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We show how one can construct a simple exchange functional by extending the well-know
local-density approximation (LDA) to finite uniform electron gases. This new generalized local-
density approximation functional uses only two quantities: the electron density ⇢ and the cur-
vature of the Fermi hole ↵. This alternative “rung 2” functional can be easily coupled with
generalized-gradient approximation (GGA) functionals to form a new family of “rung 3” meta-GGA
(MGGA) functionals that we have named factorizable MGGAs. Comparisons are made with vari-
ous LDA, GGA, and MGGA functionals for atoms and molecules. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978409]

I. INTRODUCTION

Due to its moderate computational cost and its reason-
able accuracy, Kohn-Sham (KS) density-functional theory1,2

(DFT) has become the workhorse of electronic structure cal-
culations for atoms, molecules, and solids.3 To obtain accurate
results within DFT, one only requires the exchange and corre-
lation functionals, which can be classified in various families
depending on their physical input quantities.4,5 These vari-
ous types of functionals are classified by the Jacob’s ladder of
DFT6,7 (see Fig. 1). The local-density approximation (LDA)
sits on the first rung of the Jacob’s ladder and only uses as
input the electron density ⇢. The generalized-gradient approx-
imation (GGA) corresponds to the second rung and adds the
gradient of the electron density r⇢ as an extra ingredient. The
third rung is composed by the so-called meta-GGA (MGGA)
functionals8 which use, in addition to ⇢ and r⇢, the kinetic
energy density ⌧ =

Pocc
i |r i |2 (where  i is an occupied

molecular orbital).102,103

The infinite uniform electron gas (IUEG) or jellium9–13 is
a much studied and well-understood model system, and hence
a logical starting point for local exchange-correlation approx-
imations.14–22 Though analytical models are scarce, we have
recently discovered an entire new family of analytical mod-
els that one can use to develop new exchange and correlation
functionals within DFT.23–29 Indeed, we have shown that, by
constraining n electrons on a surface of a three-dimensional
sphere (or 3-sphere), one can create finite uniform electron
gases (FUEGs).13,27,30 Here, we show how to use these FUEGs
to create a new type of exchange functionals applicable to any
type of systems. We have already successfully applied this
strategy to one-dimensional systems,28,31,32 for which we have
created a correlation functional based on this idea.25,26 More-
over, we show that these alternative second-rung functionals
can be easily coupled to GGA functionals to form a new family
of third-rung MGGA functionals. Unless otherwise stated, we
use atomic units throughout.
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II. THEORY

Within DFT, one can write the total exchange energy
as the sum of its spin-up (� =") and spin-down (� =#)
contributions,

Ex = Ex," + Ex,#, (1)

where

Ex,� =

⌅
ex,�(⇢� ,r⇢� , ⌧� , . . .) ⇢�(r) dr, (2)

and ⇢� is the electron density of the spin-� electrons.
Although, for the sake of simplicity, we sometimes remove
the subscript �, we only use spin-polarized quantities from
hereon.

The first-rung LDA exchange functional (or D3033) is
based on the IUEG13 and reads

eLDA
x,� (⇢�) = CLDA

x ⇢1/3
� , (3)

where

CLDA
x = �3

2

 
3

4⇡

!1/3

. (4)

A GGA functional (second rung) is defined as

eGGA
x,� (⇢� , x�) = eLDA

x,� (⇢�)FGGA
x (x�), (5)

where FGGA
x is the GGA enhancement factor depending only

on the reduced gradient

x =
|r⇢|
⇢4/3

, (6)

and
lim
x!0

FGGA
x (x) = 1, (7)

i.e., a well thought-out GGA functional reduces to the LDA
for homogeneous systems. The well-known B88, G96, PW91,
and PBE exchange functionals are examples of GGA function-
als.34–37

Similarly, motivated by the work of Becke38 and our pre-
vious investigations,25,26 we define an alternative second-rung
functional that we call generalized LDA (GLDA),

eGLDA
x,� (⇢� , ↵�) = eLDA

x,� (⇢�)FGLDA
x (↵�). (8)
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FIG. 1. Jacob’s ladder of DFT revisited. ⇢, x, ⌧, ↵, and EHF
x are the electron

density, the reduced gradient, the kinetic energy density, the curvature of the
Fermi hole, and the Hartree-Fock (HF) exchange energy, respectively. The
fourth rung corresponds to hyper-GGA (HGGA) functionals.

