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Molecular electronic structure in one-dimensional
Coulomb systems

Caleb J. Ball,* Pierre-François Loos and Peter M. W. Gill

Following two recent papers [Phys. Chem. Chem. Phys., 2015, 17, 3196; Mol. Phys., 2015, 113, 1843], we

perform a larger-scale study of chemical structure in one dimension (1D). We identify a wide, and

occasionally surprising, variety of stable 1D compounds (from diatomics to tetra-atomics) as well as a

small collection of stable polymeric structures. We define the exclusion potential, a 1D analogue of the

electrostatic potential, and show that it can be used to rationalise the nature of bonding within

molecules. This allows us to construct a small set of simple rules which can predict whether a putative

1D molecule should be stable.

I. Introduction

Recently, we introduced CHEM1D, a program for electronic structure
calculations on one-dimensional (1D) molecules.1,2 Unlike previous
workers who used softened3,4 or otherwise altered5–11 interelectronic
interactions in their studies of 1D chemical systems, CHEM1D
employs the unadorned Coulomb operator |x|�1. This potential
introduces a non-integrable singularity which requires special treat-
ment. Building on compelling arguments from the mathematical
physics community,12–16 our program avoids Coulombic diver-
gences by solving the Schrödinger equation with Dirichlet
boundary conditions that require the wavefunction to vanish
wherever two particles—electrons or nuclei—touch.

The Dirichlet conditions have three chemically interesting
consequences. First, that molecular energies are spin-blind,
i.e. they are invariant with respect to spin-flips. Second, that a
‘‘super-Pauli’’ exclusion rule applies, i.e. an orbital cannot be
occupied by more than one electron. Third, that the nuclei
become impenetrable, i.e. electrons are unable to tunnel
through them.17–23

The severity of these effects means that this model does not
reflect the same type of experimental systems as the ‘‘quasi-1D’’
methods characterised by softened Coulomb interactions,
which permit the nuclei to be penetrable and electrons to pair
within spatial orbitals. This reflects situations where the 1D
confinement is not strict, and so they are well suited to
modelling confined experimental systems such as ultracold
atoms confined within a 1D trap.24–26

In contrast, the Coulomb interaction used in this work
describes particles which are strictly restricted to move within

a 1D sub-space of three-dimensional space. Early models of 1D
atoms using this interaction have been used to study the effects
of external fields upon Rydberg atoms27,28 and the dynamics of
surface-state electrons in liquid helium.29,30 This description of
1D chemistry also has interesting connections with the exotic
chemistry of ultra-high magnetic fields (such as those in
white dwarf stars), where the electronic cloud is dramatically
compressed perpendicular to the magnetic field.31–33 In these
extreme conditions, where magnetic effects compete with
Coulombic forces, entirely new bonding paradigms emerge.31–38

Unfortunately, our previous investigation1 of 1D chemistry
suffered from debilitating numerical stability issues. The CHEM1D
program uses basis sets related to the exact wavefunctions2 of
the hydrogen molecule cation H2

+ but these quickly develop
near-linear-dependence problems that prevent CHEM1D from
achieving basis set convergence even for relatively modest
molecular systems.

In this paper we describe LEGLAG, a more numerically stable
version of CHEM1D, which can be applied to a wider range of
molecules to gain deeper insight into 1D chemistry. In Section II
we introduce the orthogonal set of basis functions which LEGLAG

employs and then briefly discuss the structure of the program. In
Section III we undertake an extensive study of 1D molecules,
identifying multiple classes of stable species and the factors
which lead to their stability. Finally, in Section IV, we present a
set of rules that govern chemical bonding in 1D. Unless other-
wise stated, atomic units are used throughout.

II. Theory and implementation

Under Dirichlet boundary conditions, nuclei are impenetrable
to electrons and each electron in a molecule is therefore
confined to a ray or line segment by the nuclei closest to it.
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In this way, the M nuclei divide 1D space into two semi-infinite
domains and M� 1 finite domains. Each domain supports a set
of orbitals that vanish at the boundaries of the domain and
outside it. Fig. 1 illustrates this for a small diatomic molecule.

In order to specify the constitution of a molecule, we employ a
notation in which atomic symbols indicate nuclei and subscripts
indicate the numbers of electrons in the intervening domains.
For example, 1Li4B3H1 is a triatomic with a lithium, boron and
hydrogen nucleus arranged from left to right in that order. There
is one electron to the left of the lithium nucleus, four electrons
between the lithium and the boron nuclei, three electrons
between the boron and the hydrogen nuclei and one electron
to the right of the hydrogen nucleus. In the present work, we
consider only ground states and assume that the n electrons
within a domain singly occupy the n lowest-energy orbitals.

A. Basis sets

There are three types of domain—left, right and middle—and we
require a set of basis functions for each. The functions should
vanish at the domain boundaries and form a complete set.

CHEM1D uses the functions

Lm(s) = 2m3a1/2s exp(�m2s) (1a)

Rm(t) = 2m3a1/2t exp(�m2t) (1b)

EmðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1Þ1=2

op1=2

s
1� z2
� �m

(1c)

OmðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2mþ 1Þ3=2

op1=2

s
z 1� z2
� �m

(1d)

where s = a(A � x), t = a(x � B) and z = (x � C)/o are the reduced
coordinates in the left, right and middle domains respectively,
A and B are the positions of the leftmost and rightmost nuclei,
and C and o are the center and halfwidth of a middle domain,
a 4 0 is an exponent, and (a)n is the Pochhammer symbol.39

The Lm and Rm functions are used in the left and right domains,
respectively. Em and Om are used in the middle domains.

One disadvantage of these functions is their increasing
linear dependence as the size of the basis set grows, which
creates numerical instability in the orthogonalisation step of
the Pople–Nesbet Hartree–Fock (HF) method.40 This limits the

size of basis set that can be employed before unacceptable
numerical precision is lost.

