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Wigner crystals (WCs) are electronic phases peculiar to low-density systems, particularly in the
uniform electron gas. Since its introduction in the early twentieth century, this model has remained
essential to many aspects of electronic structure theory and condensed-matter physics. Although the
(lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-
state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to
obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-
field approach. While the GSWC is a commensurate crystal (i.e., the number of density maxima
equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less
maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of
these ESWCs, we have found asymmetrical band gaps, which would lead to anisotropic conductivity.
These properties are associated with unusual characteristics in their electronic structure. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4974839]

I. WIGNER CRYSTALS

In 1934, Wigner predicted that, at low density, electrons
within a positively charged uniform background (or jellium)
would “crystallize” onto lattice sites, thus forming electronic
analogues of the well-known atomic crystals.1 As opposed to
the delocalized, uniform Fermi fluid (FF) state that minimizes
the kinetic energy (whose contribution is predominant for
high densities), these exotic phases, known as Wigner crystals
(WCs), curtail the interelectronic Coulomb interaction, which
dominates at low densities.2 The morphology of a WC is made
apparent by the occurrence of periodic maxima or “peaks” in
the electron density. The most common crystal symmetries
are the body-centered-cubic (bcc), face-centered-cubic (fcc),
and hexagonal-close-packed (hcp) lattices in three dimensions
(3D), the triangular and square lattices in two dimensions (2D),
and the evenly spaced lattice in one dimension (1D).3

WCs (as well as strictly correlated systems4,5) have
received renewed interest in the recent literature, particularly
in the uniform electron gas (UEG) or jellium, where they play a
central role in the phase diagram.3 Similarly, low-dimensional
WCs have also come under scrutiny theoretically and exper-
imentally, as a paradigm for quasi-1D materials,6,7 such as
carbon nanotubes8–10 or nanowires.11,12

As a consequence of the intensive and ongoing investiga-
tion into the ground-state properties of WCs, little is known
about their excited states, aside from the plain distinction
that some solutions are lower in energy than others. Recently,
we have shown that the ground-state WC (GSWC) is always
commensurate in the 1D electron gas (1DEG).13 However,
using self-consistent field (SCF) Hartree-Fock (HF) calcula-
tions, we have since observed the appearance of excited-state
WCs (ESWCs), whose periodicities are inherent to the charge-
density waves (CDWs) from which they evolved. Here, we
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attribute the GSWC to an n-peak WC, while an ESWC is a
WC whose peak count p deviates from the number of elec-
trons n by an integer amount. These ESWCs can be regarded
as two varieties of incommensurate crystals, where the number
of peaks p is smaller (supersaturated crystals) or larger (unsat-
urated crystals) than n. Thus, we propose in this paper to study
ESWCs in a 1DEG, and how they relate to the GSWC and the
FF. The p > n crystals are particularly compelling given that
such solutions are known to be the HF ground state of 2D and
3D electron gases at high densities.14–20 Atomic units are used
throughout.

II. PARADIGM

A 1DEG is constructed by confining n electrons to a ring
with radius R and length L = 2⇡R. Thus the average elec-
tron density of such a system (also known as “ringium” in the
literature13,21–24) is ⇢0 = n/L = 1/(2rs), where rs is the so-
called Wigner-Seitz radius. Electrons interact Coulombically
through the operator r�1

ij , where rij = R
p

2 � 2 cos(✓i � ✓j) is
the across-the-ring distance between electrons i and j, and ✓i

is the angular displacement of an electron i. In other words,
the electrons are restricted to move in a curved 1D space but
interact via the 3D Coulomb operator. For the sake of simplic-
ity, we consider a curvilinear coordinate system henceforth,
where xi = L✓i/(2⇡), and, without loss of generality, we set
L = 2⇡ throughout this study. We refer the readers to Ref. 22
for more details about this paradigm. Because the param-
agnetic and ferromagnetic states are degenerate in strict 1D
systems, we will consider only the spin-polarized electron gas
from hereon.21–23,25–28

A. Fermi fluid

A FF is formed by occupying the n lowest-energy plane
waves (PWs)