By definition, a GLDA functional only depends on the
electron density and the curvature of the Fermi hole (see
Fig. 1),

↵ =
⌧ � ⌧W

⌧IUEG
=

⌧

⌧IUEG
� x2

4CF
, (9)

which measures the tightness of the exchange hole around an
electron.17,39 In Eq. (9),

⌧W =
|r⇢|2
4 ⇢

(10)

is the von Weizsäcker kinetic energy density,40 and

⌧IUEG = CF⇢
5/3 (11)

is the kinetic energy density of the IUEG,13 where

CF =
3
5

(6⇡2)
2/3

. (12)

The dimensionless parameter↵ has two characteristic features:
(i) ↵ = 0 for any one-electron system and (ii) ↵ = 1 for the
IUEG. Some authors call ↵ the inhomogeneity parameter but
we will avoid using this term as we are going to show that ↵
can have distinct values in homogeneous systems. For well-
designed GLDA functionals, we must ensure that

lim
↵!1

FGLDA
x (↵) = 1, (13)

i.e., the GLDA reduces to the LDA for the IUEG.41

Although any functional depending on the reduced gradi-
ent x and the kinetic energy density ⌧ is said to be of MGGA

type, here we will define a third-rung MGGA functional as
depending on ⇢, x, and ↵,

eMGGA
x,� (⇢� , x� , ↵�) = eLDA

x,� (⇢�)FMGGA
x (x� , ↵�), (14)

where one should ensure that

lim
x!0

lim
↵!1

FMGGA
x (x, ↵) = 1, (15)

i.e., the MGGA reduces to the LDA for an infinite
homogeneous system. The M06-L functional from Zhao
and Truhlar,42 the mBEEF functional from Wellendorff
et al.,43 and the SCAN44 and MS45,46 family of function-
als from Sun et al. are examples of widely used MGGA
functionals.

The Fermi hole curvature ↵ has been shown to be a better
variable than the kinetic energy density ⌧ as one can discrim-
inate between covalent (↵ = 0), metallic (↵ ⇡ 1), and weak
bonds (↵ � 0).44–52 The variable ↵ is also related to the elec-
tron localization function (ELF) designed to identify chemical
bonds in molecules.17,53 Moreover, by using the variables x and
↵, we satisfy the correct uniform coordinate density-scaling
behavior.54

In conventional MGGAs, the dependence in x and ↵
can be strongly entangled, while, in GGAs, for exam-
ple, ⇢ and x are strictly disentangled as illustrated in
Eq. (5). Therefore, it feels natural to follow the same
strategy for MGGAs. Thus, we consider a special class
of MGGA functionals that we call factorizable MGGAs
(FMGGAs),

eFMGGA
x,� (⇢� , x� , ↵�) = eLDA

x,� (⇢�)FFMGGA
x (x� , ↵�), (16)

where the enhancement factor is written as

FFMGGA
x (x, ↵) = FGGA

x (x)FGLDA
x (↵). (17)

By construction, FFMGGA
x fulfills Eq. (15) and the additional

physical limits

lim
x!0

FFMGGA
x (x, ↵) = FGLDA

x (↵), (18a)

lim
↵!1

FFMGGA
x (x, ↵) = FGGA

x (x). (18b)

The MVS functional designed by Sun, Perdew, and Ruzsinszky
is an example of FMGGA functional.51

III. EXCHANGE FUNCTIONALS
A. Computational details

Unless otherwise stated, all calculations have been
performed self-consistently with a development version
of the Q-Chem 4.4 package55 using the aug-cc-pVTZ
basis set.56–61 To remove quadrature errors, we have used
a very large quadrature grids consisting of 100 radial
points (Euler-Maclaurin quadrature) and 590 angular points
(Lebedev quadrature). As a benchmark, we have calcu-
lated the (exact) unrestricted Hartree-Fock (UHF) exchange
energies.