A second disadvantage of this basis set is that, because the Em

and Om functions are increasingly peaked around the middle of the
domain, they struggle to describe details of the molecular orbitals
near domain boundaries. This becomes particularly problematic
when the domain contains more than one electron.1

In contrast, LEGLAG uses the basis functions

LmðsÞ ¼
ffiffiffiffiffiffiffiffiffi
8a
ðmÞ2

s
sL2

m�1ð2sÞ expð�sÞ (2a)

RmðtÞ ¼
ffiffiffiffiffiffiffiffiffi
8a
ðmÞ2

s
tL2

m�1ð2tÞ expð�tÞ (2b)

MmðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 3=2

oðmÞ4

s
P2
mþ1ðzÞ (2c)

where L2
m and P2

m are second-order associated Laguerre and
Legendre polynomials.39 (Our package’s name stems from its
use of Legendre and Laguerre polynomials.) The Lm, Rm and Mm

functions are used in the left, right and middle domains,
respectively, and are mutually orthogonal. The Mm are evenly
distributed across the domain, as Fig. 2 shows.

B. Integrals

In earlier work, we discovered1 that HF calculations40 give unexpect-
edly accurate results in 1D. It also appears, in contrast to the
situation in 3D,41–43 that the Møller–Plesset (MP) perturbation
series40 in 1D often converges rapidly to the exact energy.2 However,
to perform such calculations it is necessary to evaluate the integrals

Fm
��Fn� �

¼
ð
DmnðxÞdx ¼ dmn (3a)

Fm T̂
�� ��Fn� �

¼ 1

2

ð
Fm
0 ðxÞFn

0 ðxÞdx (3b)

Fm V̂
�� ��Fn� �

¼
ð
DmnðyÞ
jx� yjdy (3c)

FmFn
��FlFs

� �
¼
ðð

DmnðxÞDlsðyÞ
jx� yj dxdy (3d)

where F A {L,M,R}, Dmn(x) = Fm(x)Fn(x) is a density component,
T̂ = �r2/2 is the kinetic energy operator and dmn is the
Kronecker delta function.39

If the four basis functions are in the same domain, the
singularity of the Coulomb operator causes (FmFn|FlFs) to diverge.
However, the antisymmetrized integral

(FmFn||FlFs) = (FmFn|FlFs) � (FmFs|FlFn) (4)

is finite and can be found from quasi-integrals1 using

(FmFn||FlFs) = {FmFn|FlFs} � {FmFs|FlFn} (5)

Because Rm is the image of Lm under inversion through the
molecular mid-point, formulae involving only Rm and Mm can be

Fig. 1 The ground state of the HLi molecule. Black circles represent the
nuclei. Each coloured region represents a singly-occupied orbital and
the corresponding coloured diamond shows the most likely position of
the electron.
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found from the equivalent formulae involving Lm and Mm. We
will therefore not discuss the former.

Integral formulae are given in Appendix A and most of the
necessary special functions are evaluated by calling external
libraries. However, because we invariably need a range of values
for the a and b parameters in the Tricomi confluent hyper-
geometric functions39 U(a,b,z) required for Coulomb integrals
involving the Lm functions, it is more efficient to compute
these functions recursively. It has been shown that backwards
recurrence in the a parameter is numerically stable and our
algorithm exploits this.44 To obtain the starting values for this
recurrence we use an asymptotic expansion that is valid when
2a� b is large and positive.45,46 Our numerical experiments have
shown that for arguments z 4 10 this expansion converges at
an unacceptable rate. Our algorithm therefore uses Miller’s
method39,47 when z 4 8.

We detect and avoid computing negligible integrals using
the Coulomb upper bound48

|(P|Q)| r min(VP*SQ*,SP*VQ*) (6)

where VP* is the maximum potential of P(x) in the domain of
Q(x) and SQ* is the integral of |Q(x)|. The V* and S* values can
be found using expressions in Section A3.

C. Implementation

Aside from integral evaluation, LEGLAG closely follows the algo-
rithms employed in CHEM1D. For a comprehensive description
of these, see the paper by Ball and Gill.1

LEGLAG has been implemented using the Python program-
ming language (version 3.41) in combination with the Cython

language extension for compute-intensive bottlenecks. It
employs the external Numpy library for data structures and
linear algebra operations and the Scipy library for computing
some of the special functions.

A significant feature of LEGLAG is that it can be easily
controlled by external Python scripts. In generating the data
presented in Section III, we have made extensive use of scripts
that use the numerical function minimiser available in Scipy to
optimize molecular geometries.

D. Exclusion potential

In 3D, the molecular electrostatic potential49 (MESP) is the
limit of the ratio of the Coulomb energy of a test particle to
the magnitude of its charge, as that charge approaches zero.
It is a potent tool for understanding chemical behaviour and
can reveal, for example, electrophilic or nucleophilic regions.
Unfortunately, however, the MESP diverges at all points in
a 1D system except where the electron density vanishes.21

Therefore, to define a meaningful potential in a 1D molecule,
we must insist that the test particle create a new Dirichlet
node at its position. We call the resulting potential the
‘‘exclusion potential’’ to emphasise that, in contradistinction
to the 3D analog, the test particle in 1D excludes electrons
from its neighbourhood and thereby significantly perturbs
the system.

Fig. 3 shows the exclusion potential for a 1He1 atom as well
as the perturbed orbitals for a given position of the test particle.
Note how the Dirichlet node created by the test particle
compresses the right orbital, and prevents the electron which
occupies it from extending to the right.

Fig. 2 A comparison of the basis functions used in CHEM1D (top row, in red) with those used in LEGLAG (bottom row, in blue). A finite domain is shown on
the left and an infinite domain on the right.
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III. Results and discussion

To begin to understand the nature of chemical bonding in 1D,
we have performed an extensive search for stable molecules.
After presenting accurate atomic energies, we will discuss the
structures of a wide variety of small molecules and a small set
of polymeric systems.

