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Abstract We propose a new self-consistent field (SCF)
algorithm based on an iterative, partially stochastic “Divide
& Conquer”-type approach. This new SCF algorithm is
a simple variant of the usual SCF procedure and can be
easily implemented in parallel. A detailed description of
the algorithm is reported. We illustrate this new method
on one-dimensional hydrogen chains and three-dimensional
hydrogen clusters.
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Introduction

Moore’s law [1] predicts that the computer speed approxi-
mately doubles every two years. Therefore, we could expect
that the system sizes accessible by conventional quantum
chemistry ab initio methods will keep growing rapidly in
the next few decades. However, since several years, Moore’s
law is only fulfilled by an increasing number of cores per
processor as CPU clock rate has stopped increasing. Indeed,
today hardware is designed in a multi-core manner and
one needs to write softwares which support multi-threading
to take full advantage of the hardware. Consequently, it
becomes more and more important to develop parallel com-
puter codes and algorithms that are capable for exploiting
high-performance parallel computing environments [2–8].

The computational bottleneck in Hartree-Fock (HF) [9]
and density-functional theory (DFT) [10] methods, in their
conventional formulations, is the computation of the two-
electron integrals which scales quartically with the number
of basis functions N . Fortunately, this formal O(N4) scal-
ing does reduce asymptotically to O(N2) if one takes
into account only the numerically significant integrals [11–
15] by using standard Cauchy-Schwarz screening [16] or
distance-dependent screening techniques [17].

The two main steps in a self-consistent field (SCF) cal-
culation are the formation of the Fock or Kohn-Sham (KS)
matrix [18] and the subsequent determination of the molec-
ular orbital (MO) coefficients. The work required for the
formation of the Fock or KS matrix can be done very effi-
ciently by exploiting the local nature of chemistry. For
example, the formation of the Coulomb part of the Fock
or KS matrix scales linearly with the system size using

http://crossmark.crossref.org/dialog/?doi=10.1007/s00894-017-3347-3&domain=pdf
http://orcid.org/0000-0003-0598-7425
http://dx.doi.org/10.1007/s00894-017-3347-3
mailto:loos@irsamc.ups-tlse.fr
mailto:jean-louis.rivail@univ-lorraine.fr
mailto:xavier.assfeld@univ-lorraine.fr


 173 Page 2 of 6 J Mol Model  (2017) 23:173 

Fig. 1 Schematic representation of the stochastic partition with N =
8 and K = 2

the continuous fast-multipole method developed by White
and coworkers [19, 20]. Linear scaling can also be reached
for the computation of the exact exchange matrix [21]
and exchange-correlation potentials (see Refs. [14, 22], and
references therein).

In the conventional formulation of HF and DFT methods,
the MO coefficients are obtained by diagonalization of the
Fock or KS matrix, respectively. This step scales cubically
with the system size [9, 10], and may therefore become the
time dominating step for large molecules.

The present method aims at reducing the O(N3) cost
of the matrix diagonalization by partitioning the MOs of
the system into subsets and performing smaller diagonaliza-
tions in these subsets. The main advantage of the method is
that each smaller diagonalization can be perform on a dis-
tinct core. The method is a MO-based variant of the SCF
algorithm based on an iterative, partially stochastic “Divide
& Conquer” strategy [23, 24]. This new algorithm that we
have named iterative stochastic subspace SCF (I3SCF) is a

simple modification of the usual SCF procedure and can be
easily implemented in parallel. Although major modifica-
tions and refinements have been made, the present method
is inspired by the ab initio LSCF method [25–28] used in
QM/MM methods [29–32].

We would like to mention here that the present investi-
gation is a “proof of principle” study. Obviously, a more
detailed study would be necessary to fully understand the
advantages and limitations of the present algorithm, as well
as calculations on larger systems. We will report on this in
the future.

The present article is organized as follows: in “Theory”,
we give a detailed derivation of each step of the
I3SCF algorithm, while illustrative examples are given in
“Applications”. Atomic units are used throughout.

Theory

Stochastic partition

The purpose of the stochastic process is to partition the MOs
{∣∣ψp

〉}1≤p≤N into K subsets of size L at each SCF cycle.
For sake of simplicity, we assume that the K subsets have
the same dimension L. However, the present process can be
easily generalized for subsets of different sizes (see below).
I3SCF calculations using K subsets are labelled I3SCF[K].
The atomic orbital (AO) coefficients of the kth subset are
gathered in the matrix Ck of dimension N × L. For K = 1
(i.e. L = N), the present algorithm is equivalent to the con-
ventional SCF procedure. First, to illustrate the stochastic
partition procedure, we set N = 2m, where m ∈ N

∗. The
general case is discussed below.