B. GLDA exchange functionals

The orbitals for an electron on a 3-sphere of unit radius are
the normalized hyperspherical harmonics Y`µ, where ` is the
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principal quantum number and µ is a composite index of the
remaining two quantum numbers.62,63 We confine our attention
to ferromagnetic (i.e., spin-polarized) systems in which each
orbital with ` = 0, 1, . . . , L� is occupied by one spin-up or
spin-down electron, thus yielding an electron density that is
uniform over the surface of the sphere. Note that the present
paradigm is equivalent to the jellium model13 for L� ! 1. We
refer the reader to Ref. 30 for more details about this paradigm.

The number of spin-� electrons is

n� =
1
3

(L� + 1)(L� + 3/2)(L� + 2), (19)

and their one-electron uniform density around the 3-sphere
is

⇢� =
n�
V
=

(L� + 2)(L� + 3/2)(L� + 1)
6⇡2R3

, (20)

where V = 2⇡2R3 is the surface of a 3-sphere of radius R.
Moreover, using Eq. (9), one can easily derive that25,26

↵� =
L�(L� + 3)

[(L� + 1)(L� + 3/2)(L� + 2)]2/3
, (21)

which yields

lim
n�!1

↵� = 0, lim
n�!1

↵� = 1. (22)

We recover the results that ↵ = 0 in a one-electron system (here
a one-electron FUEG) and that ↵ = 1 in the IUEG.

In particular, we have shown that the exchange energy of
these systems can be written as30,64

Ex,�(L�) = Cx(L�)
⌅
⇢4/3
� dr, (23)

where

Cx(L) = CLDA
x

1
2

⇣
L + 5

4

⌘ ⇣
L + 7

4

⌘ 
1
2 H2L+ 5

2
+ ln 2

�
+

⇣
L + 3

2

⌘2 ⇣
L2 + 3L + 13

8

⌘

f
(L + 1)

⇣
L + 3

2

⌘
(L + 2)

g4/3
(24)

and Hk is a harmonic number.65

Therefore, thanks to the one-to-one mapping between
L� and ↵� evidenced by Eq. (21), we have created the gX
functional

FgX
x (↵)=

CGLDA
x (0)

CGLDA
x (1)

+ ↵
c0 + c1 ↵

1 + (c0 + c1 � 1)↵

"
1� CGLDA

x (0)

CGLDA
x (1)

#
,

(25)

where c0 = +0.827 411, c1 = 0.643 560,

CGLDA
x (1) = CLDA

x = �3
2

 
3

4⇡

!1/3

, (26)

CGLDA
x (0) = �4

3

 
2
⇡

!1/3

. (27)

The parameters c0 and c1 of the gX enhancement factor (25)
have been obtained by fitting the exchange energies of these

FUEGs for 1  L  10 given by Eq. (23). FgX
x automatically

fulfils the constraint given by Eq. (13). Moreover, because
1  FgX

x  1.233, it breaks only slightly the tight Lieb-Oxford
bound66–68 Fx < 1.174 derived by Perdew and co-workers for
two-electron systems.69,70 This is probably due to the non-zero
curvature of these FUEGs.

Albeit very simple, the functional form (25) is an excellent
fit to Eq. (24). In particular, FgX

x is linear in↵ for small↵, which
is in agreement with Eq. (24).30 Also, Eq. (24) should have an
infinite derivative at ↵ = 1 and behave as

p
1 � ↵ ln(1 � ↵) at

↵ = 1. Equation (25) does not behave that way. However, it has
a marginal impact on the numerical results.

As one can see in Fig. 2, albeit being created with
FUEGs, the gX functional has a fairly similar form to
the common MGGA functionals, such as MS0,45 MS1,46

MS2,46 MVS,51 and SCAN44 for 0  ↵  1. This is good
news for DFT as it shows that we recover functionals with

FIG. 2. Enhancement factors FGLDA
x (↵)

or FMGGA
x (x = 0,↵) as a function of

↵ for various GLDA and MGGA
exchange functionals. The TPSS func-
tional is represented as a dotted-dashed
line, the MS family of functionals (MS0,
MS1 and MS2) are represented as
dashed lines, while the MVS and SCAN
functionals are depicted with solid lines.
The new functionals gX and PBE-GX
are represented with thick black lines.
Note that FgX

x (↵)=FPBE-GX
x (0,↵) for

0  ↵  1. For FPBE-GX
x , ↵1 = +0.852.
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similar physics independently of the paradigm used to design
them. However, around ↵ ⇡ 1, the behavior of FgX

x is very
different from other MGGAs (except for MVS) due to the
constraint of the second-order gradient expansion (which is
not satisfied in our case).71 For 0  ↵  1, it is also instruc-
tive to note that the gX functional is an upper bound of all the
MGGA functionals. Taking into account the inhomogeneity
of the system via the introduction of x should have the effect
of decreasing the MGGA enhancement factor (at least for
0  ↵  1).