The periodic table in 1D has only two groups2 and we will
frequently refer to alkalis (H, Li, B,. . . which have an odd number
of electrons and a permanent dipole moment) and nobles
(He, Be, C,. . . which have an even number of electrons, are
symmetrical and have no dipole).

All of the calculations that we report use 30 basis functions
in each of the left and right domains and 50 functions in each
of the finite domains. We will refer to this as the (30,50) basis
set. We report only the digits that have converged as the basis
set is increased to the (30,50) set.

A. Atoms

Our first task was to choose the exponent a in Lm(x) and Rm(x)
that yields the best energies as the basis set is increased. We
expected that a would be determined largely by the innermost
(and lowest-energy) orbitals, and that therefore a E Z, where Z
is the nuclear charge of the atom in question. We were there-
fore surprised to find that this is not the case and that, except
for hydrogen, the optimal exponent is always close to a = 2, a
compromise that attempts to describe both the compact inner

orbitals and the diffuse outer orbitals. After this discovery, we
used a = 2 for all atoms.

In our first foray into 1D chemistry,2 we used multiple-precision
arithmetic in MATHEMATICA

50 to compute the near-exact HF, MP2
and MP3 energies, ionisation energies and electron affinities of the
ground-state atoms up to 5Ne5. Our subsequent (double-precision)
CHEM1D program was often unable to reproduce these energies,
principally because of its inadequate basis functions (1).
Table 1 shows that our (double-precision) LEGLAG calculations
are much more successful in capturing the energies but
the (30,50) basis still struggles for the largest atoms and, in
particular, fails to yield any significant figures for the electron
affinity of 4F5.

B. Diatomics

Notwithstanding the deficiencies of the (30,50) basis for the largest
atoms, LEGLAG is able to treat a far wider variety of molecular
systems than is possible in CHEM1D and we have surveyed the
diatomics with atoms up to oxygen and with all possible electronic
configurations that can be generated from the ground-state atoms.
Table 2 reports the bond lengths and energies of the diatomics
that we have found to be stable, i.e. lower in energy than their
constituent atoms. This set of results, which greatly extends our
previous efforts,1,2 allows us significantly more insight into the
mechanics of 1D bonding.

There appear to be four major factors that govern the
binding between two atoms:

(1) Valence attraction to an alkali nucleus
(2) Nuclear shielding
(3) Dipole interactions
(4) Number of occupied domains

We now discuss each of these in turn, and pictorial representa-
tions can be seen in Fig. 5.

Valence-nucleus attraction (Fig. 5a) is strongest on the
electron-deficient side of the alkali; on the other side of an
alkali, or on either side of a noble, such an interaction is
shielded too effectively. The four configurations of the HB
molecule, viz. 1H3B2, 1H2B3, H3B3 and H4B2, illustrate this.
The first three are bound and, in each, at least one of the
atoms presents its electron-deficient side to the other atom.

Fig. 3 The exclusion potential (red) of a 1He1 atom (blue). The blue
regions show the occupied orbitals when computing the exclusion
potential at the position of the red dot.

Table 1 Total energies (Eh), ionization energies and electron affinities (eV) of 1D atoms using the (30,50) basis set

Atom

Total energies Ionization energies Electron affinitiesa

�EHF �EMP2 �EMP3 HF MP2 MP3 HF MP2 MP3

H 0.500000 0.500000 0.500000 13.606 13.606 13.606 3.893 3.939 3.961
He 3.242922 3.244986 3.245611 33.822 33.878 33.895 — — —
Li 8.007756 8.01112 8.01179 4.486 4.517 4.522 1.395 1.410 1.414
Be 15.415912 15.4226 15.4236 10.348 10.400 10.408 — — —
B 25.35751 25.3671 25.3684 2.068 2.09 2.099 0.64 0.65 0.65
C 38.09038 38.105 38.107 4.670 4.719 4.73 — — —
N 53.569 53.59 53.6 1.1 1.1 1.1 0.3 0.3 0.3
O 71.9293 71.95 71.96 2.516 2.548 2.556 — — —
F 93.1 93.2 93.2 0.5 0.5 0.5
Ne 117.31 117.35 117.35 1.5 1.5 1.5 — — —

a The electron affinities of He, Be, C, O and Ne are omitted because the anions of these species are auto-ionising.1
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The fourth configuration, in which each atom presents its
electron-rich side to the other, is unstable.

It follows that two nobles will not bind, as neither has an
electron-deficient side. In 3D, noble gas atoms can bind weakly
through dispersion interactions,51–54 but we have not seen
evidence of this in 1D. This may be an artefact of the (30,50)

basis but we believe that such binding, if it exists, is likely to
be very weak.

Nuclear shielding (Fig. 5b) is also critical. Lighter atoms
bind more strongly because their nuclei are less shielded and
this is true a fortiori of the completely unshielded H atom. As
the shielding increases, binding energies drop rapidly, and
bond strengths in nitrogen-containing molecules like 1Li5N4

and 3C6N4 are in the millihartree (mEh) range.
Dipole interactions (Fig. 5c) also influence bond strengths.

