. During the simulation, the stochastic part is gradually reduced by dynamically increasing the
deterministic part until one reaches the desired accuracy. In sharp contrast with a purely stochastic
Monte Carlo scheme where the error decreases indefinitely as t�1/2 (where t is the computational
time), the statistical error in our hybrid algorithm displays a polynomial decay ∼t−n with n = 3–4
in the examples considered here. If desired, the calculation can be carried on until the stochastic
part entirely vanishes. In that case, the exact result is obtained with no error bar and no noticeable
computational overhead compared to the fully deterministic calculation. The method is illustrated
on the F2 and Cr2 molecules. Even for the largest case corresponding to the Cr2 molecule treated
with the cc-pVQZ basis set, very accurate results are obtained for E(2) for an active space of (28e,
176o) and a MR wave function including up to 2 × 107 determinants. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4992127]

I. INTRODUCTION

Multireference (MR) approaches are based upon the dis-
tinction between non-dynamical (or static) and dynamical
correlation effects. Though such a clear-cut distinction is ques-
tionable, it is convenient to discriminate between the so-called
static correlation effects emerging whenever the description
of the molecular system using a single configuration breaks
down (excited-states, transition-metal compounds, systems far
from their equilibrium geometry, etc.)1 and the dynamical
correlation effects resulting from the short-range part of the
electron-electron repulsion.2

To quantitatively establish this distinction, the Hamilto-
nian is decomposed as

Ĥ = Ĥ (0) + V̂ , (1)

where the zeroth-order Hamiltonian Ĥ (0) is chosen in con-
junction with an MR wave function including the most chem-
ically relevant configurations at the origin of static correlation
effects, and

V̂ = Ĥ − Ĥ (0) (2)

is the residual part describing the bulk of dynamical correlation
effects. The plethora of MR methods found in the literature
results from the large freedom in choosing Ĥ (0), and the fact
that V̂ may or may not be treated perturbatively. Among the
non-perturbative approaches, let us cite the two most common
ones, namely, the MR configuration interaction (MRCI)1,3,4

and the MR coupled cluster (MRCC)5–8 approaches. However,

a)Author to whom correspondence should be addressed: scemama@irsamc.
ups-tlse.fr

because of their high computational cost, these methods are
usually limited to systems of moderate size.

To overcome the computational burden associated with
these methods—yet still capturing the main physical effects—
a natural idea is to treat the potential as a perturbation, enter-
ing the realm of MR perturbation theories (MRPTs). Sev-
eral flavors of MRPT exist depending on the choice of Ĥ (0)

(Epstein-Nesbet decomposition,9,10 Dyall Hamiltonian,11,12

Fink’s partitioning,13,14 etc.). Among the most commonly
used approaches, we have the CASPT215,16 and NEVPT211,12

methods. Regarding the construction of the zeroth-order
part, CASSCF-type approaches are the most widely used
schemes,17–19 but other methods, such as Complete Active
Space Configuration Interaction (CASCI), selected CI (see
Refs. 20 and 21 and the references therein), Full Configu-
ration Interaction Quantum Monte Carlo (FCIQMC),22–24 or
DMRG-type approaches25–27 can also be employed.

In this work, we shall consider MRPTs limited to the
second order in perturbation (MRPT2).15 We address the
important problem of calculating efficiently the second-order
perturbative contribution E(2) in situations where standard cal-
culations become challenging. Here, we suppose that the MR
wave function has already been constructed by any method of
choice.

Although the present method can be easily generalized
to any externally decontracted MRPT approach (such as the
recently introduced JM-MRPT2 method28), for the sake of
simplicity, we shall restrict ourselves here to MR Epstein-
Nesbet perturbation theory. Extension to externally contracted
methods, such as CASPT2 or NEVPT2, is less obvious—
although not impossible—since the excited contracted wave
functions are non-orthogonal.
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The computational cost of MRPT2 can rapidly become
unbearable when the number of electrons Nel and the number
of one-electron basis functions Nbas become large. The cost is
indeed proportional to the number of reference determinants
Ndet times the total number of singly and doubly excited deter-
minants (scaling as N2

elN
2
bas). Because our main goal is to treat

large, chemically relevant systems, the development of fast
and accurate schemes for computing E(2) becomes paramount.
Of course, in actual calculations, a trade-off must be found
between the price to pay to build the MR wave function and
the effort needed to evaluate E(2). Increasing Ndet (i.e., improv-
ing the MR wave function) may appear as the natural thing to
do as the magnitude of E(2) decreases and the contribution of
the neglected higher orders is made smaller. However, its com-
putational price (proportional to Ndet) increases stiffly, and the
calculation becomes rapidly unfeasible. Of course, this bal-
ance is strongly dependent on the method used to generate the
MR wave function and on the ability to compute rapidly and
accurately E(2).