Unlike other functionals, we follow a rather differ-
ent approach and guide our functional between ↵ = 0 and
1 using FUEGs. For example, the MS0 functional uses
the exact exchange energies of non-interacting hydrogenic
anions to construct the functional from ↵ = 0 to 1,45,72

while revTPSS has no constraint to guide itself for this
range of ↵.49 Nonetheless, because these uniform sys-
tems only give valuable information in the range 0  ↵  1,
we must find a different way to guide our functional for
↵ > 1.73

To do so, we have extended the gX functional
beyond ↵ = 1 using a simple one-parameter extrapolation,

FGX
x (↵) =

8><>:
FgX

x (↵), 0  ↵  1,

1 + (1 � ↵1) 1�↵
1+↵ , ↵ > 1,

(28)

where ↵1 is an adjustable parameter governing the value of
FGX

x when ↵ ! 1. For large ↵, FGX
x converges to ↵1 as

↵�1, similarly to the MVS functional.51 Far from claiming
that this choice is optimal, we have found that the simple
functional form (28) for ↵ > 1 yields satisfactory results (see
below).

Following the seminal work of Sham74 and Kleinman75–77

(see also Ref. 78), it is also possible, using linear response
theory, to derive a second-order gradient-corrected func-
tional. However, it does not provide any information for
↵ > 1.

The performance of the GX functional is illustrated in
Table I. Although GX is an improvement compared to LDA,
even for one- and two-electron systems, we observe that the
GX functional cannot compete with GGAs and MGGAs in
terms of accuracy.

C. FMGGA exchange functionals

One of the problems of GLDA functionals is that they can-
not discriminate between homogeneous and inhomogeneous
one-electron systems, for which we have ↵ = 0 indepen-
dently of the value of the reduced gradient x. For example,
the GX functional is exact for one-electron FUEGs, while it
is inaccurate for the hydrogen-like ions. Unfortunately, it is
mathematically impossible to design a GLDA functional exact
for these two types of one-electron systems.

To cure this problem, we couple the GX functional
designed in Sec. III B with a GGA enhancement factor to
create a FMGGA functional (see Sec. II). We have chosen a
PBE-like GGA factor, i.e.,

FPBE-GX
x (x, ↵) = FPBE

x (x)FGX
x (↵), (29)

TABLE I. Reduced (i.e., per electron) mean error (ME) and mean absolute
error (MAE) (in kcal/mol) of the error (compared to UHF) in the exchange
energy of the hydrogen-like ions, helium-like ions, and first 18 neutral atoms
for various LDA, GGA, GLDA, FMGGA, and MGGA functionals. The data
for each set can be found in the supplementary material. For the hydrogen-like
ions, the exact density has been used for all calculations.

Hydrogen-like ions Helium-like ions Neutral atoms

ME MAE ME MAE ME MAE

LDA D30 153.5 69.7 150.6 69.5 70.3 9.1
GGA B88 9.5 4.3 9.3 4.7 2.8 0.5

G96 4.4 2.0 4.4 2.2 2.1 0.5
PW91 19.4 8.8 19.1 9.3 4.5 0.8
PBE 22.6 10.3 22.3 10.7 7.4 0.6

GLDA GX 61.8 123.5 61.0 122.0 · · · · · ·
FMGGA MVS 0.0 0.0 0.3 0.2 2.7 0.9

PBE-GX 0.0 0.0 0.7 0.4 1.0 1.1
MGGA M06-L 44.4 88.8 12.0 24.0 4.2 2.9

TPSS 0.0 0.0 0.7 0.4 0.7 1.1
revTPSS 0.0 0.0 0.5 0.3 3.5 2.5
MS0 0.0 0.0 0.4 0.2 1.3 2.4
SCAN 0.0 0.0 0.3 0.2 1.2 1.6

where

FPBE
x (x) =

1
1 + µ x2

. (30)