The H1H1 and 1H1He1 molecules each hold a single electron in

Table 2 Equilibrium bond lengths (Bohr), total energies (Eh) and dissociation energies (mEh) of diatomic molecules

Molecule
Bond length Total energy Dissociation energy

AB HF MP2 MP3 �EHF �EMP2 �EMP3 HF MP2 MP3

H1H1 2.636 2.637 2.638 1.184572 1.185418 1.185728 184.572 185.418 185.728
1H1He1 2.025 2.027 2.027 3.880313 3.882619 3.883301 137.39 137.633 137.691
H2Li2 5.345 5.323 5.320 8.544163 8.547920 8.548659 36.407 36.800 36.871
1H2Li1 5.152 5.141 5.142 8.681782 8.686367 8.687589 174.025 175.25 175.80
1H2Be2 3.966 3.961 3.962 16.079548 16.08707 16.08845 163.636 164.50 164.85
1H3B2 8.880 8.810 8.806 26.020047 26.0310 26.0329 95.492 96.1 96.1
1H2B3 3.298 3.296 3.296 25.957601 25.96793 25.96949 100.093 100.85 101.13
H3B3 10.349 10.238 10.235 25.863890 25.8736 25.8748 6.382 6.5 6.5
1H3C3 6.666 6.635 6.633 38.756672 38.7721 38.7745 166.290 167.4 167.9
1H4N3 14.316 14.268 14.257 54.22372 54.244 54.247 52.470 53 53
1H3N4 5.407 5.392 5.392 54.218224 54.2379 54.2407 149.222 150.2 150.5
H4N4 19.20 18.168 18.131 54.0703 54.089 54.091 1.3 1 1
1H4O4 10.468 10.383 10.378 72.590721 72.616 72.620 110.787 112 112
1He2Li2 4.606 4.586 4.584 11.260655 11.266223 11.267543 9.977 10.118 10.144
1He3B3 11.174 11.170 11.003 28.600892 28.6126 28.6145 0.461 0.5 0.5
1Li3Li2 8.693 8.644 8.637 16.064647 16.07183 16.07326 49.134 49.59 49.69
2Li3Be2 7.050 7.000 6.996 23.452479 23.46286 23.46460 28.811 29.16 29.22
2Li4B2 13.330 13.228 13.157 33.418876 33.4323 33.4343 53.611 54.1 54.2
1Li4B3 14.007 13.999 13.778 33.379031 33.3922 33.3941 13.766 14.0 14.0
2Li4C3 10.435 10.358 10.336 46.140625 46.1588 46.1614 42.486 43.0 43
2Li4N4 8.956 8.892 8.884 61.588547 61.6112 61.6143 11.788 12.3 12.4
2Li5N3 19.552 19.258 19.229 61.63192 61.654 61.658 44.7 45 45
1Li5N4 21.546 21.092 21.099 61.5802 61.602 61.605 3.5 3 3
2Li5O4 14.943 14.769 17.748 79.987067 80.015 80.019 49.98 51 51
2Be4B3 12.566 12.566 12.381 40.776885 40.7932 40.7955 3.464 3.6 3.6
2Be5N4 20.571 19.884 19.869 68.9851 69.010 69.014 0.2 0 0
2B5B3 19.349 19.233 19.003 50.733908 50.753 50.756 18.891 19 19
3B5C3 16.040 16.009 15.779 63.457101 63.481 63.484 9.21 9 9
3B6N3 26.480 25.946 25.912 78.949 78.977 78.981 22 22 22
2B6N4 27.514 26.939 26.869 78.933 78.961 78.96 6 6 6
3B6O4 21.138 20.799 20.735 97.3018 97.34 97.34 14.9 15 15
3C6N4 22.880 24.906 24.801 91.660 91.69 91.70 1 1 1
3N7N4 30.301 31.892 33.989 107.14 107.18 107.19 10 10 10
4N7O4 29.583 28.780 28.727 125.50 125.54 125.55 0 0 0

Fig. 4 Variation of diatomic bond lengths (in Bohrs) with the number of
electrons in the middle domain. Data are grouped according to the
character of the molecule: aligned alkali–alkali, opposed alkali–alkali,
and alkali–noble. Quadratic least-square fits are shown as dotted lines.

Fig. 5 1D analogues of Lewis dot diagrams representing the major factors
governing diatomic bonding: (a) valence shell interactions, (b) nuclear
shielding, (c) dipole interactions and (d) number of occupied domains.
More stable configurations are represented in green, less stable in red.
Dotted circles represent unoccupied orbitals.
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the internuclear domain and, naively, one might expect that

1H1He1 would be more strongly bound because of its shorter
bond and greater attraction between the bonding electron and
nuclei. However, the bond strength in H1H1, where the atomic
dipoles are favourably aligned, exceeds that in 1H1He1 by roughly
50 mEh. Similar arguments explain the relative strengths in
H2Li2 and 1He2Li2. The rare instances, e.g. 2Li4N4, where a
diatomic forms with opposed dipoles are driven by the attraction
between two electron-deficient sides.

The number of occupied domains (Fig. 5d) is also relevant,
as the very different bond energies in the HB diatomics show.
Why, for example, is H3B3 is so much more weakly bound than

1H3B2, despite both having favourable dipole alignments? The
answer is that the six electrons are squeezed into two domains
in H3B3, rather than three in 1H3B2. To form the former from
the latter, the electron from the left domain is promoted into
a high-energy orbital in the right domain and this incurs a
large energy cost.

In our earlier work,1,2 we discovered a few surprisingly long
bonds. However, the results in Table 2 show that gargantuan
bond lengths are not at all uncommon in 1D. Fig. 4 reveals a
strong correlation between the length of the middle domain of
a diatomic and the number of electrons occupying it. If the data
are grouped into those with aligned dipoles, those with opposed
dipoles and those with a noble atom, strong parabolic trends
emerge. Similar behaviour is found for estimates of atomic radii.2

This similarity might suggest that there is no significant
distortion of atomic densities during the formation of a diatomic
molecule. Fig. 6 depicts the difference in a selection of diatomic
electron densities and the corresponding sum of atomic densities,
showing that, in the majority of cases, this is true.

More specifically, this assertion is true when the bonding
alkali, i.e. the alkali with its electron deficient side in the bonding
domain, is heavier than H. In these cases we see that the outer-
most electron of the other atom occupies the position of the
LUMO of the bonding alkali. The orbital that this electron

occupies does not appreciably change in shape, however. As a
result the bond length is completely determined by the shape of
the atomic species.