�FF
k (x) =

exp (ikx)p
L

, (1)
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with |k |  kF, where kF = (n � 1)/2 is the Fermi wave num-
ber and "F = k2

F/2 is the Fermi energy. It has a (rotationally
invariant) uniform electron density

⇢FF(x) =
X

|k |kF

����FF
k (x)���2 = ⇢0, (2)

and the density matrix is

Pk1k2 =
8><>:
�k1k2 , |k1 |  kF,

0, |k1 | > kF,
(3)

where �k1k2 is the Kronecker delta.29 Thanks to its high
symmetry, the HF energy is simply22

eFF(rs, n) = tFF(rs, n) + vFF(rs, n), (4)

where

tFF(rs, n) =
1
r2

s

 
⇡2

24
n2 � 1

n2

!
, (5a)

vFF(rs, n) =
1
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(5b)

are the kinetic and potential energies, respectively, and  (x) is
the digamma function.29

B. Symmetry-broken states

In order to obtain symmetry-broken (SB) states, we have
written a SCF HF program30 using PWs of the form (1) with

k = �M � 1
2

, . . . ,
M � 1

2
, (6)

where M is the total number of basis functions, which we have
taken up to M = 400 if required. Basis functions with signed
exponents are members of the “left” (L) or “right” (R) set, i.e.,

�FF
k (x) =

8><>:
Lk(x), k < 0,

Rk(x), k > 0.
(7)

This “symmetry-broken” HF (SBHF) program requires one-
and two-electron integrals, and they can be found in Ref. 22.
We would like to mention here that a restoration of symmetry
is possible using the technique developed by Yannouleas and
Landmann31,32 (see also Ref. 14).

In general, the SCF procedure reliably returns the HF
ground state solution, which is always either the FF or the
GSWC.13 Consequently, in order to capture an ESWC, one
requires a suitable guess density prior to starting the SCF
process.30

III. GROUND-STATE WIGNER CRYSTAL

One can, with little difficulty, generate a symmetry-valid
guess density to obtain the commensurate n-peak GSWC. As
depicted in the central column of Fig. 1, starting with the FF
molecular orbitals (MOs), this is performed by cross-mixing
the right and left highest-occupied MOs (HOMOs) with the
opposed lowest-unoccupied MOs (LUMOs),

R(0)
kF

(x) = cos (!)RkF
(x) + sin (!)LkF+1(x), (8a)

L(0)
kF

(x) = cos (!)LkF
(x) + sin (!)RkF+1(x), (8b)

where L(0)
kF

and R(0)
kF

are the post-mixing HOMOs and 0 < ! <
⇡/2 can be chosen to minimize the energy of the two-electron
system composed by the MOs (8a) and (8b). Because this
cross-mixing strategy is somewhat similar to the backward-
scattering process in the Luttinger liquid model,33,34 we will
refer to this as “backward-mixing.”46

The initial density

⇢(0)
GSWC(x) =

n
L
+ A cos(nx) = ⇢FF(x) + �⇢CDW(x, n), (9)

where A= ⇡�1 sin 2!, is simply a CDW, i.e. a fluctuation of the
FF uniform density (2) by a small sinusoidal modulation.35,36

Equation (9) implies that one finds n evenly spaced peaks
around the ring, which corresponds exactly to the symmetry
of the desired GSWC.

Generation of the CDW accompanies the appearance of
band gaps at ±kF.37,38 Thus, one can liken the appearance of
CDW to a “nucleation” event which, when carried through the
SCF process, evolves into the WC, much like the growth of a
crystal upon the addition of a “seed” to a supercooled liquid.
The symmetry of the seed (i.e. the CDW) is paramount as it is
sustained during crystal growth. This observation affords spe-
cial consideration, as Shore et al. have suggested that CDWs
may in fact account for the primordial phase in the growth of a
WC39 (see also Refs. 40 and 41). The present study confirms
their conjecture. The supplementary material contains movies
showing the growth of the initial CDW into a WC during the
SCF process.