Similarly to various MGGAs (such as TPSS,48 MVS,51 or
SCAN44), we use the hydrogen atom as a “norm” and deter-
mine that µ=+0.001 015 549 reproduces the exact exchange
energy of the ground state of the hydrogen atom (see
Sec. III B). Also, we have found that ↵1 = +0.852 yields
excellent exchange energies for the first 18 neutral atoms.
Unlike GX, PBE-GX is accurate for both the (inhomogeneous)
hydrogen-like ions and the (homogeneous) one-electron
FUEGs, and fulfils the negativity constraint and uniform den-
sity scaling.44,79 The right graph of Fig. 2 shows the behavior
of the MGGA enhancement factor for x = 0 as a function of
↵. Looking at the curves for ↵ > 1, we observe that TPSS
has a peculiar enhancement factor which slowly raises as ↵
increases. All the other functionals (including PBE-GX) decay
more or less rapidly with ↵. We note that PBE-GX and MVS
behave similarly for ↵ > 1, though their functional form is
different.

Figure 3 evidences a fundamental difference between
GGAs and MGGAs: while the enhancement factor of con-
ventional GGAs does increase monotonically with x and favor
inhomogeneous electron densities, FMGGA

x decays monotoni-
cally with respect to x. This is a well-known fact: the x- and
↵-dependences are strongly coupled, as suggested by relation-
ship (9). Therefore, the x-dependence can be sacrificed if the
↵-dependence is enhanced.44,45,51 Similarly to FPBE-GX

x , FMVS
x

and FSCAN
x decay monotonically with x (although not as fast as

PBE-GX), while earlier MGGAs such as TPSS and MS0 have
a slowly increasing enhancement factor. We have observed that
one needs to use a bounded enhancement factor at large x (as
in Eq. (30)) in order to be able to converge self-consistent field
(SCF) calculations. Indeed, using an unbounded enhancement
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FIG. 3. Enhancement factors FGGA
x (x) or FMGGA

x (x,↵ = 1) as a function of
x for various GGA, FMGGA, and MGGA exchange functionals. The GGA
functionals are represented in solid lines, while MGGAs are depicted in dashed
lines. The new functional PBE-GX is represented with a thick black line.

factor (as in B8834 or G9635) yields divergent SCF KS calcu-
lations. Finally, we note that, unlike TPSS, PBE-GX does not
suffer from the order of limits problem.80

D. How good are FMGGAs?

The question we would like to discuss here is whether
or not our new simple FMGGA functional called PBE-GX is
competitive within MGGAs. Unlike GGAs and some of the
MGGAs (like M06-L), by construction, PBE-GX reproduces
exactly the exchange energy of the hydrogen atom and the
hydrogenic ions (He+, Li2+, · · · ) due to its dimensional con-
sistency (see Table I). PBE-GX also reduces the error for the
helium-like ions (H�, He, Li+, · · · ) by one order of magnitude
compared to GGAs and matches the accuracy of MGGAs. For
the first 18 neutral atoms (Table I and Fig. 4), PBE-GX is as
accurate as conventional MGGAs with a mean error (ME) and
mean absolute error (MAE) of 1.0 and 1.1 kcal/mol, respec-
tively. From the more conventional MGGAs, the TPSS and

FIG. 4. Reduced (i.e., per electron) error (in kcal/mol) in atomic exchange
energies of the first 18 neutral atoms of the periodic table for the B88 (red),
TPSS (blue), MVS (orange), SCAN (purple), and PBE-GX (thick black)
functionals.

SCAN functionals are the best performers for neutral atoms
with MEs of 0.7 and 1.2 kcal/mol, and MAEs of 1.1 and
1.6 kcal/mol. PBE-GX lies just in-between these two MGGAs.