The exceptions to this are those diatomics where the
bonding alkali is an H atom. The unshielded proton of the
H atom is significantly more reactive than other species, an
effect we also see when looking at bond strengths. This results
in the outer electron of the other atom occupying an orbital
similar to the LUMO of the H atom, rather than the HOMO of
its parent atom. This creates a noticeable distortion of the
atomic electron densities in such cases.

The fact that each electron is largely isolated within its local
domain provides little opportunity for complicated inter-
electronic interactions. As a result, we find that the qualitative
and quantitative effects of electron correlation are usually
small. The correlation energy in 1D constitutes a much smaller
fraction (typically less than 0.1%) of the total energy than in 3D.
Moreover, it largely cancels between reactants and products so
that correlated bond energies are typically within 1 mEh of their
uncorrelated values. Correlated bond lengths are also similar to
uncorrelated ones, especially in relative terms. Accordingly, we
use HF structures henceforth.

C. Triatomics

We also undertook a systematic search for stable triatomic
molecules, examining all possible electronic configurations
generated by ground-state atoms up to, and including, carbon.
Many stable species emerge, and we report bond lengths, total
energies, atomisation energies and bond energies for some of
these in Table 3. For the reasons discussed above, we report
atomisation and bond energies only at the HF level.

In our earlier exploration1 of 1D reactivity, we concluded
from a small set of atomisation energies that the bonds in a
triatomic ABC are similar in strength to those in AB and BC. We
argued that the small deviations could be rationalised by
considering the A–C dipole interaction.

Fig. 6 Electronic densities (red regions) and difference between molecular and atomic densities (blue lines) of six diatomic molecules. In the top row
these are 1H2Li1, 2Li3Li1 and 3B4Li1. In the bottom these are 1H2Be2, 2Li3Be2 and 3B4Be2.
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The results in Table 3 largely support this view. For example,
the H–Li and Li–Li bond strengths in H2Li3Li2 are 39 and
52 mEh, which are slightly higher than those in H2Li2 (36 mEh)
and 1Li3Li2 (49 mEh), and this increased stability can be
ascribed to the favourable dipole alignment. In contrast, the
Li–H and H–B bond strengths in 2Li2H2B3 fall from 36 and
100 mEh to 20 and 84 mEh, respectively, because the boron
dipole is opposed to those of the lithium and hydrogen atoms.
The 3B5C5B3 molecule also has opposed dipoles and the B–C
bond energy drops from 9 mEh in the diatomic to 7 mEh in
the triatomic.

We have also found two classes of triatomic that one might
have expected to be unstable. The first consists of a noble
flanked by two alkalis with aligned dipoles (e.g. H2He3B3 and

2Li2He4B2) and the second consists of two nobles on one side
of an alkali (e.g. 1He2He2Li2 and 3B3He4C3). Such molecules
contain bonded atoms that do not form stable diatomics, e.g.
the H2He1 moiety in H2He3B3 or the 1He4C3 moiety in 3B3He4C3.

The exclusion potentials in Fig. 7 show the attractive force
which binds these unusual ABC triatomics. In each case, the

diatomic fragment BC generates a small positive potential in its
left domain which can then interact favourably with the valence
electron of A.

D. Tetra-atomics

Table 4 presents results for the stable tetra-atomic molecules
formed by dimerising 1H3B2, 1H2B3 and H3B3. These results
confirm that the length and strength of a bond are largely
independent of its environment but, as in the triatomic
study, we find significant increases in some bond strengths
as a result of favorable dipole interactions. For example, in

2B3H1H3B3, the central H–H bond is approximately 50 mEh

stronger than that in H1H1, and the right bond is almost four
times as strong as in H3B3. However, this effect is not
universal. For example, the dipoles in 1H3B5B3H are all
aligned, yet the individual bonds are not strengthened and,
indeed, the central bond is weaker than in the corresponding
diatomic. This is because the central domain houses five
electrons, forcing the bond to be long (418 Bohrs) and greatly
reducing the dipole stabilisation.

Table 3 Equilibrium bond lengths (Bohr), total energies (Eh), HF atomisation energies (Eatom, mEh) and HF bond dissociation energies (EAB and EBC, mEh)
of triatomic molecules

Molecule
Bond length Total energy

Eatom EAB EBCABC RAB RBC �EHF �EMP2 �EMP3

H2H2B3 17.620 3.296 26.458006 26.468322 26.469874 100.497 0.404 —a

1H1H3B2 2.795 8.942 26.735055 26.74627 26.74818 310.500 215.008 89.366
H2He3B3 13.090 9.665 29.101690 29.11340 29.11529 1.260 0.799 —a

1H1He4C3 2.025 16.294 41.972376 41.9891 41.9917 139.071 —a 1.680
H2Li3Li2 5.336 8.860 16.604027 16.611622 16.61313 88.514 39.380 52.107
1H2Li3Be2 5.243 7.048 24.126866 24.13849 24.14078 203.198 174.387 29.172
1H2Li4B2 5.387 13.356 34.094432 34.1091 34.11168 229.167 175.556 55.142
1H2Be3Li2 3.946 7.047 24.111979 24.12320 24.12529 188.310 159.500 24.674
H3B4Li2 10.289 13.443 33.925825 33.9393 33.9414 60.560 6.949 54.178
1H3B4Li1 9.099 14.048 34.040693 34.0553 34.0579 108.382 82.704 12.890
H3B5B3 10.281 19.510 51.24102 51.2605 51.2631 26.006 7.115 19.62
1H3B5B2 9.205 19.492 51.39508 51.4159 51.4192 113.018 74.956 17.53
1H3C3H1 6.649 6.649 39.422734 39.4393 39.44217 332.352 166.062 166.062
1H3C5B3 6.632 16.058 64.12276 64.1480 64.1517 174.867 165.657 8.577
1He1H3B3 2.027 10.290 29.244835 29.25684 29.25879 144.404 138.023 7.014
1He2He2Li2 11.009 4.601 14.503682 14.511311 14.513255 10.081 0.104 —a