In this work, we present a simple and efficient Monte
Carlo (MC) method for computing the second-order perturba-
tive contribution E(2). For all the systems reported here, the
reference space is constructed using the Configuration Inter-
action using a Perturbative Selection done Iteratively (CIPSI)
method,20,21,29 a selected CI approach where important deter-
minants are selected perturbatively. However, other variants
of selected CI approaches or any other method for construct-
ing the reference wave function may, of course, be used. Note
that, in this study, the reported wall-clock times only refer to
the computation of E(2), i.e., they do not take into account the
preliminary calculation of the reference wave function.

A natural idea to evaluate E(2) with some targeted accuracy
is to truncate the perturbational sum over excited determinants.
However, since all the terms of the second-order sum have the
same (negative) sign, the truncation will inevitably introduce
a bias which is difficult to control. A way to circumvent this
problem is to resort to a stochastic sampling of the various
contributions. In this case, the systematic bias is removed at
the price of introducing a statistical error. The key property is
that this error can now be controlled, thanks to the central-limit
theorem. However, in practice, to make the statistical average
converge rapidly and to get statistical error small enough, care
has to be taken in the way the statistical estimator is built and
how the sampling is performed. The purpose of the present
work is to propose a practical solution to this problem.

Note that the proposal of computing stochastically per-
turbative contributions is not new. In the context of second-
order Møller-Plesset (MP2) theory, where the reference
Hamiltonian reduces to the Hartree-Fock Hamiltonian, Hirata
and coworkers have proposed a MC scheme for calculat-
ing the MP2 correlation energy.30,31 However, we point out
that this approach, based on a single-reference wave func-
tion, samples a 13-dimensional integral (in time and space)
and has no direct relation with the present method. In a
recent study, Sharma et al.32 address the very same prob-
lem of computing stochastically the second-order perturbative
contribution of Epstein-Nesbet MRPT. Similarly to what is
proposed here, E(2) is recast as a sum over contributions asso-
ciated with each reference determinant, and contributions are

stochastically sampled. However, the definition of the quan-
tities to be averaged and the way the sampling is performed
are totally different. Finally, let us mention the recent work of
Jeanmairet et al.33 addressing a similar problem in a differ-
ent way. Within the framework of the recently proposed linear
CC MRPT, it is shown that both the zeroth-order and first-
order wave functions can be sampled using a generalization of
the FCIQMC approach. Here also, E(2) can be expressed as a
stochastic average.

The present paper is organized as follows. In Sec.
II, we report notations and basic definitions for MRPT2.
Section III proposes an original reformulation of the second-
order contribution allowing an efficient MC sampling. The
expression of the MC estimator is given, and a hybrid
stochastic-deterministic approach greatly reducing the statisti-
cal fluctuations is presented. In Sec. IV, some illustrative appli-
cations for the F2 and Cr2 molecules are discussed. Finally,
some concluding remarks are given in Sec. V.

II. SECOND-ORDER MULTIREFERENCE
PERTURBATION THEORY
A. Second-order energy contribution

In MR Epstein-Nesbet perturbation theory, the reference
Hamiltonian is chosen to be

Ĥ (0) = E(0) |Ψ〉 〈Ψ| +
∑
α∈A

Hαα |α〉 〈α | , (3)

where Hαα = 〈α |Ĥ |α〉 and

|Ψ〉 =
∑
I ∈D

cI |I〉 (4)

is the reference wave function expressed as a sum of Ndet

determinants belonging to the reference space

D = {|I〉 , I = 1, . . . , Ndet} , (5)

and

E(0) =
〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉

(6)

is the corresponding (variational) energy. The sum in Eq. (3)
is over the set of determinants |α〉 that do not belong to D but
are connected to D via Ĥ,

A = {|α〉 < D ∧ (∃ |I〉 ∈ D | HαI , 0)} . (7)

Due to the two-body character of the interaction, the determi-
nants |α〉 are either singly or doubly excited with respect to (at
least) one reference determinant.34 However, several reference
determinants can be connected to the same |α〉.