We now turn our attention to diatomic molecules for which
errors in the atomization energy (Eatoms�Emolecule) are reported
in Table II for various combinations of exchange and correla-
tion functionals. (See the supplementary material for the list of
diatomics considered in this study.) In particular, we have cou-
pled our new PBE-GX exchange functional with the PBE,37

regTPSS80 (also called vPBEc), and LYP82 GGA correlation
functionals, as well as the TPSS,48 revTPSS,49 and SCAN44

MGGA correlation functionals.
Although very lightly parametrized on atoms, PBE-GX

is also accurate for molecules. Interestingly, the results are
mostly independent of the choice of the correlation functional
with MEs ranging from 0.6 to 0.8 kcal/mol and MAEs from
1.0 to 1.5 kcal/mol. PBE-GX is only slightly outperformed
by the SCAN functional and the highly parametrized M06-L
functional, which have both a ME of 0.4 kcal/mol and a MAE
of 0.7 kcal/mol.

As commonly reported, density functional approxima-
tions suffer from the self-interaction error (SIE),83–87 i.e., the
unphysical interaction of an electron with itself. This phe-
nomenon is also known as the delocalization error and can
be understood as the tendency of approximate functionals to
artificially spread the electron density.87–90 To study SIE, we
have reported the bond dissociation profile of the H+

2 molecule
for various exchange-correlation functionals (see left graph
of Fig. 5). Obviously, HF is SIE-free. Thus, we can measure
the SIE in a given functional as the difference between the
HF dissociation curve and the curve obtained with this func-
tional. Amongst the functionals considered here, we see that
PBE-GX/regTPSS has the smallest SIE for large bond length.
Very similar curves are obtained by combining PBE-GX with
other correlation functionals. Note that a SIE correction could

TABLE II. Reduced (i.e., per electron) mean error (ME) and mean absolute
error (MAE) (in kcal/mol) of the error (compared to the experimental value)
in the atomization energy (Eatoms �Emolecule) of diatomic molecules at exper-
imental geometry for various LDA, GGA, and MGGA exchange-correlation
functionals. Experimental geometries are taken from Ref. 81. The data for
each set can be found in the supplementary material.

Functional Diatomics

Exchange Correlation ME MAE

LDA D30 VWN5 1.8 3.7
GGA B88 LYP 0.6 1.2

PBE PBE 0.7 1.2
MGGA M06-L M06-L 0.4 0.7

TPSS TPSS 0.6 1.1
revTPSS revTPSS 0.6 1.2
MVS regTPSS 0.5 0.9
SCAN SCAN 0.4 0.7
PBE-GX PBE 0.6 1.2
PBE-GX regTPSS 0.6 1.1
PBE-GX LYP 0.6 1.1
PBE-GX TPSS 0.7 1.3
PBE-GX revTPSS 0.8 1.5
PBE-GX SCAN 0.6 1.0
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FIG. 5. Bond dissociation profile (in
kcal/mol) of the H+

2 (left) and H2 (right)
molecules for various levels of the-
ory. Calculations on H2 have been per-
formed in the restricted formalism.

be applied to remove the remaining SIE (see, for example,
Ref. 91 and references therein).

Another common pitfall of approximate density function-
als known as the static correlation error87,88,92 can be revealed
by the apparently simple problem of stretching H2. In the right
graph of Fig. 5, we have reported the dissociation energy pro-
file of the H2 molecule calculated in the restricted formalism
for the same functionals. At large bond length, the dissociation
energy should reach zero but most of the functionals (includ-
ing HF) do not. We observe that, although having the smallest
SIE, PBE-GX/regTPSS has the largest static correlation error
amongst density functionals. Its value is still much smaller
than in HF, and similar to the error in conventional MGGAs,
such as MVS and M06-L.

IV. CONCLUSION

The purpose of the present paper is not to report an exhaus-
tive benchmarking study but to present a new paradigm to
design exchange-correlation functionals within DFT. Using
finite UEGs (FUEGs), we have created a generalized LDA
(GLDA) exchange functional which only depends on the cur-
vature of the Fermi hole ↵. We have also combined our newly
designed GLDA functional with a PBE-type GGA functional
to create a new type of MGGAs that we have called factor-
izable MGGAs (FMGGAs). We will thoroughly investigate
the performance of our new MGGA functional in a forth-
coming paper where a proper benchmarking is going to be
performed. The functional reported in the present study can-
not catch dispersion interactions. Although special care has
to be taken,93–95 it can be coupled with dispersion-corrected
functionals.52,96–101 Also, the same approach can be applied to
correlation functionals, and we will also report results on this
soon.

SUPPLEMENTARY MATERIAL

See supplementary material for raw data of Tables I and II.
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