1He2Li3Li2 4.601 8.737 19.317942 19.327327 19.329411 59.507 10.373 49.530
1He3B4Li2 10.949 13.320 36.662290 36.6778 36.6805 54.103 0.492 53.642
1Li2H2Li2 5.210 5.524 16.749370 16.75602 16.759498 233.857 197.450 59.832
1Li2H3B3 5.191 10.017 34.055957 34.07025 34.07275 190.692 184.310 16.667
2Li2H2B3 5.619 3.338 33.985753 33.999903 34.002215 120.488 20.395 84.081
2Li2H3C3 5.533 6.789 46.820115 46.83917 46.84223 221.976 55.686 185.569
2Li2He3Be2 4.574 12.299 26.677407 26.68967 26.69200 10.817 —a 0.840
2Li2He4B2 4.514 20.723 36.623610 36.6388 36.6414 15.423 —a 5.45
1Li3Li3Li2 8.69 8.966 24.127495 24.13851 24.140705 104.226 55.092 55.092
2Li3Li3Be2 8.833 7.04 31.51126 31.52547 31.52797 79.832 51.021 30.698
1Li3Li4B3 8.715 14.190 41.440738 41.457727 41.46047 67.717 53.951 18.583
2Li3Li4C3 8.948 10.461 54.201813 54.2238 54.2272 95.918 53.432 46.784
2Li3Be3Li2 7.077 7.075 31.482743 31.49682 31.49927 51.318 22.507 22.507
1Li4B5B3 13.937 19.704 58.75720 58.7802 58.7835 34.426 15.54 20.66
2Be2H3B3 3.983 10.32 41.445882 41.46312 41.46577 172.461 166.08 8.825
2Be4B5B3 12.580 19.444 66.15358 66.1798 66.1834 22.652 3.761 19.19
2B4H2B3 25.12 3.288 51.3170 51.3367 51.3397 10.198 1.9 —a

3B3H3C3 10.164 6.747 64.126951 64.15210 64.15578 179.060 12.770 172.678
3B3He4C3 9.794 18.02 66.69221 66.7183 66.7221 1.39 —a 0.93
2B5Be4B3 30.000 12.358 66.1349 66.1608 66.1644 4.00 0.5 —a

3B5C5B3 16.126 16.129 88.82132 88.8553 88.8597 15.916 6.71 6.71

a After breaking this bond, the remaining diatomic is unstable.
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In most of the stable species ABCD, the central pair BC is also
a stable diatomic. However, this is not the case in 3B2H4B3H and

2B3H2H2B3. In both of these, the central bond is significantly
weaker than in the other tetra-atomics and they are therefore
analogous to the loosely associated triatomics in Table 3.

We also found two molecules, 3B2H3B3H1 and 1H3B2H3B3,
where each individual bond is present in a stable diatomic but
the overall tetra-atomic is not bound. The exclusion potential of
the fragment 3B2H1, which is present in both 3B2H4B3H and

3B2H3B3H1, becomes positive beyond 8 Bohr to the right of the
H atom and this provides the driving force for bonding in the
molecule 3B2H4B3H. However, 3B2H3B3H1 remains unbound
because of the unfavourable dipole interactions between the left
boron atom and the other atoms. Similar dipole interactions also
appear in 1H3B2H3B3. It is possible that the 3B2H1 and 2B3H1

fragments in 3B2H3B3H1, or the 1H3B2H1 and 2B3 fragments in

1H3B2H3B3 associate weakly at a very large separation but that
the (30,50) basis cannot adequately describe this.

E. Polymers

In our early work on 1D chemistry,2 we examined the bond
length and energy within the hydrogen nanowire—an infinite
chain of alternating protons and electrons—using a periodic
HF calculation. Using LEGLAG, we can study the same system
as the extrapolated limit of a sequence of finite chains and
we can also examine other homogeneous, or heterogenous,
polymers.

For each polymer, we studied a range of short oligomers and

fit their properties to the functions of the type
P2
k¼0

akn
�k, where n

is the number of monomer units in the oligomer. We then
extrapolated these functions to the infinite polymer, i.e. n - N.
For computational efficiency, we used the (30,30) basis set,
rather than the (30,50) set used above. Our results are sum-
marised in Table 5 and we report only the digits that have
converged as the basis set is increased to the (30,30) set.

Results for the hydrogen polymer agree with our periodic
calculations2 and confirm that the H–H bond becomes longer
(stretching from around 2.6 Bohrs to 2.8 Bohrs) and stronger
upon polymerisation. The lengthening/strengthening trend is
ubiquitous and results from a competition between growing
numbers of repulsive interelectronic interactions (which are
reduced if the polymers expand by a few percent) and an
accumulation of favourable dipole interactions (which stabilise
the polymer relative to the monomers).