Using such notations, the second-order perturbative con-
tribution is written as

E(2) =
∑
α∈A

|〈α |Ĥ |Ψ〉|
2

∆Eα
, (8)

with ∆Eα = E(0) − Hαα.

B. Partition of A

The first step of the method—instrumental in the MC algo-
rithm efficiency—is the partition of A into Ndet subsets AI



034101-3 Garniron et al. J. Chem. Phys. 147, 034101 (2017)

associated with each reference determinant |I〉,

A =
Ndet⋃
I=1

AI with AI ∩AJ = ∅ if I , J . (9)

To defineAI , the determinants |I〉 are first sorted in descending
order according to the weight

wI =
c2

I

〈Ψ|Ψ〉
. (10)

The partition ofA starts withA1 defined as the set of deter-
minants |α〉 ∈ A connected to the first reference determinant
(i.e., I = 1). Then, A2 is constructed as the set of determinants
of A connected to the determinant corresponding to I = 2,
but not belonging to A1. The process is carried on up to the
last determinant. This partition is schematically illustrated in
Fig. 1. Mathematically, it can be written as

AI = {|α〉 ∈ A | HαI , 0 ∧ (∀ J < I , |α〉 < AJ )} . (11)

Because of the way they are constructed, the size of AI is
expected to decrease rapidly as a function of I, except for a
possible transient regime for very small I.

A key point in the construction of the partition of A is to
avoid both the computation of redundant contributions and the
storage of unnecessary intermediates. First, when a determi-
nant |α〉 is generated by applying a single or double excitation
operator to a reference determinant |I〉, one has to check that
|α〉 does not belong to D. If the reference determinants are
stored in a hash table, the presence of |α〉 in D can be checked
in constant time. Next, one has to know if |α〉 has already been
generated via another reference determinant |J〉. To do so, one
must compute the number of holes and particles between |α〉
and each determinant preceding |I〉 in D. As soon as an exci-
tation degree lower than 3 is found, the search can be aborted
since the contribution is known to have been considered before.
In the worst-case scenario, this step scales as O (Ndet), and
the prefactor is very small since finding the excitation degree
between two determinants can be performed in less than 20
CPU cycles35 (comparable to a floating-point division). Fur-
thermore, the asymptotic scaling can be further reduced by

FIG. 1. Iterative construction of the subsets AI . Arrows indicate a non-zero
matrix element HIα = 〈I |Ĥ |α〉. Solid arrows: the determinant |α〉 is accepted
as a member of the subset AI . Dotted arrows: the determinant |α〉 already
belongs to a previous subset AJ<I and is therefore not incorporated into AI .

TABLE I. Convergence of E(2) for the Cr2 molecule with bond length 1.68
Å as a function of the wall-clock time for various basis sets (800 CPU cores).

Basis E(2) Wall-clock time

cc-pVDZ �0.068 3(1) 14 min
�0.068 36(1) 55 min
�0.068 361(1) 2.4 h
�0.068 360 604 3 h

cc-pVTZ �0.124 4(5) 19 min
�0.124 7(1) 58 min
�0.124 63(1) 3.5 h
�0.124 642(1) 8.7 h

. . . ∼15 h (estimated)

cc-pVQZ �0.155 8(5) 56 min
�0.155 9(1) 2.5 h
�0.155 95(1) 9.0 h
�0.155 952(1) 18.5 h

. . . ∼29 h (estimated)

sorting the determinants in groups with the same spin string.
Indeed, one only has to probe determinants |J〉 that are no
more than quadruply excited with respect to |I〉, and if the
search is restricted to groups with the same spin-up string, the
asymptotic scaling reduces to O

(√
Ndet

)
. To provide a quan-

titative illustration of the computational effort associated with
the construction of the partitioning, using 2 × 107 determi-
nants (as in the case of Cr2 presented below), this preliminary
step is negligible: on a single 2.7 GHz core, the calculation
takes 20 cycles × N3/2

det /(2.7 × 109 cycles/s) ∼ 663 s (CPU
time), while the total execution time (wall-clock time) of the
entire run ranges from 14 min to 18.5 h using 800 cores (see
Table I).