A local stability analysis42 shows that, for rs > rSB
s (n), the

GSWC is a genuine minimum of the HF equations while, for
rs < rSB

s (n) the FF is the true HF ground state. rSB
s (n) slowly

tends to zero for large n as (ln n)�1,13 confirming Overhauser’s
prediction that, in the thermodynamic limit (i.e. n! 1), it is
always favorable to break the spatial symmetry.43,44

FIG. 1. Backward-mixing strategy
used to generate various CDWs. MO-
pairs involved in mixing are bridged by
red arrows.
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FIG. 2. WC densities for n = 12, rs = 30, and p = n 1 (bottom), p = n
(middle), and p = n + 1 (top). The FF density is represented as a solid red line
for reference.

IV. EXCITED-STATE WIGNER CRYSTALS

Producing a p-peak CDW with the symmetry of an ESWC
is simply a matter of selecting the right orbitals to mix. For
example, for p > n, one may mix the HOMOs with a pair of
virtual MOs of higher angular momentum than the LUMOs
as illustrated in the right column of Fig. 1, where p = n + 1.
Similarly, one may reduce p by backward-mixing the LUMOs
with a pair of occupied MOs of lower angular momentum than
the HOMOs (see the left column of Fig. 1 where p = n 1).
In either case, the mixed orbitals must be separated by
�k = 2kF + 1 + � (where � = p � n) to create a p-peak CDW,

⇢(0)
WC(x) =

n
L
+ A cos(px) = ⇢FF(x) + �⇢CDW(x, p). (10)

Similarly to the GSWC, starting the SCF with the guess den-
sity (10) will nucleate an ESWC of the desired symmetry,
i.e. possessing p peaks separated by a distance L/p (see the
supplementary material). The electron density of the (n 1)-
and (n + 1)-peak ESWCs is represented in Fig. 2, where the
n-peak GSWC is also reported.

The density matrix Pk1k2 =
Pocc

i ck1ick2i (where cki is the
kth PW coefficient of the ith MO) and the PW population
Pk =

PM
k2

Pkk2 of ESWCs for p= n± 2 are represented in the
left panel of Fig. 3. It is interesting to note that, for p = n + 2,
PWs with |k | = kF + 1 and kF + 2 are unpopulated (i.e.
Pk = 0), as are their harmonics at |k | = (2q+ 1)(kF + 1) and
(2q+ 1)(kF + 1)+ 1 (where q 2N⇤). For unsaturated ESWCs,
sets of PWs from |k | = (2q+ 1)(kF + 1) to |k | = (2q+ 1)(kF + 1)
+ � � 1 are unpopulated. For p ! 1, one reaches the FF
limit.

PW populations of supersaturated ESWCs are distinctly
different to those just described. Rather than depopulating cer-
tain PWs, others are instead highly populated (i.e. Pk ⇡ 1). For
example, the (n 2)-peak ESWC (reported in Fig. 3) has PWs
with |k | = kF and kF�1 highly populated. Generally speaking,
an ESWC with p < n peaks has its n p highest PWs with
|k |  kF highly occupied. Again, when p! 0, one reaches the
FF limit.

For rs > rSB
s (n, p), the p-peak ESWC is lower in energy

than the FF. Similarly to the GSWC, we have found that
rSB

s (n, p) goes to zero at the same (ln n)�1 asymptotic rate,
which extends Overhauser’s prediction to ESWCs. Unsur-
prisingly, a local stability analysis shows that, even for
rs > rSB

s (n, p), the ESWCs correspond to saddle points of the
HF equations and are never true minima. Moreover, the num-
ber of negative eigenvalues (i.e. the order of the saddle point)
increases with |� | and reaches its maximum for the FF.