Table 4 HF equilibrium bond lengths (Bohr), total energies (Eh), HF atomisation energies (Eatom, mEh) and HF bond dissociation energies (EAB, EBC and
ECD, mEh) of tetra-atomic molecules

Molecule
Bond length Total energy

Eatom EAB EBC ECDABCD AB BC CD �EHF �EMP2 �EMP3

3B2H4B3H 3.284 23.316 10.349 51.822463 51.842 51.845 107.48 —a 1.0 5.5
2B3H2H2B3 8.880 18.08 3.290 51.980101 52.0013 52.0048 198.034 90.492 2.449 —a

2B3H1H3B3 9.085 2.795 9.828 52.115557 52.1361 52.1392 333.182 75.51 231.308 22.682
3B2H1H3B3 3.356 2.715 10.35 51.99337 52.0142 52.0173 278.35 82.682 171.879 2.84
1H3B5B2H1 8.979 19.70 3.297 51.993816 52.015 52.019 211.6 77.3 16.1 98.6
1H3B5B3H 9.253 18.48 10.340 51.901493 51.923 51.926 119.429 73.090 17.56 6.41
1H3B3H3B2 8.880 9.99 8.88 52.06129 52.083 52.087 212.18 74.54 21.20 81.1
1H2B3H3B3 3.298 8.854 10.155 51.999949 52.0210 52.0244 217.728 99.060 88.595 21.238
H3B3H3B3 10.348 9.128 9.825 51.907673 51.9280 51.9311 125.255 6.587 75.332 23.818

a After breaking this bond, the remaining molecule is unstable.

Table 5 Equilibrium bond lengths (RAB and RBA, Bohr), energies per
monomer (EHF, Eh) and stabilisation energy per monomer (Estab, mEh) of
1D polymers at the HF level of theory

AB

Monomer Polymer

RAB �EHF RAB RBA �EHF Estab

H1H1 2.636 1.184572 2.798 2.798 1.420210 235.638
1Li3Li2 8.693 16.064647 9.0 9.0 16.13383 69.18
1H2Li1 5.152 8.681782 5.46 5.46 8.752991 71.209
1H3B2 8.880 26.020047 9.6 9.6 26.0474 27.4
2Li4B2 13.330 33.418876 14.0 14.0 33.447 28
1H1He1 2.025 3.880313 2.025 10 3.882261 1.948
1H2B3 3.298 25.957601 3.3 20 26.0 0

Fig. 7 Left exclusion potential (red) of 1He3B3 (left) and 1He2Li2 (right) and electron density (blue) of H2He3B3 (left) and 1He2He2Li2 (right).
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However, not all of the polymers in Table 5 follow this
pattern and the (1H1He1)n and (1H2B3)n polymers are notable
exceptions. In both of these, the inter-monomer bonds are
exceptionally long and the resulting stabilisation is small.
Because these new bonds do not arise in stable diatomics,
these ‘‘polymers’’ are better viewed as loose aggregates.

IV. Rules of 1D bonding

Our studies reveal that chemistry in 1D is largely local. The
combination of particle impenetrability and strong shielding
causes distant particles to have very little effect on each another
and, as a result, the functional groups in 1D chemistry are
essentially the diatomic units within a molecule. This reduction
requires us to understand the bonding in diatomic molecules
and has led us to three simple rules which describe all of the
bound diatomics reported in Table 2:
� Two alkalis with aligned dipoles bind
� Two alkalis with unaligned dipoles bind if their nuclear

charges differ by at least two
� A noble binds to an alkali’s electron-deficient side
Strong bonds result from three ingredients:
� Light atoms
� Aligned atomic dipoles
� Low electron occupations in each domain
The first ingredient improves electron-nuclear attraction

(because of reduced shielding); the last also enhances Coulom-
bic attraction and also reduces kinetic energy.

In general, a polyatomic is strongly bound if all of its
constituent diatomics are separately stable. There are interesting
exceptions (such as the stable triatomic H2H2B3 and the unstable
tetra-atomic 3B2H3B3H1) but it is true for all of the tightly bound
triatomics that we have identified. Curiously, the rule incorrectly
predicts 3B2H3B3H1 and 1H3B2H3B3 to be strongly bound when,
in fact, it turns out that one of their constituent bonds is
insufficiently strong to overcome the unfavourable dipole inter-
actions. Fortunately, this is the only example that we have found
where the rule fails.

V. Conclusion

Using our newly developed electronic structure program for 1D
molecules, LEGLAG, we have performed an extensive survey of
1D chemistry. By adopting improved basis functions, we have
been able to identify and characterise a wide variety of stable
molecules and a small set of polymers. Many of these are novel
structures and, prior to this work, would not have been
expected to exist.

We have also developed an understanding of the bonding
interactions in these molecules and we have identified the most
significant factors that contribute to their stability. This has
allowed us to formulate a set of simple rules which predict
whether a putative 1D molecule is stable.

Appendix A: integrals

It is convenient to define the parity function

en ¼
1; n is even

0; n is odd

(
(A1)

1. One-electron integrals

If we assume m r n, the kinetic integrals are

Rm T̂
�� ��Rn� �

¼ a2

2

ð2mÞ3
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ2ðnÞ2

p � dmn

" #
(A2)

and

Mm T̂
�� ��Mn

� �
¼ emþn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ4 mþ 3

2

� �
n þ 3

2

� �
ðnÞ4

vuuut m2 þ 3m� 1

6o2
(A3)

The potential to the left of RmRn is

Rm V̂
�� ��Rn� �

¼
2aL2

m�1ð2tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ2ðnÞ2

p ðn þ 1Þ!Uðn;�1;�2tÞ (A4)

where U is Tricomi’s function.39

The potentials to the left(+) or right(�) of MmMn are

Mm V̂
�� ��Mn

� �
¼ �2

o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 3

2

� �
n þ 3

2

� �
ðmÞ4ðnÞ4

vuuut
P2
mþ1ðzÞQ2

nþ1ðzÞ (A5)

where Q2
m is a second-order associated Legendre function of the

second kind.39

2. Clebsch–Gordan expansions

Products of our basis functions have finite expansions

LmðsÞLnðsÞ ¼
X
n

amnn LnðsÞ (A6a)

RmðtÞRnðtÞ ¼
X
n

amnn RnðtÞ (A6b)

MmðzÞMnðzÞ ¼
X
n

bmnn MnðzÞ (A6c)

where the expansion functions are

LnðsÞ ¼
8a
ðnÞ2

s2L2
n�1ð2sÞ expð�2sÞ (A7a)