C. Partition of E (2)

Thanks to the partition of A [see Eq. (11)], the sum (8)
can be decomposed into a sum over the reference determinants
|I〉,

E(2) =

Ndet∑
I=1

eI , (12)

where

eI =
∑
α∈AI

|〈α |Ĥ |Ψ〉|
2

∆Eα
. (13)

Moreover, noticing that by construction, the determinants |α〉
belonging to AI are not connected to the part of the reference
function expanded over the preceding reference determinants;
we have

eI =
∑
α∈AI

|〈α |Ĥ |ΨI 〉|
2

∆Eα
, (14)

where

|ΨI 〉 =

Ndet∑
J=I

cJ |J〉 (15)

is a truncated reference wave function. Our final working
expression for the second-order contribution E(2) is thus
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FIG. 2. �eI as a function of I for the first 20 000 determinants selected by the
CIPSI method for the F2 molecule at equilibrium geometry with the cc-pVQZ
basis set. The two sets of data are obtained by averaging either by groups of
20 (point cloud) or 100 (solid line) values.

written as

E(2) =

Ndet∑
I=1

eI =

Ndet∑
I=1

∑
α∈AI

|〈α |Ĥ |ΨI 〉|
2

∆Eα
. (16)

A key property at the origin of the efficiency of the MC
simulations presented below is that eI ’s take their largest values
at very small I. Then, they decay very rapidly as I increases.

This important property is illustrated in Fig. 2. The data
have been obtained for the F2 molecule at the equilibrium
bond length of RF−F = 1.4119 Å using Dunning’s cc-pVQZ
basis set.36 The multideterminant reference space is built by
selecting determinants using the CIPSI algorithm. Figure 2
displays eI ’s for the first 20 000 selected determinants. As
one can see, eI ’s decay very rapidly with I. Of course, at the
scale of individual determinants, there is no guarantee of a
strictly monotonic decay, and it is indeed what we observe. By
averaging groups of successive eI ’s, the curve can be smoothed
out. The two data sets presented in Fig. 2 have been obtained
by averaging either by groups of 20 (point cloud) or 100 (solid
line) values.

It is important to note that the rapid decay of eI ’s is a direct
consequence of the way we have chosen to decompose A. To
be more precise, we note that in Eq. (14), the decay has three
different origins:

• the number of determinants involved in the sum over
|α〉 decreases as a function of I;

• the excitation energies ∆Eα increase with I;
• the norm of the truncated wave function ΨI decreases

rapidly (as c2
I ) when I increases.

In addition, as a consequence of the first point, we note that
the computation of eI becomes faster when I increases.

III. MONTE CARLO METHOD
A. Monte Carlo estimator

To get an expression of E(2) suitable for MC simulations,
the second-order contribution is recast as

E(2) =

Ndet∑
I=1

pI

(
eI

pI

)
(17)

and is thus rewritten as the following MC estimator:

E(2) =

〈
eI

pI

〉
pI

. (18)

Here, pI is an arbitrary probability distribution. The optimal
choice for pI is given by the zero-variance condition, i.e.,

popt
I =

eI

E(2)
. (19)

Note that eI and E(2) being both negative, the probability
distribution pI is positive, as it should be.

To build a reasonable approximation of pI , we note that
the magnitude of eI , as expressed in Eq. (14), is essentially
given by the norm of the truncated wave function ΨI [see
Eq. (15)]. Thus, a natural choice for the probability distribution
is

pI =
〈ΨI |ΨI 〉∑Ndet

J=1〈ΨJ |ΨJ〉
=

∑Ndet
J=I c2

J∑Ndet
J=1

∑Ndet
K=J c2

K

. (20)

In our simulations, we have observed that summing totally or
partially the squared coefficients in the numerator does not
change significantly the statistical fluctuations. As a conse-
quence, we restrict the summation in Eq. (20) to the leading
term, i.e.,

pI =
c2

I∑Ndet
J=1 c2

J

= wI . (21)

Let us emphasize that performing a MC simulation in the
eI space is highly beneficial since the number of eI is always
small enough to make them all fit in memory. Hence, one can
follow the so-called lazy evaluation strategy:37 the value of eI

is computed only once when needed for the first time, and its
value is then stored. If the same eI is requested later, the stored
value will be returned.