Fig. 2 Main steps in the I3SCF and SCF algorithms
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Fig. 3 Calculation time (in second) for performing step 2.2.2. of the
I3SCF[K] algorithm as a function of N for various K values. The
calculation time of step 2.2. in the conventional SCF algorithm is also
reported for comparison

The first and crudest level of partition (level 1 in Fig. 1)
consists in creating occupied-virtual MO pairs by randomly
choosing an occupied MO ψi and associating it with the
virtual MO ψa which has the largest coefficient

fia = ‖c†i · F · ca‖F , (1)

where F is the Fock matrix, the vectors ci and ca contain the
AO coefficients of ψi and ψa , and

‖Z‖F =
√

Tr(Z† · Z) (2)

is the Frobenius norm.
This maximizes the probability of decreasing the energy

by mixing the occupied-virtual MO pairs with large

off-diagonal Fock elements. We anticipate that these “level
1” calculations will exhibit the slowest convergence rate due
to the restricted number of MOs per subset (L = 2). At level
1, the stochastic nature of the algorithm is due to the random
choice of the occupied MOs. It is interesting to note that the
level 1 partition has some similarities with the well-known
Jacobi sweep technique [33].

The next step of the stochastic process (level 2 in Fig. 1)
associates two occupied-virtual MO pairs to create larger
subsets (if required). This is done by randomly picking a
subset k and associating it with the subset k′ having the
largest Frobenius norm [34]

fkk′ = ‖C†
k · F · Ck′ ‖F . (3)

At level 2, the stochastic nature of the algorithm is due to
the random choice of the subset k.

This process is repeated until the required number of
subsets is created. This stochastic partition is schematically
illustrated in Fig. 1. In the case where N �= 2m, the level 1
partition can be modified in order to build the target number
of subsets. For example, two virtual MOs can be associated
with one occupied MO to create triplets. Then, the level 2
partition associates these triplets to create larger subsets.

Diagonalization

The next step consists in computing and diagonalizing the
transformed Fock matrix

F′
k = B†

k · F · Bk (4)

of size L × L to obtain the eigenvectors C′
k and eigenvalues

εk . We use the orthogonalization matrix [9]

Bk = Ck, (5)

where Ck in Eq. 5 refers to the MO coefficients from
the previous iteration. The matrix Bk fulfills the desired
orthogonality condition, i.e.

B†
k · S · Bk = I (6)

Fig. 4 Structure of the
three-dimensional hydrogen
clusters: H16 (left), H32 (center)
and H64 (right)
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Fig. 5 Energy convergence (in hartree) of the H16 chain for 25
different random seeds using the I3SCF algorithm with L = 8

(where I is the identity matrix), which must be satisfied if
the transformed orbitals are to form an orthogonal set. Note
that the procedure requires an orthogonal set of N MOs as
initial guess.

The eigenvectors are then back-transformed to the origi-
nal basis to obtain a new set of MO coefficients:

Ck = Bk · C′
k. (7)

After this diagonalization step has been performed on
each subset, we form the matrices

C =
K
⋃

k=1

Ck, ε =
K
⋃

k=1

εk, (8)

where the union of two matrices Z1 and Z2 returns a matrix
with the rows of Z1 followed by the rows of Z2. The orbitals
are then populated using the Aufbau principle [9].

The I3SCF algorithm is summarized in Fig. 2. For com-
parison, we also report the main steps of the usual SCF
procedure. Loop 2.2. over the K subsets can be efficiently
parallelized as each subset can be allocated to a single core.
The main advantage of the I3SCF algorithm is that the
expensive O(N3) diagonalization step of the “total” Fock
matrix is reduced to smaller diagonalizations. Because each
of these diagonalizations only cost O(L3) (step 2.2.2.), the
total computational cost (i.e. over the K subsets) is reduced
to K × O(L3) = O(NL2) for the I3SCF algorithm. This
is a significant reduction in cost compared to the O(N3)

diagonalization cost of the usual SCF algorithm.
We illustrate this point in Fig. 3, where we compare the

calculation time as a function of N for step 2.2 in the con-
ventional SCF algorithm and for step 2.2.2 in the I3SCF
algorithm. As one can see, for any value ofK , the “Divide &
Conquer” diagonalization strategy of the I3SCF algorithm
eventually becomes faster than the “full” diagonalization
required by the conventional SCF, with a cost growing near-
linearly with N . In comparison, the usual SCF method
exhibits a steep increase of the calculation time.