RnðtÞ ¼
8a
ðnÞ2

t2L2
n�1ð2tÞ expð�2tÞ (A7b)

MnðzÞ ¼
1

2ðnÞ4o
1� z2
� �

P2
nþ1ðzÞ (A7c)

and n ranges from |m � n| + 1 to m + n � 1. For example,

R2R3 ¼ 2
ffiffiffi
2
p
R2 � 4

ffiffiffi
2
p
R3 þ 5

ffiffiffi
2
p
R4 (A8a)

M2M3 ¼ 10
ffiffiffiffiffi
21
p
M2 � 0M3 þ 35

ffiffiffiffiffi
21
p
M4 (A8b)
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We call these Clebsch–Gordan (CG) expansions and the coeffi-
cients are given by

amnn ¼
ð1
0

L2
m�1ðtÞffiffiffiffiffiffiffiffiffi
ðmÞ2

p L2
n�1ðtÞffiffiffiffiffiffiffiffiffi
ðnÞ2

p L2
n�1ðtÞ

t�2 expðtÞdt (A9a)

bmnn ¼
ð1
�1

P2
mþ1ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ4

mþ 3=2

s P2
nþ1ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnÞ4

n þ 3=2

s P2
nþ1ðzÞ
1� z2

2nþ 3

dz (A9b)

3. Properties of the expansion functions

The Laplace transforms of Rn and Mn areð1
0

RnðtÞ expð�utÞdt ¼
aðu=2Þn�1
ð1þ u=2Þnþ2 (A10a)

ð1
�1
MnðzÞ expð�uzÞdz ¼

ð�1Þnþ1inþ1ðuÞ
ou2

(A10b)

where in is a modified spherical Bessel function.39

The moments of Rn and Mn areð1
0

RnðtÞtkdt ¼
að�1Þnþ1k!ðkþ 2Þ!
ðnþ 1Þ!Gð2þ k� nÞ2k (A11a)

ð1
�1
MnðzÞzkdz ¼

enþkþ1G
kþ 1

2

� �
G

kþ 2

2

� �

8oG
k� nþ 3

2

� �
G

kþ nþ 6

2

� � (A11b)

The kth moments of Rn andMn vanish if k o n � 1. All of the
higher moments of Rn have the same sign. All of the higher
moments of Mn are positive.

The potential to the left of Rn isð1
0

RnðrÞ
r� t

dr ¼ 2aGðnÞUðn;�1;�2tÞ (A12)

and the potentials to the right(+) or left(�) of Mn are

ð1
�1

MnðrÞ
jz� rjdr ¼

�G n

2

� 	
G

nþ 1

2

� �

G nþ 5

2

� �
8ozn

F
n

2
;
nþ 1

2
; nþ 5

2
;
1

z2


 �
(A13)

where F is the Gauss hypergeometric function.39 These potentials,
which are illustrated in Fig. 8, are monotonically decreasing
and behave asymptotically as O(x�n).

The absolute contents of Rn and Mn satisfyð1
0

RnðtÞj jdto 10

9n5=4
(A14a)

ð1
�1
MnðzÞj jdzo 1

10n2
(A14b)

These quantities can be used to compute simple upper bounds
to the Coulomb integrals in the next section.

4. Coulomb integrals

The CG expansions yield

LmLn
��RlRs

� �
¼
X
mn

amnm alsn LmjRnð Þ (A15a)

LmLn
��MlMs

� �
¼
X
mn

amnm blsn LmjMnð Þ (A15b)

MmMn
��MlMs

� �
¼
X
mn

bmnm blsn MmjMnð Þ (A15c)

The Coulomb integral1 between densities f (x � X) and g(y � Y)
in different domains with X r Y is given by

ðf jgÞ ¼
ð1
0

Fð�uÞGðuÞ expð�RuÞdu (A16)

where F and G are the Laplace transforms of f and g and
R = Y � X. In this way, we find that

LmjRnð Þ ¼ 2aGðmþ n� 1ÞUðmþ n� 1;�4; 2aRÞ (A17a)

LmjMnð Þ¼�ð�aoÞ
n
ffiffiffi
p
p

4o

�
X1
k¼0

Gðmþn�1þ2kÞUðmþn�1þ2k;n�2þ2k;2aRÞ

G nþ5
2
þk

� �

�
a2o2
� �k

k!
(A17b)

Fig. 8 Potential Vn(x) to the right of LnðsÞ with a = 1 (left) and to the right of MnðzÞ with o = 1 (right). From top to bottom, n = 1, 2, 3, 4, 5.
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(A17c)

where U is Tricomi’s function and P(a,b)
k is a Jacobi polynomial.39

Each of the integrals (A17a), (A17b) and (A17c) is O(1/Rm+n�1)
for large R. Consequently, for domains that are far apart, many
of the higher Coulomb integrals are negligible and can be safely
neglected using the bound (6).

5. Quasi-integrals

The CG expansions yield

RmRn
��RlRs

� 
¼
X
mn

amnm alsn RmjRnf g (A18a)

MmMn
��MlMs

� 
¼
X
mn

bmnm blsn MmjMnf g (A18b)

The quasi-integral1 between densities f (x) and g(y) in the same
domain is given by

ff jgg ¼ � 1

2p

ð1
�1

Fð�ikÞGðikÞ log k2dk (A19)

If we define the harmonic sum

Hn ¼
Xn
k¼1

1

2k� 1
(A20)

assume m r n and define D = n � m, we find that

RmjRnf g ¼ a
ð�1Þnþ1D!

ðnþ 1Þ!

ffiffiffi
p
p

2

�
XD=2
k¼0

ð2kþ 1Þð2kþ 3Þ Hkþ2 �Hn�1�kð Þ
4kGð3=2� nþ kÞðD� 2kÞ!k!

(A21)

and

MmjMnf g ¼ emþn
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