B. Improved Monte Carlo sampling

The stochastic calculation of E(2), Eq. (18), can be done
in a standard way by sampling the probability distribution and
averaging the successive values of eI /pI . In practice, the sam-
pling can be realized by drawing, at each MC step, a uniform
random number u ∈ [0, 1] and selecting the determinant |I〉
verifying

R(I − 1) ≤ u ≤ R(I), (22)

where R is the cumulative distribution function of the proba-
bility distribution defined as

R(I) =
I∑

J=1

pJ , (23)

with R(0) = 0.
At this stage, it is useful to take advantage of the fact that,

thanks to the way eI ’s have been constructed, the quantity to
be averaged, eI /pI , is a slowly varying function of I (providing
that the small-scale fluctuations present at the level of indi-
vidual determinants have been averaged out). This property,
which is well illustrated by Fig. 2, is shared by pI ∼ c2

I , hence
by the ratio eI /pI . Thus, an efficient way to reduce the statistical
fluctuations consists in sampling piece-wiselyD by decompos-
ing it into subdomains where the integrand is a slowly varying
function [see the justification of this statement after Eq. (30)].
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To implement this idea, the interval [0, 1] is divided into M
equally spaced intervalsUk and a “comb” of correlated random
numbers

uk =
k − 1 + u

M
, for k = 1, . . . , M, (24)

covering uniformly [0, 1] is created (where u is a single uniform
random number). At each MC step, a M-tuple of determinants
(I1, I2, . . . , IM ) verifying

R(Ik − 1) ≤ uk ≤ R(Ik), for k = 1, . . . , M (25)

is drawn.
Defining Dk as the subset of determinants |Ik〉 satisfying

R(Ik) ∈ Uk , we introduce the following partition:

D =
M⋃

k=1

Dk with Dk ∩Dl = ∅, ∀ k , l (26)

and express E(2) as a sum of M contributions associated with
each Dk ,

E(2) =

M∑
k=1

∑
Ik ∈Dk

eIk . (27)

Using the process described above [Eqs. (24) and (25)], the
second-order energy can be rewritten as the following MC
estimator:

E(2) =

〈
1
M

M∑
k=1

eIk

pIk

〉
p(I1,...,IM )

, (28)

where p(I1, . . . , IM ) denotes the normalized probability dis-
tribution corresponding to Eqs. (24) and (25). Equation (28)
follows from the fact that, by construction, pIk is the kth
marginal distribution of p(I1, . . . , IM ),∑

I1

· · ·
∑
Ik−1

∑
Ik+1

· · ·
∑
IM

p(I1, . . . , IM ) = MpIk , (29)

with ∑
Ik ∈Dk

pIk =
1
M

. (30)

By drawing determinants on separate subsetsDk , the sum to be
averaged in Eq. (28) is expected to fluctuate less than the very
same sum computed by independently drawing determinants
over D. This remarkable property can be explained as follows.
For large M, the fluctuations of the sum based on independent
drawings behave as in any MC scheme, i.e., as M�1/2. Using a
comb covering evenly (with weight pI ) the determinant space,
the situation is different since the sum can now be seen as a
Riemann sum over D with a residual error behaving as M�1.
As a consequence, the overall reduction in statistical noise
resulting from the use of the comb is expected to be of the
order of

√
M. We emphasize that such an attractive feature is

only observed because eI /pI is a slowly varying function of
I (as mentioned above). In the opposite case, the gain would
vanish. In the application on the F2 molecule presented below
(see Fig. 5), the numerical results confirm this: a decrease of
about one order of magnitude in statistical error is obtained
when using M = 100. Note that using a comb reduces the
estimator’s variance but does not change the typical inverse
square root behavior of the statistical error with respect to the
number of MC steps.

Note that Eq. (26) is actually not correct when some deter-
minants (first and/or last determinant of a given subset) belong
to more than one subset. Thus, special care has to be taken for
determinants at the boundary of two subsets, but this difficulty
can be easily circumvented by formally duplicating each of
these determinants into copies with suitable weights.

C. Hybrid stochastic-deterministic scheme

In practice, because the first few determinants are respon-
sible for the most significant contribution in Eq. (17), it is
advantageous not to sample the entire reference space but
to remove from the stochastic sampling the leading determi-
nants. Consequently, E(2) is split into a deterministic E(2)

D and

a stochastic E(2)
S component, such as

E(2) = E(2)
D + E(2)

S

=
∑

J∈DD

eJ +

〈
1
M

M∑
k=1

eIk

pIk

〉
p(I1,...,IM )

,
(31)

where DD is the set of determinants in the deterministic space,
and DS = D \DD is its stochastic counterpart.