Fig. 6 Energy convergence (in hartree) of one-dimensional hydrogen chains: H16 (left), H32 (center) and H64 (right)
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Fig. 7 Energy convergence (in hartree) of three-dimensional hydrogen clusters: H16 (left), H32 (center) and H64 (right)

Applications

Computational details

To illustrate the advantages and disadvantages of the I3SCF
algorithm, we have computed the restricted HF ground-
state energies of linear chains of n equally-spaced hydrogen
atoms for n = 16, 32 and 64 with the same number of
spin-up and spin-down electrons (closed-shell systems). The
distance RHH between neighboring atoms has been set to
1.8 bohr [35]. These systems have recently attracted consid-
erable interest due to their strong correlation character and
metal-insulator transition [35–38].

To test the performance of the I3SCF algorithm for non-
symmetric structures, we have also computed the restricted
HF ground-state energies of three-dimensional hydrogen
clusters for n = 16, 32 and 64. These clusters are obtained
by considering the regular 2×2×4, 2×4×4 and 4×4×4 lat-
tices with RHH = 1.8 bohr and applying a random Gaussian
displacement of standard deviation σ = RHH/4 in each
direction. These are represented in Fig. 4, and the cartesian
coordinates of the corresponding structures are reported as
Supplementary Material.

The conventional SCF algorithm as well as the I3SCF
algorithm have been implemented in MATHEMATICA [39].
The AOs basis consists of a single Gaussian function of
exponent 0.4, which has been obtained in order to repro-
duce the STO-6G basis [40, 41]. All the calculations uses
the core Hamiltonian as a guess Fock matrix, and Pulay’s
DIIS method [42, 43] is applied to accelerate convergence.

Hydrogen chains and clusters

First, we have tested the dependence of the I3SCF algorithm
with respect to the stochastic partitioning by performing
I3SCF[2] calculations on the H16 chain using 25 different
random seeds. In Fig. 5, we have plotted the energy con-
vergence (in hartree) defined as the difference between the
energy at a given iteration and the converged energy. As one
can see, the final result is largely independent of the choice
of the random seed.

The energy convergence of the H16, H32 and H64 chains
is represented in Fig. 6. To reach a given energy accuracy,
the I3SCF algorithm requires more iterations than the con-
ventional SCF method. For a given value of K , the number
of iterations seems to increase linearly with the system
size.1 The same behavior is observed for the SCF algo-
rithm. This means that the present method does not shift
the cost of each diagonalization step to the number of
diagonalization steps. Because each diagonalization can be
done on a distinct core, a parallel implementation of the
I3SCF algorithm could be competitive with the conventional
SCF algorithm, especially for large systems. The compu-
tation cost of the I3SCF method could be further reduced
by employing localized orbitals [44] and sparse algebra
routines [45, 46].

1In all the cases studied in the work, we have observed a smooth
convergence of the SCF energy. Therefore, the curves reported in
Figs. 6 and 7 can be easily extrapolated to the desired convergence
threshold.
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For small L, the I3SCF algorithm needs a larger number
of iterations to achieve the desired convergence threshold,
due to the small number of MOs per subset. For exam-
ple, the I3SCF[8] calculation on H16 has only two MOs per
subset. However, for any value of K , the I3SCF algorithm
converges reliably to the SCF limit.

The same conclusions can be drawn for the three-
dimensional hydrogen clusters, as shown in Fig. 7. Even
for non-symmetric systems in higher dimensions, the I3SCF
algorithm converges reliably to the SCF limit. Moreover, we
observe that, for a given value ofK , the number of iterations
required to reach a given energy accuracy is roughly inde-
pendent of the system size. Again, the same observation can
be made for the SCF algorithm. Also, we note that, the con-
vergence is getting slower when the number of subsets K

increases. However, this could be fixed by using localized
orbitals that will impose a spatial constraint in the stochastic
partition in order to avoid having weakly interacting MOs
in the same subset. We will investigate this possibility in a
forthcoming paper. In some cases the overall computation
gain can be rather limited (as typically in I3SCF[2] calcula-
tions). It is therefore important to find the best compromise
between the size of the Fock matrices to diagonalize and the
level of stochastic partition (see Fig. 1).

Conclusions

In this article, we have described and studied a new SCF
algorithm that we have dubbed iterative stochastic subspace
SCF (I3SCF). This new method, which is a simple variant
of the usual SCF algorithm, is based on a “Divide & Con-
quer” strategy which partitions the MOs of the system into
subsets. It can be parallelized efficiently on modern parallel
computers. The I3SCF algorithm has been tested on one-
dimensional and three-dimensional hydrogen systems, for
which it has shown promising performances. We hope to
report results for larger molecules of biological interest in
the near future.
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