To further understand this, we have reported in Fig. 3 the
detachment and attachment matrices45 corresponding to the
lowest negative eigenvalue for ESWCs with p = n ± 2 (right
panel). For p = n + 2, it shows that, to lower the energy, one
needs to transfer electron density from PWs with |k | . kF to
the unpopulated PWsLkF+1 andRkF+1. Similarly, for p = n 2,
one needs to transfer the electron density from the highly pop-
ulated PWs LkF and RkF to PWs with |k | & kF + 1. Other
eigenvectors associated with negative eigenvalues yield a sim-
ilar picture. Starting from the FF, following the eigenvectors
corresponding to these instabilities evidences that ESWCs of

FIG. 3. PW populations (top left), density matrix (bottom left), detachment (top right), and attachment (bottom right) matrices for p = n 2 (left) and p = n + 2
(right) with n = 12 and rs = 30. The FF is represented as a solid red line for reference.
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FIG. 4. Schematic representation of the HF manifold and its stationary points.
The GSWC is the true HF ground state, while ESWCs correspond to saddle
points of increasing order.

each variety are inter-connected with each other within the
HF manifold, and ultimately reaches the GSWC. This is
schematically represented in Fig. 4.

A. Energetics

As in previous work,13 we measure stabilization energies
defined as follows:

�eWC(rs, n, p) = eWC(rs, n, p) � eFF(rs, n), (11a)

�tWC(rs, n, p) = tWC(rs, n, p) � tFF(rs, n), (11b)

�vWC(rs, n, p) = vWC(rs, n, p) � vFF(rs, n). (11c)

To extrapolate our results to the thermodynamic limit (i.e.
n! 1),47 we have employed the same procedure as in Ref. 13.

It is instructive to understand the energetics of ESWCs
as functions of rs and p, especially given our claim that these
are excited states. To this end, we have computed �eWC as
a function of rs for n = 19 and 16  p  23. The results are

FIG. 5. Left: �eWC as a function of rs for n = 19 and various p. Right: �tWC
(blue), �vWC (orange), and �eWC (red) as a function of p for n = 19, rs = 15
(solid) and rs = 20 (dashed).

TABLE I. �eWC (in millihartrees) for various WCs in the thermodynamic
limit.

rs

p 2 5 10 15

n 1 �4.89 �7.24 �6.22 �5.00
n 5.94 8.00 6.76 5.54
n + 1 �4.93 �7.37 �6.43 �5.21

depicted in the left graph of Fig. 5. For all densities, it is
clear that the successive removal or addition of peaks to the
GSWC is adjoined to an increase in �eWC. Furthermore, one
finds that rSB

s decreases by the same action. Interestingly, the
change incurred from decreasing p is more significant than that
resulting from its increase.

Figure 5 also evinces that the ESWC energy hierarchy
does change with rs. For instance, the 18-peak ESWC is lower
in energy than the 21-peak ESWC up to rs ⇡ 25, after which the
unsaturated ESWC is energetically favoured. Furthermore, we
find that these transitions only occur between a supersaturated
crystal and an unsaturated crystal, and not between ESWCs of
the same variety. This indicates that of the two crystal species,
the stabilization energy of a supersaturated ESWC decays most
rapidly for large rs, which correlates with the large-rs behavior
of the WC energy,22

eWC(rs, n, p) =
n2

p2

⇡

2n2rs

p�1X

k=1

p � k
sin(k⇡/p)

+O
⇣
r�3/2

s

⌘
. (12)

Stabilization energies extrapolated in the thermodynamic
limit for the p = n±1 ESWCs and the n-peak GSWC are given
in Table I. We find that �eESWC is always higher than �eGSWC.
Thus, these ESWCs are true to their name, as they never are
the HF ground state.

As illustrated in the right graph of Fig. 5, a WC will
only form over a FF if the gain in potential energy (�vWC)
is larger than the loss of kinetic energy (�tWC). For n = 19 and
rs = 15, the GSWC sustains the largest decrease in vWC, at
the cost of a much smaller increase in tWC. Thus, as expected,
�eWC reaches its maximum when p = n. It also neatly reveals
the asymmetry in the character of the supersaturated and unsat-
urated crystals. Clearly,�tWC and�vWC diminish most rapidly
with the removal of peaks. Moreover, both �tWC and �vWC
approach zero with the addition or removal of peaks from the
GSWC, while solutions, where p > 24 or p < 16, are unstable
to the FF at this density. We have found that the stabilization
energy is marginal when |� | is large, corresponding to a very
small fluctuation of the FF density. However, it is easier to
create ESWCs with large |� | when n increases.