At a given point of the simulation, some determinants have
been drawn, and some have not. If we keep track of the list of
the drawn determinants, we can check periodically, for each
Dk , whether or not all elements have been drawn at least once.
If that is the case, the full set of determinants is moved to DD

and the corresponding contribution
∑

Ik
eIk is added to E(2)

D . The
statistical average and error bar are then updated accordingly.
The expression of the E(2) estimator is now time-dependent
and, at the mth MC step, the deterministic part is given by

E(2)
D (m) =

M∑
k=1

Θk(m)
∑

Ik

eIk , (32)

where

Θk(m) =



1, if Dk ⊂ DD at step m,

0, otherwise.
(33)

On the other hand, the stochastic part is now given by

E(2)
S (m) =

1
M

M∑
k=1

[1 − Θk(m)]
∑

Ik ∈Dk

w(m)
Ik

eIk

pIk

, (34)

where

w(m)
Ik
=

n(m)
Ik∑

Jk ∈Dk
n(m)

Jk

, (35)

and n(m)
Ik

denotes the number of times the determinant Ik has
been drawn at iteration m.

If desired, the calculation can be carried on until the
stochastic part entirely vanishes. In that case, all the deter-
minants are in DD, and the exact value of E(2) is obtained with
zero statistical fluctuations.

Finally, to make sure that a given set Dk does not stay in
the stochastic part because a very small number of its determi-
nants have not been drawn, we have implemented an additional
step as follows. At each MC iteration (where a new comb is
created), the contribution eI of the first not-yet-sampled deter-
minant (i.e., corresponding to the smallest I value in the sorted
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determinant list) is calculated and stored. By doing this, the
convergence of the hybrid stochastic-deterministic estimator
is significantly improved. Moreover, after Ndet MC steps, it is
now guaranteed that the exact deterministic value is reached.

D. Upper bound on the computational time

In the present method, the vast majority of the compu-
tational time is spent calculating eI ’s. A crucial point which
makes the algorithm particularly efficient is the lazy evaluation
of these quantities. This implies that, in practice, the stochastic
calculation will never be longer than the time needed to com-
pute all the individual eI ’s (i.e., the time necessary to complete
the fully deterministic calculation) due to the negligible time
required by the MC sampling (drawing 100 × 106 random
numbers takes less than 3 s on a single CPU core).

Finally, it is noteworthy that the final expression of E(2)

can be very easily decomposed into (strictly) independent cal-
culations. The algorithm presented here is thus embarrassingly
parallel (see Sec. IV C).

IV. NUMERICAL TESTS

The present algorithm has been implemented in our Quan-
tum Package code.38 The perturbatively selected CI algorithm
CIPSI,20,29 as described in Ref. 21, is used to build the multi-
determinant reference space. In all the calculations performed
in this section, we have chosen to use a comb with M = 100. All
the simulations were performed on the Curie supercomputer
(TGCC/CEA/GENCI) where each node is a dual socket Xeon
E5-2680 at 2.70 GHz with 64 GB of RAM, interconnected
with an Infiniband QDR network.

A. F2 molecule

As a first illustrative example, we consider the calculation
of E(2) for the F2 molecule in its 1Σ+

g electronic ground state
at equilibrium geometry. The two 1s core electrons are kept
frozen, and Dunning’s cc-pVQZ basis set is used. The Hilbert
space is built by distributing the 14 active electrons within the
108 non-frozen molecular orbitals for a total of more than 1020

determinants.
Despite the huge size of the Hilbert space, the selected CI

approach is able to reach the full CI (FCI) limit with a very
good accuracy. The convergence of the variational energy E(0)

and that of the total energy (given by the sum of the variational
and second-order contribution E(0) + E(2)) with respect to the

FIG. 3. F2 molecule at equilibrium geometry. Convergence of the variational
energy E(0) (red curve) as a function of the number of selected determinants
Ndet obtained with the CIPSI method and the cc-pVQZ basis set. The blue
curve is obtained by adding the second-order energy contribution E(2) to the
variational one E(0). The full CI (FCI) value (green curve) is reported as
a reference. The wall-clock time (in minutes) needed to compute E(2) for
various values of Ndet is also reported (black numbers underneath the blue
curve).

number of selected determinants are presented in Fig. 3. The
maximum number of determinants we have selected is 4×106.
For this value, E(0) is not converged but is already a reason-
able approximation to the FCI energy with an error of about
18 mEh. In sharp contrast, the total energy including the
second-order correction converges very rapidly: millihartree
accuracy is reached with about 2 × 106 determinants. For
Ndet = 4 × 106, the best value obtained is �199.3594 a.u.,
in quantitative agreement with the estimated FCI value of
�199.3598(2) a.u. obtained by Cleland et al. with FCIQMC.23

For this system and the maximum number of selected
determinants considered, it is actually possible to calculate
exactly E(2) by explicit evaluation of the entire sum (determin-
istic method). The corresponding wall-clock times (in minutes)
using 50 nodes (800 cores) are reported directly in Fig. 3. For
Ndet = 104, the calculation takes a few seconds, while for the
largest number of Ndet = 4 × 106 about 35 min are needed.

We now consider the hybrid stochastic-deterministic eval-
uation of E(2). The left graph of Fig. 4 shows the evolution of
E(2) as a function of the wall-clock time (in minutes). Data
are given for the cc-pVQZ basis and Ndet = 4 × 106. Simi-
lar curves are obtained with the two other basis sets. As one
can see, the rate of convergence of the error is striking, and
eventually, the exact value is obtained with very small fluctua-
tions. If chemical accuracy is targeted (error of roughly 1 mEh),

FIG. 4. Convergence of E(2) as a function of the wall-clock time for the F2 molecule (left) with Ndet = 4× 106 (cc-pVQZ basis set) and the Cr2 molecule (right)
with Ndet = 2 × 107 (cc-pVTZ basis set). Both graphs are obtained with 800 CPU cores. The grey line corresponds to the exact (deterministic) value for F2 and
to the value with the lowest statistical error for Cr2. The error bars correspond to one standard deviation.
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FIG. 5. Statistical error of E(2) as a function of the wall-
clock time for the F2 molecule obtained with the cc-pVQZ
basis and Ndet = 4 × 106 with different schemes.

3 min are needed using 800 cores. This value has to be com-
pared with the ∼35 min needed to evaluate the exact value (see
Fig. 3).

To have a better look at the fluctuations, the statistical
error as a function of the wall-clock time is reported in Fig. 5.
We have reported four curves to show the effects of the differ-
ent strategies used in our algorithm. The first one (in green)
is the curve one would typically obtain using a standard MC
algorithm where the contributions are always recomputed (no
lazy evaluation). Note that, for this particular curve, we have
not performed the calculation, but we have plotted an arbitrary
σ1/
√

t curve to illustrate its decay rate. The light blue curve is
obtained using the MC estimator proposed in Sec. III A. The
slope is steeper than that for the standard MC scheme, thanks
to the lazy evaluation strategy. The introduction of the comb
(Sec. III B) reduces the statistical error by an order of magni-
tude and produces the dark blue curve. Finally, incorporating
the hybrid deterministic/stochastic scheme (Sec. III C) yields
the red curve.

Quite remarkably, the overall convergence of the red curve
is extremely rapid. Because of the irregular convergence, it is
not easy to extract the exact mathematical form of the decay.
However, it is clear that a typical polynomial decay is observed.
Fitting the curve of the hybrid scheme gives a decrease of the
error bar between t�3.1 and t�3.6, which is significantly faster
than the t�1/2 behavior of the standard MC algorithm. Note also
that some discontinuities in the statistical error are regularly
observed. Such sudden drops occur each time a subset Dk is
entirely filled and its contribution is transferred to the deter-
ministic part. Comparison with the standard MC algorithm
illustrates that obtaining an arbitrary accuracy with a standard
MC sampling can rapidly become prohibitively expensive.
Most importantly, the wall-clock time would rapidly become
larger than the time required to compute exactly (i.e., deter-
ministically) E(2), which is not the case with the here-proposed
method.

B. Cr2 molecule

We now consider the challenging example of the Cr2

molecule in its 1Σ+
g ground state. The internuclear distance

is chosen to be close to its experimental equilibrium geome-
try, i.e., RCr−Cr = 1.68 Å. Full-valence calculations including
28 active electrons (two frozen neon cores) are performed.
The cc-pVDZ, TZ, and QZ basis sets39 are employed, and
the associated active spaces corresponding to (28e, 76o), (28e,
126o), and (28e, 176o) include more than 1029, 1036, and 1042

determinants, respectively. For all the basis sets, the molecular
orbitals (MOs) were obtained with the GAMESS40 program
using a CASSCF calculation with 12 electrons in 12 orbitals,
and 2 × 107 determinants were selected in the FCI space
with the CIPSI algorithm implemented in Quantum Package.
In the cc-pVQZ basis set, we had to remove the h func-
tions of the basis set since the version of GAMESS we used
(prior to 2013) does not handle the corresponding two-electron
integrals.