V. MO ENERGIES

To explore the electronic properties of ESWCs, we have
studied the MO energies "k and, in particular, their HOMO-
LUMO gap. The results are reported in Fig. 6 for n = 19 and
rs = 15. In the FF, the HOMO-LUMO gap is small,47 giving
rise to a metallic character, while the GSWC exhibits a large
gap at k = ±kF. Depending on the magnitude of the gap, the
GSWC behaves either as a semi-conductor or an insulator.
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FIG. 6. MO energies "k as a function of k for various WCs with n = 19 and rs = 15. Occupied and virtual MOs are represented by solid and dashed lines,
respectively. The FF MO energies are represented in red for reference.

However, for the sake of discussion, we will assume that large
gaps are always insulating.

Interestingly, for p = n + 1, one virtual MO (with positive
or negative momentum) is lowered to the region of the occu-
pied set. This induces an overall destabilization of the occupied
MOs compared to the GSWC. The gap becomes asymmetric
with one half resembling the GSWC, and the other resembling
the FF. For p = n 1, the opposite scenario is drawn. Here,
one occupied MO is raised in energy to the neighborhood of
the unoccupied set, and so the gap on this side disappears.
The addition or removal of two or more peaks results in the
loss of gaps altogether, as in both examples, the energies of
the HOMOs and LUMOs become similar (see leftmost and
rightmost graphs in Fig. 6).

In the thermodynamic limit, ESWCs would possess
unusual conductivity properties given the form of their band
gap. For instance, in the (n 1)-peak ESWC, the high-energy
electron is only conducting in the direction of their initial
momentum. In this sense, the p = n 1 ESWC is an anisotropic
or “chiral” conductor (in reference to the chiral Luttinger liq-
uid model48). Similarly, we can infer that the (n 2)-peak
ESWC exhibits the properties of an isotropic or a chiral con-
ductor, since it possesses conductive electrons of both positive
and negative momenta. In contrast, the unsaturated ESWCs
would exhibit this tendency as � grows large, while behaving
as insulators when � is small.

VI. CONCLUDING REMARKS

We have discovered a wide range of novel SB phases in
the 1DEG. These states, which belong to either the supersatu-
rated or unsaturated varieties, were found to be interconnected
within the HF manifold, forming a “fountain” of saddle points
linking the GSWC to the FF. Subsequently, it was shown that,
in the thermodynamic limit, an ESWC is always lower in
energy than the FF but less stable than the GSWC. These
states possessed unusual properties, which differed substan-
tially between the varieties. For example, we found that some
supersaturated ESWCs behave as chiral conductors due to
asymmetrical gaps. PW populations of ESWCs are also altered
significantly in comparison to the GSWC, with unsaturated
ESWCs possessing sets of vacant PWs with |k | > kF, and
supersaturated ESWCs possessing highly populated PWs with
|k |  kF.

As a concluding remark, we would like to mention that one
could understandably ask what would be the effect of introduc-
ing electronic correlation for these excited states. Generally,

the main effect of correlation is to lower the energy of the
FF more than the WC, thus shifting the fluid-to-crystal transi-
tion to lower densities. For example, in 3D, instead of being
predicted around rs = 5 by the HF approximation, the fluid-to-
crystal transition (estimated using near-exact diffusion Monte
Carlo calculations) appears around rs = 100.3,14,16,17,49–52 In
2D, the HF crystallization happens around rs = 2 while diffu-
sion Monte Carlo calculations predict a fluid-to-crystal tran-
sition around rs = 30.3,14,18,19,53–55 We expect the difference
between the HF and “exact” transition to be even smaller for
1D systems. Although the HF theory gives an approximate
description of ESWCs, we believe that it is fundamental to
understand the strengths and weaknesses of different methods,
especially because the correlation energy must be evaluated
with respect to the true HF ground state.13 Moreover, even in
more advanced, correlated methods such as quantum Monte
Carlo, the antisymmetry of the wave function is generally
provided by a single HF determinant. We will further investi-
gate this interesting and stimulating question in a forthcoming
paper.

SUPPLEMENTARY MATERIAL

See supplementary material for movies that illustrate the
evolution of a CDW to a WC during the SCF process for n = 12
at rs = 30.
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