The right graph of Fig. 4 shows the convergence of E(2)

as a function of the wall-clock time for the cc-pVTZ basis set
and Ndet = 2 × 107. Again, similar curves are obtained with
the two other basis sets. Similarly to F2, the convergence is
remarkably fast with a steep decrease of the statistical error
with respect to the wall-clock time (for quantitative results,
see Table I). Note that the maximum energy range in the right
graph of Fig. 4 is only 0.35 mEh.

Table II reports the quantitative results obtained with the
three basis sets. One can observe that very accurate results for
E(2) can be obtained even with the largest QZ basis set. For
the three basis sets, the statistical error obtained is 10�6 Eh.
However, it is clear that in practical applications, we do not
need such high level of accuracy as the finite-size basis effects
as well as the high-order perturbative contributions are much
larger. If, more reasonably, we target an accuracy of about
0.1 mEh, we see in Table I that the wall-clock time needed is

TABLE II. Variational ground-state energy E(0) and second-order contribution E(2) of the Cr2 molecule with
bond length 1.68 Å computed with various basis sets. For all basis sets, the reference is composed of 2 × 107

determinants selected in the valence FCI space (28 electrons).

Reference Basis Active space E(0) E(2) E(0) + E(2)

CIPSI cc-pVDZ (28e, 76o) �2087.227 883 3 �0.068 334(1) �2087.296 217(1)
cc-pVTZ (28e, 126o) �2087.449 781 7 �0.124 676(1) �2087.574 423(1)
cc-pVQZ (28e, 176o) �2087.513 373 3 �0.155 957(1) �2087.669 330(1)
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FIG. 6. Parallel speedup of our implementation using 800, 4000, and 8000
cores. The reference is the 800-core run.

about 14 min, 1 h, and 2.5 h with 800 CPU cores for the DZ,
TZ, and QZ basis sets, respectively. Finally, we note that, in
contrast with F2, the absolute value of E(2) remains large even
when relatively large MR wave functions are employed. This
result clearly reflects the difficulty in treating accurately Cr2.
We postpone to a forthcoming paper the detailed analysis of
this system and the calculation of the entire potential energy
curve.

C. Parallel speedup

To measure the parallel speedup of the present imple-
mentation of our algorithm, we have measured the wall-clock
time needed to reach a target statistical error of 10�6 a.u. with
800, 4000, and 8000 cores (50, 250, and 500 nodes) using
the Cr2/cc-pVQZ wave function with Ndet = 2 × 107. The
speedup is calculated using the 800-core run as the reference,
and the results are shown in Fig. 6. Going from 800 to 4000
cores gives a speedup of 4.95, and the 8000-core run exhibits a
speedup of 9.82. These values are extremely close to the ideal
values of 5 and 10. Therefore, we believe that this method is
a good candidate for running on exascale machines in a near
future.

V. CONCLUSIONS

In this work, a hybrid stochastic-deterministic algorithm
to compute the second-order energy contribution E(2) within
the Epstein-Nesbet MRPT has been introduced. Two main
ideas are at the heart of the method. First, the reformulation of
the standard expression of E(2), Eq. (8), into Eq. (16). Thanks
to the unique property of the elementary contributions eI ; the
latter expression turns out to be particularly well-suited for
low-variance MC calculations. The second idea, which greatly
enhances the convergence of the calculation, is to decom-
pose E(2) as a sum of a deterministic and a stochastic part,
the deterministic part being dynamically updated during the
calculation.

We have observed that the size of the stochastic part (as
well as the statistical error) decays in time with a polynomial
behavior. If desired, the calculation can be carried on until the
stochastic part entirely vanishes. In that case, the exact (deter-
ministic) result is obtained with no error bar and no noticeable

computational overhead compared to the fully deterministic
calculation. Such a remarkable result is in sharp contrast with
standard MC calculations where the statistical error decreases
indefinitely as the inverse square root of the simulation
time.

The numerical applications presented for the F2 and Cr2

molecules illustrate the great efficiency of the method. The
largest calculation on Cr2 (cc-pVQZ basis set) has an active
space of (28e, 176o), corresponding to a Hilbert space con-
sisting of approximately 1042 determinants and a multirefer-
ence wave function containing 2 × 107 determinants. Even
in this extreme case, E(2) can easily be calculated with sub-
millihartree accuracy using a fully and massively parallel
version of the algorithm.

As a final comment, we would like to mention that,
although we have only considered two illustrative examples
in the present manuscript, our method has been shown to be
highly successful in all the cases we have considered.
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